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Microarray data are notoriously noisy such that models predicting clinically rele-

vant outcomes often contain many false positive genes. Integration of other data
sources can alleviate this problem and enhance gene selection and model building.

Probabilistic models provide a natural solution to integrate information by using

the prior over model space. We investigated if the use of text information from
PUBMED abstracts in the structure prior of a Bayesian network could improve

the prediction of the prognosis in cancer. Our results show that prediction of the
outcome with the text prior was significantly better compared to not using a prior,

both on a well known microarray data set and on three independent microarray

data sets.

1. Introduction

Integration of data sources has become very important in bioinformatics.
This is evident from the numerous publications involving multiple data
sources to discover new biological knowledge1,2,3. This is due to the rise
in publicly available databases and also the number of databases has in-
creased significantly4. Still many knowledge is contained in publications
in unstructured from as opposed to being deposited in public databases
where they can be amenable to use in algorithms. Therefore we attempted
to mine this vast resource and transform it to the gene domain such that it
can be used in combination with gene expression data. Microarray data are
notorious for there low signal-to-noise ratio and often suffer from a small
sample size. This causes that genes are often differently expressed between
clinically relevant outcomes purely by chance. Integration of prior knowl-
edge can improve model building in general and gene selection in particular.
In this paper we present an approach to integrate information from litera-
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ture abstracts into probabilistic models of gene expression data. Integration
of different data sources into a single framework potentially leads to more
reliable models and at the same time it can reduce overfitting2. Probabilis-
tic models provide a natural solution to this problem since information can
be incorporated in the prior distribution over the model space. This prior
is then combined with other data to form a posterior distribution over the
model space which is a balance between the information incorporated in
the prior and the data.
Specifically, we investigated how the use of text information as a prior of a
Bayesian network can improve the prediction of prognosis in cancer when
modeling expression data. Bayesian networks provide a straightforward way
to integrate information in the prior distribution over the possible struc-
tures of its network. By mining abstracts we can easily represent genes as
term vectors and create a gene-by-gene similarity matrix. After appropriate
scaling, such a matrix can be used as a structure prior to build Bayesian
networks. In this manner text information and gene expression data can
be combined in a single framework. Our approach builds further on our
methods for integrating prior information with Bayesian networks for other
types of data5,6 where we have shown that structure prior information im-
proves model selection especially when few data is available.
In this study we investigated if a Bayesian network model with a text
prior can be used to predict the prognosis in cancer. Bayesian networks
and their combination with prior information have already been studied
by others3,7,8,9 however, to the author’s knowledge, none have investigated
the influence of priors in a classification setting or, more specifically, when
predicting the outcome or phenotypic group of cancer patients. First, we
will show how the prior performs on a well known breast cancer data set
and examine the effect of the prior in more detail. Subsequently, we will
validate our approach on three other data sets studying breast, lung and
ovarian cancer.

2. Bayesian networks

A Bayesian network is a probabilistic model that consists of two parts: a
directed acyclic graph which is called the structure of the model and local
probability models10. The dependency structure specifies how the variables
(i.e. gene expression levels) are related to each other by drawing directed
edges between the variables without creating directed cycles. In our case
each variable xi models the expression of a particular gene. Such a variable
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or gene depends on a possibly empty set of other variables which are called
the parents (i.e. their putative regulators):

p(x1, ..., xn) =
n∏

i=1

p(xi|Pa(xi)) (1)

where Pa(xi) are the parents of xi and n is the total number of variables.
Usually the number of parents for each variable is small and therefore a
Bayesian network is a sparse way of writing down a joint probability dis-
tribution. The second part of this model, the local probability models,
specifies how the variables or gene expressions depend on their parents.
We used discrete-valued Bayesian networks which means that these local
probability models can be represented with Conditional Probability Tables
(CPTs). Such a table specifies the probability that a variable takes a certain
value given the value or state of its parents.

2.1. Model building

We already mentioned that a discrete valued Bayesian network consists of
two parts: the structure and the local probability models. Consequently,
there are two steps to be performed during model building: structure learn-
ing and learning the parameters of the CPTs. First the structure is learned
using a search strategy. Since the number of possible structures increases
super-exponentially with the number of variables, we used the well-known
greedy search algorithm K211 in combination with the Bayesian Dirichlet
(BD) scoring metric11,12,13:

p(S|D) ∝ p(S)
n∏

i=1

qi∏
j=1

[
Γ(N ′

ij)
Γ(N ′

ij +Nij)

ri∏
k=1

Γ(N ′
ijk +Nijk)
Γ(N ′

ijk)

]
, (2)

with Nijk the number of cases in the data set D having variable xi in state
k associated with the j-th instantiation of its parents in current structure
S. Γ corresponds to the gamma distribution. Next, Nij is calculated by
summing over all states of a variable: Nij =

∑ri

k=1Nijk. In our case the
state of a variable refers to the expression of the corresponding gene where
each variable can have one of three states: over-expressed, under-expressed
or no expression. Next, N ′

ijk and N ′
ij have similar meanings as Nijk and

Nij but refer to prior knowledge for the parameters. When no knowledge
is available they are estimated using13: N ′

ijk = N
riqi

with N the equivalent
sample size, ri the number of states of variable xi and qi the number of
instantiations of the parents of variable xi. K2 uses a prior ordering of
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the variables to restrict the number of structures that can be built. The
order of the variables reflects the causal relationship between the variables,
this means that regulators should come before their targets in the ordering.
Because the prior ordering of the variables is not known in advance we
repeat the model building process for a set of randomly drawn variable
orderings and choose the model with the highest posterior BD score. The
next step consists of estimating the parameters of the local probability
models of each variable in the structure with the highest BD score. This
amounts to filling in a CPT for every variable and every possible value of its
parents using the data. This Bayesian network can then be used to predict
future data.

2.2. Structure prior

Previously two approaches have been used to define informative prior dis-
tributions over Bayesian network structures5. First there are penalization
methods that start from a prior structure and score structures based on the
difference with the prior structure13. Secondly there are pairwise methods
which define the prior probability of a Bayesian network structure by com-
bining individual edge scores between variables. This method assumes that
being a parent of some node is independent of any other parental relation.
We have chosen the second approach to model the structure prior where
the prior probability of a structure is decomposed as:

p(S) =
n∏

i=1

p(Pa(xi)→ (xi)) (3)

The probability of a local structure (i.e. p(Pa(xi)→ xi)) is then calculated
by multiplying the probability that there is an edge between the parents of
xi and, the probability there is no edge between the other variables and xi:

p(Pa(xi)→ xi) =
∏

p∈Pa(xi)

p(p→ xi)
∏

y/∈Pa(xi)

p(y 9 xi) (4)

where 9 means no edge between y and xi. These individual edge prob-
abilities can be represented in a matrix. In the Text Prior Section, we
will be able to derive a matrix S from the literature where the elements
represent the connectedness or similarity between the genes. Rather than
using these values immediately as edge probabilities, we will introduce an
extra parameter, ν called the mean density, which controls the density of
the networks that will be generated from the distribution. We will trans-
form all the matrix elements in the prior with an exponent ζ such that the
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average of the mean number of parents per local substructure is according
to the given mean density5. Finding the exponent, ζ that gives rise to the
correct mean number of parents can be done with any single variable opti-
mization algorithm. With this mean number of parents, we can control the
complexity of the networks that will be learned.

2.3. Inference

After learning the model, we can use it to predict unseen data. This means
that we can use a Bayesian network model to predict the value of a variable
given the values of the other variables. We used the probability propagation
in tree of cliques algorithm13 to predict the state of the class variable (i.e.
the prognosis in cancer). This inference algorithm was then used to evaluate
the effect of using a text prior in combination with the expression data
described below. To accomplish this, we used a randomization approach
where we randomly distributed the data in 70% used to build a model
and 30% to estimate the Area Under the ROC curve (AUC). This process
was repeated 100 times to have a robust estimate of the generalization
performance of the two approaches: with text prior and without text prior.
Then these 100 AUCs were averaged and reported. Next a model was
built using the complete data set for both methods and we investigated the
possible differences between the Markov blanket variables (i.e. the set of
genes which are sufficient to predict the outcome). The average AUC with
and without prior are compared by calculating the p-value with a two-sided
Wilcoxon rank sum test. P-values are considered statistically significant if
smaller than 0.05.

3. Prior data

3.1. Gene prior

Since microarray data usually references thousands of genes, it is infeasi-
ble to manually construct a structure prior as described earlier. Therefore,
prior construction involves methods based on an automatic elicitation of
relationships between genes. In this paper, we propose the use of priors
that consist of gene-by-gene similarity matrices based on biomedical litera-
ture mining. To accomplish this, genes are represented in the Vector Space
Model . In the VSM model, each position of a gene vector corresponds to a
term or phrase in a controlled vocabulary. In our case, we have constructed
a cancer specific vocabulary which was extracted from the National Can-
cer Institute Thesaurus. Using a fixed vocabulary has several advantages.
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Firstly, simply using all terms that occur in the corpus of literature linked
to the genes involved in the microarray experiment at hand, will result in
vectors of considerable size, which means genes are represented in a high
dimensional space. As this ’curse of dimensionality’ is detrimental to the
strength of a metric, the use of only a relatively small set of concepts will
improve the quality of calculated gene-to-gene distances. Further reduction
of the dimensionality is accomplished by performing stemming, which will
allow different terms that in essence convey a same meaning (coughing,
coughs, coughed) to be treated as a single concept (cough). Secondly, the
use of phrases reduces noise in the data set, as genes will only be compared
to each other from a highly domain specific view. Thirdly, a structured vo-
cabulary will enable the use of multi-word phrases as opposed to just single
terms, without having to resort to co-occurrence statistics on the corpus
to detect them. Fourthly, there is no need to filter out articles and stop
words, as only highly specific cancer related terms are considered. The gene
vectors themselves are constructed as follows. For each gene, manually cu-
rated literature references are extracted from Entrez Gene. All PUBMED
abstracts linked to these genes are then indexed using the aforementioned
vocabulary. As a result, all PUBMED abstracts are represented in a high
dimensional vector space using IDF (Inverse Document Frequency) weights
for non-zero vector positions. The resulting vectors (which represent ab-
stracts, not genes) are normalized to bring them on the union hyper sphere
in the vector space, which facilitates cosine similarity calculation. Gene
vectors are then constructed by averaging the vectors of all the abstracts
associated to that gene by Entrez Gene. Finally, the cosine measure is used
to obtain gene-to-gene distances between 0 and 1. These gene-to-gene dis-
tances can then be represented as a symmetric matrix S which forms the
structure prior for the Bayesian network modeling.

3.2. Class variable prior

We have already defined the way the prior is determined between the genes.
Since we are developing models which predict the prognosis in cancer, the
need exists for an additional variable in the model, namely the outcome
class of the patients. This variable describes to which group each sample
belongs, for example, good prognosis and poor prognosis. Hence, we need
to define the prior relation between the class variable and the genes. To
accomplish this, we used terms in the vocabulary which are related to
the prediction of the prognosis of cancer, such as outcome, prognosis and
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metastasis. Next, we counted the number of associations each gene had
with prognosis related terms and increased the gene-to-outcome similarity
for every additional term the gene was associated with. Genes which had
no association with either term were given a prior probability of 0.5. This
information was added to the gene prior creating a structure prior for all the
variables studied (i.e. genes and patient outcome). This structure prior is
then, after scaling according to the mean density, used in Bayesian network
learning.

4. Data

To test our approach we used publicly available microarray data on breast
cancer14 (Veer data). This data set consists of 46 patients that belonged to
the poor prognosis group and 51 patients that belonged to the good prog-
nosis group. DNA microarray analysis was used to determine the mRNA
expression levels of approximately 25000 genes for each patient. Every
tumour sample was hybridized against a reference pool made by pooling
equal amounts of RNA from each patient. The ratio of the sample and the
reference was used as a measure for the expression of the genes and they
constitute the microarray data set. This data set was already background
corrected, normalized and log-transformed. Preprocessing was done sim-
ilarly as in14. This resulted in 232 genes that where correlated with the
patient outcome which were used in our models.
To validate our results we used three publicly available data sets from Bild
et al.15 studying breast, lung and ovarian cancer (Bild data). These data
sets contained data on 171 breast cancer patients, 147 ovarian cancer pa-
tients and 91 lung cancer patients. The three groups of tumours were
analysed on different Affymetrix chips; the breast tumours were hybridized
on Hu95Av2 arrays, the ovarian tumours on Hu133A arrays and the lung
tumours on Human U133 2.0 plus arrays. The data were already pre-
processed using RMA. For all cancer sites survival data was available and
patients were split up in two groups according to the following thresholds:
53 months for breast cancer, 62 months for ovarian cancer and 36 months
for lung cancer. The thresholds were chosen to make sure both classes
contained approximately the same number of samples. Genes were selected
similarly as in the Veer data set by selecting the top 100 genes after ranking
them by their correlation with patient survival data.
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4.1. Discretization

We have chosen discrete valued Bayesian networks therefore the microarray
data has to be discretized. We specifically tried to minimize the loss of rela-
tionships between the variables by applying the algorithm of Hartemink16.
The gene expression values were discretized in three categories or bins:
baseline, over-expression and under-expression. This was done using a mul-
tivariate discretization method which minimizes the loss of mutual infor-
mation between the gene expression measurements16. First a simple dis-
cretisation method with a large number of bins is used as a starting point
(e.g. interval discretisation where the complete range of values is divided
in a number of equally large bins). Then the multivariate algorithm starts
and for each variable it joins the neighboring bins together which have the
smallest decrease in mutual information. This is iterated until each variable
has three bins. The resulting discretized data set is used as input into the
Bayesian network learning algorithms.

5. Implementation

The software implementation is based on a combination of c++, java, mat-
lab and perl. The Bayesian network algorithms were implemented in C++.
Java Lucene was used for indexing Pubmed. Matlab scripts were used for
discretization and to construct the structure priors. Perl was used to glue
the different steps in the workflow together. A typical analysis took be-
tween 6 and 25 minutes depending on the data set size. All analysis where
run on AMD dual core opteron 2.4 GHz with between 4 and 16 GB RAM
memory.

6. Results and discussion

6.1. Veer data

First, we assessed the performance of the text prior regarding prediction
of outcome on the Veer data set. We performed 100 randomizations of
the data set without a prior and 100 randomizations with the text prior
(as described in the Model building and testing Section in Materials and
methods). We repeated the analysis for different values of the mean density
to asses if this parameter had an influence on the results. Table 1 shows
the mean AUC for both methods and for increasing mean density. The
most important conclusion that can be drawn from Table 1 is that using
the text prior significantly enhances the prediction of the outcome (P-value
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≺ 0.05). The text prior guides model search and favors genes which have a
prior record related to prognosis. This knowledge improves gene selection
and most likely wards off genes which are differentially expressed by chance.
Additionally, Table 1 shows that the mean density has no influence on the
result in the tested range. The mean density controls the complexity of
the network therefore large values should be avoided since the danger of
overfitting increases. Note that the results for the mean AUC without
prior are essentially the same as our previously obtained result12.

Table 1. Results of 100 randomizations of the Veer data set

with the Text prior and without prior. The mean AUCs are

reported together with the p-value.

Mean Density Text prior Uniform prior P-value

mean AUC mean AUC

1 0.80 0.75 0.000396

2 0.80 0.75 0.000002

3 0.79 0.75 0.005770

4 0.79 0.74 0.000006

Next, we used the complete data set and we built one model with text
prior and one model without the text prior, to evaluate the set of genes
which are sufficient to predict the outcome (i.e. the genes in the Markov
blanket of the outcome). We call the former, the TXTmodel and the latter
UNImodel. Table 2 shows the gene names that appear in both models.
The average text score (i.e. the probability the gene is related to patient
outcome according to literature) of the genes in the TXTmodel is 0.85 com-
pared to only 0.58 for the UNImodel. The text prior thus has its expected
effect and includes genes which have a prior tendency to be associated
with the prognosis of cancer. There are only 10 genes in the TXTmodel
compared to 15 genes in the UNImodel which indicates that TXTmodel
needs fewer genes. Moreover, the TXTmodel has many genes which have
been implicated in breast cancer or cancer in general such as TP53, VEGF,
MMP917, BIRC5, ADM18 and CA9. Next ACADS, NEO1 and IHPK2 have
a weaker link to cancer outcomes whereas MYLIP has no association. In
the UNImodel, as expected, far less genes are present which have a strong
link with cancer outcomes which likely increases the probability of false
positives. Only WISP1, FBXO31, IGFBP5 and TP53 have a relation with
breast cancer outcome. The other genes have mostly unknown function or
are not related. Finally two genes appear in both set: TP53 and IHPK2.
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TP53 is perhaps the best known gene to be involved in cancer. Therefore
it is bound to appear in the TXTmodel and it is no surprise that it is also
present in the UNImodel. IHPK2 however has a weak prior relation with
prognosis in cancer therefore this gene proves that genes with a low text
prior still can be selected in the TXTmodel. Additionally, genes which
appear in both models can be considered more reliable.

Table 2. Genes sufficient to predict the outcome variable for the TXTmodel and the

UNImodel.

TXTmodel: MYLIP,TP53,ACADS,VEGF,ADM,NEO1,IHPK2,CA9,MMP9,BIRC5

UNImodel: PEX12,LOC643007,WISP1,SERF1A,QSER1,ARL17P1,LGP2,IHPK2,

TSPYL5,FBCO31,LAGE3,IGFBP5,AYTL2,TP53,PIB5PA

6.2. Bild data

Finally we validated our approach on three independent data sets on breast,
ovarian and lung cancer15 to assess if the results on the Veer data set can
be confirmed. Based on the results presented in Table 1 we chose a mean
density of 1 for these data sets. Again 100 randomizations of the data
set with and without the text prior were performed. Table 3 shows the
average AUC for the three Bild data sets and confirms that the text prior
significantly improves the prediction of the prognosis on independent data
sets and for other cancer sites.

Table 3. Results of 100 randomizations of the three Bild
data sets with the Text prior and without prior. The mean

AUCs are reported together with the p-value.

Mean Density Text prior Uniform prior P-value

mean AUC mean AUC

Breast 0.79 0.75 0.00020

Lung 0.69 0.63 0.00002

Ovarian 0.76 0.74 0.02540

7. Conclusions

In this paper we have shown a method to integrate information from liter-
ature abstracts with gene expression data using Bayesian network models.
This prior information was integrated in the prior distribution over the
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possible Bayesian network structures after scaling. The results of the ran-
domization analysis in Table 1 and 3 have shown that for both the Veer
data set and the three Bild data sets the text prior improves the prediction
of the prognosis of cancer patients significantly.
A possible limitation of our approach is the discretization of the data. It
is inevitable that some information is lost in the process of discretization.
We have chosen discrete valued Bayesian networks because the space of
arbitrary continuous distributions is large. A solution could be to restrict
ourselves to the use of Gaussian Bayesian networks but this class of mod-
els assumes linear interactions between the variables which, in our opinion,
would restrict too much the type of relations among genes that are mod-
eled. Moreover, by using the algorithm of Hartemink we are performing a
multivariate discretization, keeping the relationships between the variables
as much as possible intact.
Secondly by using text information, which is often described as highly bi-
ased, one could run the risk of focussing too much on the hot genes disre-
garding novel important genes. However, in our case the emphasis is not
so much on biomarker discovery and more on developing models which can
accurately predict the prognosis of disease. There are already many genes
known to be involved in different types of cancer based on individual stud-
ies or because they are member of a cancer profile. Finding the minimal set
of genes which is able to predict the prognosis of disease however, is still
an open problem. Our Bayesian network framework attempts to address
this issue by tackling the disadvantages of cancer microarray data sets (low
signal-to-noise ratio, high dimensional, small sample size, . . . ) by using
information from the literature as a guide.
Finally, the presented framework is complimentary to our previously pub-
lished method to integrate clinical and microarray data with Bayesian
networks12. Thus creating a Bayesian network framework which enables
modeling of various data sources (i.e. clinical, microarray and text) to
improve decision support of outcome (i.e phenotypic group) prediction in
cancer or other genetic diseases. Moreover our definition of the struc-
ture prior makes no assumptions about the nature of prior information.
Therefore other sources of information can be combined with the text prior
(e.g. known protein-DNA interactions from Transfac, known pathways from
KEGG or motif information). Thus, creating a white box framework that
visualizes how decisions are made by a model. This is in contrast to for
example a kernel framework where model parameters are not readily inter-
pretable.
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