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Circadian rhythm mechanisms involve multi-scale interactions between endogenous
DNA-transcription oscillators. We present the application of efficient, numerically well-
conditioned algorithms for abstracting (potentially large) systems of differential equation
models of circadian oscillators into compact, accurate phase-only macromodels. We ap-
ply and validate our auto-extracted phase macromodelling technique on mammalian and
Drosophila circadian systems, obtaining speedups of 9− 13× over conventional time-
course simulation, with insignificant loss of accuracy, for single oscillators being synchro-
nized by day/night light variations. Further, we apply the macromodels to simulate a system
of 400 coupled circadian oscillators, achieving speedups of 240× and accurately reproduc-
ing synchronization and locking phenomena amongst the oscillators. We also present the
use of parameterized phase macromodels for these circadian systems, and elucidate insights
into circadian timing effects directly provided by our auto-extracted macromodels.

1. Introduction

Circadian rhythms are amongst the most fundamental of physiological processes. They
are found in virtually all organisms, ranging from unicellular (e.g., amœbæ, bacteria)
to complex multicellular higher organisms (e.g., human beings). These daily rhythms,
of period about 24 hours, are associated with periodic changes in hormones controlling
sleep/wakefulness, body temperature, blood pressure, heart rate and other physiological
variables. Importantly, circadian rhythms areendogenousor autonomous; however, they
are typically influenced by external cues, such as light. Progress in quantitative biology
has established that such rhythms stem fundamentally from the molecular level,1,2 involv-
ing complex chains of biochemical reactions featuring a number of key proteins/hormones
(such as melatonin and melanopsin), whose levels rise and fall during the course of the
day. These biochemical reactions, which take place both within individual cells and at an
extracellular level, function asbiological oscillators or body clocks.3

Quantitative understanding, simulation and control of circadian rhythms is of great
practical importance. Applications include devising medical remedies for rhythm disor-
ders (e.g., insomnia, fatigue, jet lag,etc.), synthetic biology (where a goal is to “program”
artificial rhythms that are biologically viable), artificially extending periods of wakeful-
ness/alertness (e.g., for military purposes), and so on. Improved understanding of circadian
rhythm mechanisms has led to increased awareness of how pervasively they affect virtually
every aspect of the life of an organism. Hence, their simulation/analysis is an important
endeavour in the biological domain.1,2

Although individual oscillators constitute the fundamental core of circadian rhythm
mechanisms, the rich circadian functionality of multicellular organisms results from thein-
teractions of many oscillatorsover multiple temporal and spatial scales. Observations of pe-
riodicity in behavior, metabolism, body temperature,etc., indicate that coupling/coherence
mechanisms play a key role. Hierarchical organization of the circadian system, from the
fundamental DNA transcription/translation level to endocrine system levels, involves com-
plex oscillator interactions. The complex connectivity and high dimensionality of such cou-
pled oscillator networks, which lead to unique effects such assynchronizationandinjection
locking/pulling,4,5 make them difficult to understand at the intuitive or analytical level, thus
engendering the need for efficient and powerful simulation and analysis tools with multi-
scale capabilities.

Several oscillatory mathematical models are available for circadian rhythms1,2 that
capture the dynamics of the relevant molecular biochemical reactions (see Section2 for de-
tails). These models are in the form of systems of differential-algebraic equations (DAEs)
or ordinary differential equations (ODEs). The prevalent technique today for their simula-
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tion is to run initial value simulations. While such “time-course integration” of ODEs/DAEs
has the advantage of generality, it suffers from serious disadvantages for oscillators, which
are inherentlymarginally stable.6 For initial-value simulations, marginally stable systems
tend to require orders of magnitude more computation for a specified accuracy, particu-
larly phase/timing accuracy, than stable systems; even for individual oscillators, very small
timesteps (e.g., many hundreds per oscillation cycle) are typically needed, leading to high
computational cost. The situation worsens for coupled oscillator systems, which typically
feature multiple time scales;e.g., envelopes7,8 typically feature much longer time scales
than individual oscillation cycles.

In electronic circuit design,automated nonlinear phase macromodel extractiontech-
niques5,6,9 have proven effective in solving sucsuch oscillatory problems. Given any oscil-
lator as a system of DAEs or ODEs (however complicated), efficient and well-conditioned
numerical techniques extract ascalar nonlinear differential equation, the phase macro-
model. This macromodel captures the dynamic response of the oscillator’s phase or tim-
ing characteristics to external influences. It has been shown that such “PPV” (Perturba-
tion Projection Vector) phase macromodels are able to accurately capture the gamut of
phase/frequency-related dynamics of oscillators; most importantly locking, synchroniza-
tion and phase noise (timing jitter) effects.6,10 Using the PPV macromodel instead of the
original DAEs/ODEs confers important advantages: large simulation speedups due to sys-
tem size reduction, the ability to use larger timesteps than for the original system, abstrac-
tion to the phase or timing level, precise insight about timing influences without the need for
simulation,etc.. These advantages are especially pronounced for systems of many coupled
oscillators spanning different temporal and spatial scales.11

In this work, we present the first application of PPV-based automated nonlinear time-
shifted macromodelling methods to biological systems, focussing on circadian rhythms. We
use PPV phase macromodels6,12 to model circadian oscillators and show that they are con-
siderably more efficient than standard “time course” simulations. PPV models alleviate the
lack of accuracy and general applicability of a widely used prior phase model (Kuramoto’s
model, see below), while retaining its advantage of relative simplicity and computational
efficiency. PPVs provide direct insights into the effects of external stimuli, such as slow-
ing down/speeding up of circadian rhythms; for example, it is easy to determine when and
how to apply a light pulse for greatest de-synchronization. Using PPV macromodels, we
are able to efficiently produce plots of circadian lock range vs amplitude of external stim-
uli; this is valuable for guiding experiments, explaining observations, and designing new
(“synthetic”) DNA/protein based biological clock networks. Furthermore, we also present
the application ofparameterizedPPV macromodels,13 which directly incorporateeffects of
parameter changesinto our phase-only models of circadian rhythms. Being able to directly
and quantitatively predict the impact of parameter changes on phase, frequency and timing
behaviour is of significant biological value.

Indeed, the PPV constitutes a rigorous, Floquet-theoretic generalization of Winfree’s
seminal concept of timing maps and phase sensitivity functions,14 used within “phase-only
models” of oscillators popular in computational biology. Kuramoto15 applied the theory of
asymptotics to findsinusoidalexpressions for Winfree’s phase sensitivity functions; these
are widely used for phase-only models, since they are capable of capturing synchroniza-
tion effects. However, the sinusoidal simplifications inherent in Kuramoto’s model lead to
significant inaccuracies for non-sinusoidal oscillators (including circadian ones). These in-
accuracies compound in large networks and often lead to qualitatively incorrect conclusions
about,e.g., collective synchronization.11,16From a utilitarian point of view, the usefulness
of PPV macromodels over Kuramoto is twofold: firstly, PPVs represent the correct (of-
ten highly non-sinusoidal) phase sensitivity functions of the oscillator; secondly, the PPV
macromodel is generated via analgorithmic computational procedurefrom the oscillator’s
DAE/ODE description, typically taking seconds or less to reduce systems 1000s of equa-
tions in size.
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We apply PPV macromodels to two different circadian rhythm
models: one for mammals1,17and one forDrosophila melanogaster
(the fruit fly, shown in Fig.1).2 We show that the PPV macromod-
els are significantly faster to simulate than the original equation
systems even for single oscillators (9x speedup for the mammalian
clock, and 13x speedup for theDrosophilaclock). Modelling light
as an external input impinging upon circadian oscillators, we con-
firm injection locking using PPV macromodels and obtain plots

Fig. 1: Male Drosophila
(fruit fly).

of lock range vs amplitude of the light signal. We comment on
the biological significance of the shapes of important components of the PPV. We then use
PPV macromodels to rapidly explore synchronization behaviour in a network of 400 cou-
pled oscillators, obtaining speedups of about 240× over standard time-course simulation.
Finally, using parameterized PPV macromodels, we predict the effects of varying a number
of model parameters on oscillation frequency and lock range.

The remainder of the paper is organized as follows. In Section2.1, we provide back-
ground on circadian rhythms and their mechanisms, followed by a review of mathematical
models for circadian rhythms in Section2.2. Oscillator and phase macromodels are then in-
troduced in Section3; a brief review of PPV macromodels, injection locking analysis and
parameterized PPVs is provided. Finally, in Section4, results and speedups are presented.

2. Background and Previous Work

2.1. Circadian rhythms

Circadian rhythms are generated by “clock genes”, which encode genetic instructions that
produce certain proteins whose levels oscillate during the course of the day. These oscillat-
ing biochemical signals control various functions, such as sleep/waking cycles – in other
words, they constitute our “internal biological clock”, which adapts to the daily cycle of
day and night. However, the natural period of this internal clock is not exactly 24 hours;
it is typically longer if the organism is kept isolated and away from external cues,18 most
importantly light (these cues are calledZeitgebers). Therefore, the internal clock needs to
be “reset” every day, in order to keep the organism’s bodily rhythms synchronized with the
external world’s day/night cycle.

Higher organisms are often composed of billions of cells. The nucleus of each cell
contains the genetic material DNA, a long chain-like linear molecule built up of many
links. RNA, also a nucleic acid polymer, serves as a DNA template for thetranslationof
genes into proteins. The process of formation of an RNA molecule from a particular DNA
is calledtranscription. Unlike DNA, RNA is capable of leaving the nucleus and moving
into the cytoplasm. There, with the help of enzymes, specific RNA strings get converted to
specific proteins responsible for different bodily functions. Some of these proteins return
to the nucleus, forming complexes by binding to other proteins, some of which inhibit the
expression of their own genes, giving rise to oscillatory patterns in protein concentrations
and hence,circadian rhythms.1,2,18

In mammals, core clock genes includePer, Cry,
Bmal1 and Clock genes. Their proteins act by inhibit-
ing or stimulating transcriptions of other core clock
genes. The proteins of theBmal1 and Clock genes,
namely BMAL1 and CLOCK, form a complex CLOCK-
BMAL1 inside the nucleus. This complex activates the
transcription of thePer and theCry genes. In the cy-
toplasm,Per andCry RNA translate to their respective
proteins, PER and CRY. Some of these proteins dimer-
ize to form the complex PER-CRY which returns to the
nucleus where, by binding to the CLOCK-BMAL1 com-

Fig. 2: Mammalian circadian clock
mechanism (Francis Levi, EORTC
Chronotherapy Group).

plex, it prevents the further transcription ofPer andCry genes. Thus a negative feedback
loop is created; PER and CRY proteins blocking the transcription of their own genes. The
above mechanism for the mammalian clock is illustrated in Fig.2.
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2.2. Models of Drosophila and mammal circadian rhythms

Computational models are available for circadian rhythms inDrosophila, Neurospora,
cyanobacteria and mammalian systems.1,2 These models, useful for computing concentra-
tions of core clock genes, take into account the processes of transcription, translation and
phosphorylation.

The mammalian circadian clock model we use1 consists of 16 variables (hence 16 dif-
ferential equations) and 52 parameters. It incorporates
the effect of negative autoregulation ofPer/Cry gene ex-
pression by their own proteins. TheDrosophilacircadian
model we use,2 consisting of only 5 variables (5 equa-
tions) and 18 parameters, is small enough to be repro-
duced here:

Fig. 3: Drosophila clock mecha-
nism2.
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The variables in Eq.1 are the same as those shown in Fig.3; parameters that lead to en-
dogenous oscillations are taken from Gonze/Goldbetter.2 Note that Eq.1 is in the canonical
nonlinear ODE/DAE system form

d
dt

~q(~x(t))+~f (~x(t))+~b(t) = 0, (2)

with ~q(~x) ≡~x and~b(t) ≡ 0. ~b(t) represents the influence of external inputs, such as light,
which affects the transcription rate of thePer gene in both mammals andDrosophila. The
effect of light is modelled by including a parameter in the rate equations of thePer gene
(vs in Eq.1), which we recast in the form of Eq.2 with~b(t) 6= 0 (details in Section4).

3. Oscillators and PPV phase macromodels

The quantitative study and design of oscillators has a rich history in engineering, particu-
larly in electronics: oscillators are fundamental components in virtually all electronic sys-
tems. For example, they are widely used in communication systems for frequency transla-
tion of information signals; phase locked loops (PLLs) for clock generation and frequency
synthesis,etc.. As noted earlier, phase macromodelling techniques are widely used to im-
prove simulation efficiency and accuracy5,19 in electronics. In particular, the Perturbation
Projection Vector (PPV) phase macromodel6,9 is well established on account of its rig-
orous Floquet-theoretic underpinnings, broad applicability, effective numerical extraction
procedures, large simulation speedups and extensive validation. We have already noted its
advantages in Section1; here, we summarize mathematical details of the model. For expo-
sitional convenience, we assume an ODE form for an oscillator under external perturbation:

d
dt

~x(t)+~f (~x(t)) =~b(t). (3)

~b(t) is the vector of perturbations applied to the free running oscillator;~x(t) and~f (~x(t))
have their usual meanings, as in Eq.2. The solution of this perturbed oscillator can be
shown6 to be in the form

~xp(t) =~xs(t +α(t))+~y(t +α(t)), (4)
where~xs(t) is the periodic, oscillatory solution of the unperturbed oscillator andα(t) is
a phase deviationcaused by the external perturbation~b(t). ~y(t + α(t)) is an amplitude
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variation; it is typically very small in circadian oscillators2 and is therefore of secondary
importance compared to the phase deviationα(t). Using a nonlinear extension of Floquet
theory, Demir et al6 proved thatα(t) is governed by the scalar, nonlinear, time-shifted
differential equation

α̇(t) = vT
1 (t +α(t)) ·b(t), (5)

wherevT
1 (t) is a periodic vector known as theperturbation projection vectoror PPV. Im-

portantly, they also showed that the PPV can be calculated efficiently via simple post-
processing steps following time- or frequency-domain steady-state computation.6,9 Each
component of the PPV waveform represents the oscillator’s “nonlinear phase sensitivity”
to perturbations of that component. The PPV needs to be extracted only once from Eq.1
(even if parameters change, see the description of parameterized PPVs below); once ex-
tracted, Eq.5 is used for simulations.

3.1. Using the PPV macromodel for systems of coupled oscillators

By employing~b(t) in Eq.5 to capture coupling, PPV macromodels can be composed to
represent systems of many coupled oscillators with different characteristics. For purposes
of illustration, we outline the procedure forN identical oscillators coupling via only one
component ofb(t). This results in the following set of governing equations for the coupled
system:

α̇i(t) = vT(t +αi(t)) · γi(t), i ∈ 1, · · · ,N, (6)
whereαi(t) is the phase shift of oscillatori, v(t) is the phase sensitivity of the node on which
coupling occurs andγi(t) is the perturbation resulting on oscillatori due to coupling from
other oscillators. If the couplingγi(t) and phase sensitivityv(t) are purely sinusoidal, it is
easy to show that Eq.6 is equivalent to Kuramoto’s model.15 In general, however, Eq.6
is far more accurate since it considers all harmonics of the PPVs. We use the coupling
function model given in To et al20 asγi(t) in Eq.6, and solve for the phase dynamics of a
20×20 network of coupled oscillators.

3.2. Injection locking analysis

When an external signal of frequencyf is injected into an oscillator with a central fre-
quency fo close to f , the oscillator can lock to the injected signal both in phase and fre-
quency. This phenomenon is known as injection locking and can be very easily captured by
the PPV macromodel of the oscillator.4 It has been shown5 that when injection locked, an
oscillator’s phase shiftα(t) varies linearly with time as

α(t) =
∆ω
ωo

t +
θ(t)
ωo

, (7)

whereωo is the natural frequency of the unperturbed oscillator and∆ω the difference be-
tween the frequencies of the injected signal and the unperturbed oscillator.θ(t) represents
a bounded, periodicphase difference function, the exact form of which can be determined
via time-course or steady-state simulation5,8 of Eq.5. The presence of injection locking
can therefore be detected by comparing the time-average ofα̇(t) with ∆ω

ωo
.

3.3. Parameterized PPV macromodels

Circadian rhythm models typically involve large numbers of model parameters. For exam-
ple, there are 18 parameters in theDrosophilaclock model,2 while the mammalian clock
model1 has 52 parameters. The values of these parameters are chosen so that the model’s
predictions best fit experimental observations. Leloup/Goldbetter17 have noted that circa-
dian rhythm properties (particularly frequency) are sensitive to variations in several param-
eters. The conventional approach to assessing the effect of parameter variations involves
brute-force time-course simulation of circadian models, a process that is not only expen-
sive but can also generate numerical inaccuracies in phase.5
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We, instead, use an extended form of Eq.5 that directly incorporates parameter varia-
tions – we call this theparameterized PPV macromodel.13 The key advantage of the param-
eterized PPV macromodel is that it does not involve re-extracting the PPV when parameters
change - this leads to huge speedups when,e.g., many coupled oscillators with different pa-
rameters are involved. The parameterized PPV equation is given by

α̇(t) = vT
1 (t +α(t)) · (b(t)−Sp(t +α(t))∆p), (8)

where∆p is a vector containing parameter variation terms andSp(t) is a periodic, time-
varying matrix function given by

Sp(t) =
∂ f
∂ p

|xs(t),p∗ . (9)

In Eq.9, xs(t) denotes the natural periodic solution of the unperturbed oscillator;p∗ rep-
resents the vector containing nominal (basal) parameter values. This extra term captures
phase deviations due to parameter variations, without having to re-extract the PPV when
the parameters change. It also enables the study of the effects of multiple parameters vary-
ing at the same time.
4. Simulation of mammalian andDrosophila melanogaster circadian rhythms

using PPV macromodels

In this section, we present results obtained by applying PPV macromodelling, described
in Section3, to mammalian andDrosophilacircadian rhythm models.1,2 We first extract
PPV macromodels for both circadian systems at nominal parameters9 and then simulate
for phase deviation with external perturbation to demonstrate injection locking. We model
the external perturbations as changes in external light intensity by first assigning a constant
value to the light sensitive parametervs (signifying darkness) and then applying an external
light signal of intensity

L(t) = A+Asin(ωt)W/m2, (10)
whereω = 2π f , f being the frequency of the light/dark cycles,i.e., corresponding to 1
cycle in 24 hours. Often, light is modelled as a step function for simulations in biologi-
cal systems (i.e., constant values for light and dark conditions respectively). However, to
correspond more closely with continuously changing light intensities in reality and to illus-
trate the generality of the PPV model, we apply sinusoidal intensity waveform around an
average value.21 (Note that any other shape, including step function shapes, can be handled
equally easily). We assume the experimental setup used by Usui/Okazaki,21 where the illu-
minance of light is varied from 20 lux to 0.01 lux (i.e., variation in light intensity from 0.15
W/m2 to 0.00009W/m2), giving A ∼ 0.05W/m2 in Eq.10. Moreover, Eq.10 multiplied
by a constant gives the termb(t) of Eq.2, where the constant signifies the change inPer
gene concentration for 1W/m2 of light intensity. In this paper, we assume the constant to
be equal to 1nM/(W/m2). The constant can be modelled accurately in future experiments.

We also extract parameterized PPV macromodels to study the effect of parameter vari-
ations in two cases – with and without external light variations. In the absence of external
light variations, phase deviations from the parameterized PPV macromodel are useful for
predicting changes in free-running frequency. When external light perturbations are in-
cluded in parameter-varying PPV simulations, lock range information is also generated.

Finally, we put the above single-oscillator PPV macromodels together to model a
locally-coupled 20×20 network of oscillators – a simple representation of a spatially multi-
scale, coupled circadian system. We use this model to demonstrate synchronization behav-
ior, obtaining speedups of about 240×over traditional time-course simulation.

4.1. Time-course simulations using full ODE models

For reference and validation, we first perform time-course simulations of the two ODE
circadian rhythm models directly, to obtain concentration waveforms for all clock pro-
teins and mRNAs in the model. The waveforms thus obtained are shown in Fig.4(a) and
Fig. 4(b). We observe an anti-phase relationship between the concentrations of thePer/Cry
andBmal1mRNAs, as expected from theory.1 The period of the oscillating waveforms is
equal to 23.8 hrs for the mammalian clock and 22.4 hrs for theDrosophilaclock.
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Fig. 4. (a) Plot of core clock gene concentrations (Per, Cry and Bmal1) in mammals vs. time.
The concentrations are oscillatory and there is an antiphase relationship between thePer/Cry
and Bmal1 concentrations. (b) Plot of thePer gene concentration inDrosophila vs. time
4.2. Circadian PPV macromodels

In this section, we extract the PPV macromodel of the circadian oscillator for both models.
Fig. 5(a) and Fig.5(b) show the PPV waveforms ofPer gene concentrations. This wave-
form gives the phase sensitivity of the concentration at each time instant and can be directly
used to find the new concentration waveform under the effect of an external perturbation. It
is equivalent to the phase response curve described by Winfree,14 with the only exception
that PPV waveforms do not involve sinusoidal simplifications,15 implying greater accu-
racy, as already noted previously. By inspecting the phase sensitivity at each time instant,
it becomes possible to determine the time at which light should be applied to shift the oscil-
lator’s time-keeping forward or backward. At zero crossings of the PPV phase sensitivity
function, for example, a light pulse will have no effect on the phase/frequency characteris-
tics of the oscillator.
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Fig. 5. (a) and (b) Plot of PPV phase sensitivities vs. time for thePer gene concentration.
Speedups: (a) For the mammalian clock model: full time course simulation using the

Backward Euler (BE) integration method requires 18 seconds of computer time, while find-
ing the free-running steady state via harmonic balance analysis takes about 6 seconds. This
is followed by the PPV extraction algorithm, which takes around 1.5 seconds; the total time
required for PPV extraction is about 7.5 seconds, representing a speedup of some 2.5×.
(b) For theDrosophilamodel: full time course simulation takes about 13 secs; harmonic
balance analysis takes∼ 4 seconds, PPV extraction∼ 0.5 seconds; resulting in a speedup
of ∼ 3×.

To gauge the accuracy of the PPV macromodels, we plot concentration waveforms for
thePer gene, obtained from time course and PPV simulations, in Fig.6. Fig.6(a) shows
waveforms for an locked oscillator (distinct frequencies), while Fig.6(b)shows waveforms
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for a locked oscillator.

(a) (b)

Fig. 6. Plots of Per gene (mRNA) concentration obtained from transient and PPV macromodel
simulations. (a) Unlocked case. (b) Locked case.

4.3. Simulation of injection locking

In order to study the effects of external perturbations on circadian rhythms, we calculate
phase deviations due to external perturbations (Eq.10) by solving Eq.7. If the period
of the externally applied signal is close enough to the oscillator’s free-running frequency,
entrainmentor injection lockingoccurs.

4.3.1. Mammalian clock model

The free-running frequency of the mammalian circadian clock isfo = 4.19×10−2hr−1.
We apply an external signal with∆ f

fo
= −0.00623. Fig.7(a)depicts injection locking with

a light input of 0.009 + 0.009sin(ωt) W/m2, where the locking starts around 690 hours
(∼ 30 cycles). Fig.7(b) shows the same curve for light input of 0.05 + 0.05sin(ωt) W/m2;
locking time reduces to about 260 hrs (∼11 cycles). From these results, we can infer that
with smaller light intensities, the resetting phenomenon takes a longer time.
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Fig. 7. (a) Plot of phase deviationα(t) vs. time for the mammalian clock model, with light input
0.009+ 0.009sin(ωt)W/m2. The slope of−0.0069 indicates injection locking, with lock reached
in about 690 hours. (b) Plot ofα(t) vs. time for the mammalian clock model, with light input
0.05+0.05sin(ωt)W/m2. The slope is−0.007; lock is reached in about 260 hours.
4.3.2. Drosophila clock model

The free-running frequency of theDrosophila circadian oscillator was fo =
4.48x10−2hr−1; the frequency of the injected light signal wasf = 4.16x10−2hr−1, leading
to ∆ f

fo
=−0.071. The intensity of the applied light is given by Eq.10, with A= 0.05W/m2.

Fig. 8(a) shows the phase deviation vs. time; its slope is 0.071, equal tothe relative fre-
quency difference, thus confirming that the oscillator is locked to the injection frequency.
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Fig. 8. (a) Plot of phase deviationα(t) vs. time for the Drosophila clock model. The slope is
−0.071(injection locked) (b) Plot of frequency deviation vs. time.
4.4. Lock range vs. injection amplitude

We also calculate the lock range (frequency range
over which the oscillator remains locked to the external
signal) for the mammalian clock and plot it as a func-
tion of injection amplitude. We find that the lock range
increases roughly linearly with injection amplitude, as
can be seen in Fig.9. However, at higher amplitudes,
the linearity between lock range and injection ampli-
tude collapses. By calculating the lock range for a given
light amplitude, we can infer whether the system would
lose its rhythmicity or not on exposure to that particular
light. Conversely, one can calculate the light amplitude
required to synchronize the free running oscillators.
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Fig. 9: Locking Range vs Injection
Amplitude (Mammalian Clock

Speedups: (a) Mammalian clock model: Time course simulations take∼ 18 seconds.
PPV macromodel simulations take∼ 2 seconds after PPV extraction, resulting in a speedup
of ∼ 9×. (b) Drosophilaclock model: Time course simulations take∼ 13 seconds; PPV
macromodel simulations take∼ 1 second; resulting in a speedup of∼ 13×.

4.5. Parameter variation simulations

To study the effect of parameter variations on circadian rhythms, we first simulate the phase
deviations given by Eq.8 with b(t) = 0. As an example, we vary all parameter values by
10% of their nominal values;i.e., ∆p = 0.1p. The slope of the phase deviation curve gives
the relative change in frequency due to the change in parameters. As is evident from Eq.8,
wecan study the effects of all possible combinations of parameter variations.

For the mammalian clock model, the relative frequency change is found to equal
0.186; i.e., the new frequency is equal to 20.1 hours (Fig.10(a)). For theDrosophilaclock
model, the relative frequency change equals−0.114, i.e., the new frequency equals 25.2
hrs (Fig.10(a)). It is evident that even small changes in parameter values canaffect rhythm
frequency significantly.

Next, we combine parameter variations with external perturbations to the oscillator.
Using the slope of the phase deviation curve, we can calculate the range over which param-
eters can be varied while keeping the oscillator oscillator still locked to the injection signal
frequency for the same light input. As an example, we vary all parameters simultaneously
and find the respective variation range for each model. In case of theDrosophilamodel,
parameters can be varied from−5to10% without loss of lock; while for the mammalian
model, the range is smaller,−5to1% variation. The light input in both the cases is given by
Eq.10with A = 0.05W/m2.
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Fig. 10. (a) Plot of the phase deviationα(t) vs. time for the mammalian clock model with 10%
variation in the parameter values. The slope of the curve = 0.186 implying that the new frequency
of oscillations equals to 20.1 hrs. (b) Plot between the phase deviationα(t) and time for the
Drosophila Clock Model with 10% variation in the parameter values. The slope = -0.114 and the
new frequency of oscillations is hence equal to 25.2 hrs.
4.6. Synchronization of coupled oscillators

In this section, we extend the single oscil-
lator analysis to a system of many coupled os-
cillators (i.e., a system of several interacting bi-
ological cells, each behaving as an individual
oscillator and oscillating with a period of∼ 24
hrs). We consider a system of 400 mammalian
clock oscillators arranged in a 20x20 grid, as
shown in Fig.11.1 The oscillators are identi-
cal in all respects except for their free-running
frequencies, which are selected randomly from
a uniform distribution. Each oscillator is mod-
elled by a system of 16 ODEs (as used before
for single oscillator analyses). In order to intro-
duce coupling between the oscillators, we use a
recently proposed coupling model given in To et
al,20 wherein neurotransmitters act as synchro-
nizing agents between the cells. Then, using a
PPV macromodel for each oscillator augmented
by coupling equations, we simulate the entire

Fig. 11: 2-dimensional oscillator grid. The
numbers indicate the weight factors used for
the coupling. The black solid circle represents
a particular cell of interest.20

oscillator system.
We use Eq.6 to calculate the phase deviations for each oscillator, recording instanta-

neous phases at regular intervals. In every phase plot (e.g., as shown in Fig.12(a)), a small
rectangle represents an individual oscillator; the colour of the rectangle represents its phase
visually; e.g., dark red denotes a phase ofπ, while dark blue denotes 0 phase. Fig.12(a)
and Fig.12(b)show phase plots att = 1T and 5T respectively (T is the free running fre-
quency of an oscillator) in the absence of coupling. The absence of coupling can easily be
surmised, from the random nature of the plots (absence of any pattern,i.e., unsynchronized
phases). For the coupled case, Fig.12(d) shows the phases at 0.5T, when all the oscilla-
tors start synchronizing to the same phase (and frequency). Fig.12(e)and Fig.12(f) are the
phase plots at later stages, confirming synchronization amongst the coupled oscillators. We
have also varied the random center frequency distributions of the oscillators, and found that
with the same coupling strength, the oscillators cease to lock to each other for deviations
greater than 0.5 of the free-running circadian period
Speedups: (a) Time course simulations require∼ 12 hours for full simulations, including
the time required for the formation of the coupling matrix. (b) PPV simulations require
∼ 158 seconds for complete simulations. Hence, we obtain a speedup of∼ 240×. If the
system size is larger and the oscillator model is more complex, the speedups will be greater.
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(b) Phase Plot at t = 5T (No
Coupling)
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(Coupled)
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(d) Phase Plot at t = 0.5T
(Coupled)
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(e) Phase Plot at t = 0.75T
(Coupled)

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20
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Fig. 12. (a) and (b) Phase plots in case of no intercellular coupling between individual oscilla-
tors. (c) - (f) Phase plots showing the synchronization of coupled oscillators (all oscillators at the
same phase)
5. Conclusion

We have applied PPV phase macromodelling techniques to mammalian andDrosophila
circadian rhythms, for the first time. These techniques provide fast/accurate simulations
of oscillator systems, predicting synchronization and resetting in circadian rhythms via in-
jection locking cued by light inputs. In addition, PPV waveforms provide direct insight
into the effect of light on phases of the oscillating rhythms. We have accurately predicted
synchronization in a coupled multi-scale system of 400 circadian oscillators using PPV
macromodels. Finally, the efficacy of parameterized PPV macromodels for circadian prob-
lems has also been demonstrated.
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