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We present a new model and learning algorithm, GenMiR3, which takes into ac-
count mRNA sequence features in addition to paired mRNA and miRNA expres-
sion profiles when scoring candidate miRNA-mRNA interactions. We evaluate
three candidate sequence features for predicting miRNA targets by assessing the
expression support for the predictions of each feature and the consistency of Gene
Ontology Biological Process annotation of their target sets. We consider as se-
quence features the total energy of hybridization between the microRNA and tar-
get, conservation of the target site and the context score which is a composite of
five individual sequence features. We demonstrate that only the total energy of
hybridization is predictive of paired miRNA and mRNA expression data and Gene
Ontology enrichment but this feature adds little to the total accuracy of GenMiR3
predictions using for expression features alone.

1. Introduction

Recent research into understanding gene regulation has shed light on the

significant role of microRNAs (miRNAs). These small regulatory RNAs

suppress protein synthesis1 or promote the degradation2 of specific tran-

scripts that contain anti-sense target sequences to which the miRNAs can

hybridize with complete or partial complementarity. The catalogue of pu-

tative microRNA-target interactions predicted on the basis of genomic se-

quence continues to grow3,4,5, but the most accurate computational ap-

proaches rely on the presence of a highly conserved seed in the putative

target, greatly reducing their sensitivity6. However, even these highly selec-

tive methods appear to have low specificity3. Expression profiling has been

proposed as a complementary method for discovering miRNA targets7, but

this can become intractable and costly when multiple miRNAs and their

1
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effects across multiple tissues must be considered.

We have recently described a probabilistic method, GenMiR++

(Generative model for miRNA regulation)8,9, which incorporates miRNA

and mRNA expression data with a set of candidate miRNA-target inter-

actions to greatly improve the precision in predicting functional miRNA-

target interactions. While our method was shown to be robust8 and to

improve predictive accuracy9 according to several independent measures, it

does not consider sequence-specific features of miRNA target sites beyond

the presence of a highly conserved miRNA seed. Recently it has been re-

ported that many sequence features such as secondary structure10 or the

relative positioning of sites within the target mRNA’s 3’UTR11 may play a

crucial role in miRNA target recognition. We therefore set out to evaluate

whether such sequence features could increase the predictive power of our

model for miRNA regulation.

In this paper, we present GenMiR3, a generative model of miRNA reg-

ulation which uses sequences features to establish a prior probability of a

miRNA-target interaction being functional and then uses paired expres-

sion data for miRNAs and mRNAs to compute the likelihood of a putative

miRNA-target interactions. By combining these two sources of information

together to compute a posterior probability of a miRNA-target relationship

being functional, we score candidate miRNA-target interactions in terms

of both expression support and sequence features. We evaluate several

candidate sequence features by computing their predictions with the ex-

pression data and by comparing the Gene Ontology enrichment of target

sets obtained using sequence and/or expression features. We then deter-

mine whether these features could be used in tandem with expression data

to improve the accuracy of our miRNA target predictions.

2. The GenMiR3 model and learning algorithm

GenMiR3 makes two significant improvements over our previous model

GenMiR++ 8,9: we use sequence features to establish a prior on whether

a given miRNA will bind to a target site in the 3’UTR and we use a differ-

ent prior on many model parameters to give more flexibility in our poste-

rior probability estimates. We first describe the changes to our generative

model of mRNA expression and then describe how we propose to integrate

sequence features

2.1. A Bayesian model for gene and microRNA expression

GenMiR3 is a generative model of mRNA expression levels that computes

the expression support for a putative miRNA-mRNA by evaluating the
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degree to which the miRNA expression levels could explain the observed

mRNA expression levels given of all other predicted regulators for that

mRNA. Given two expression data sets profiling G mRNA transcripts and

K miRNAs across T tissues, we denote by xg = (xg1xg2 · · ·xgT )T and

zk = (zk1zk2 · · · zkT )T the expression profiles over the T tissues for mRNA

transcript g and miRNA k respectively. Here xgt refers to the expression

of the gth transcript in the tth tissue and zkt refers to the expression of the

kth miRNA in the same tissue.

Our model also takes as input a set of candidate miRNA-target inter-

actions in the form of a binary matrix C, where cgk = 1 if transcript g is a

candidate target of miRNA k and cgk = 0 otherwise. For each (g, k) pair for

which cgk = 1, we also introduce an indicator variable sgk. In our model,

sgk = 1 indicates that the candidate interaction between (g, k) is truly func-

tional. Thus, the problem of scoring putative miRNA-target interactions

can be formulated as calculating a posterior probability of sgk = 1 given

cgk = 1.

To complete the formulation of our generative model, we introduce a

set of nuisance parameters Λ = {λk} that each scale the regulatory effect

of a given miRNA and Γ = diag(γ1, · · · , γT ) to account for normalization

differences between the miRNA and mRNA expression levels in tissue t.

We assign prior distributions P (Λ|α) and P (Γ|α) and we integrate over

these distributions when making predictions. Having defined the above pa-

rameters and variables, we can write the probabilities of the mRNA expres-

sion profiles X = {xg} conditioned on the expression profiles of miRNAs

Z = {zk}, and a set of functional miRNA-target interactions, S = {sgk},

as

P (xg|Z,S,Γ,Λ,Θ) = N(xg; µ −
∑

k

λksgkΓzk,Σ) (1)

P (Γ|α) =

T
∏

t=1

P (γt|m, n) =

T
∏

t=1

Gamma(γt; m, n) (2)

P (Λ|α) =

K
∏

k=1

P (λk|a, b) =

K
∏

k=1

Gamma(λk; a, b) (3)

where µ is a background transcriptional rate vector and Σ is a data noise

covariance matrix. Note that in the above model, we use a point-estimate

of Θ = {µ,Σ}. The set α = {a, b, m, n} corresponds to fixed hyperparam-

eters which characterize the prior distributions on the parameters Γ,Λ. In

the above model, we represent the expression profile of a given mRNA tran-
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script g as being negatively regulated by all candidate miRNAs for which

sgk = 1.

2.2. Incorporating sequence features

To include sequence features of the miRNA target site in the model, we

introduce an N -dimensional vector fgk = (f1
gkf2

gk · · · f
N
gk) containing a de-

scription of N sequence features associated with the miRNA-mRNA pair

(g, k). We denote by πgk = P (sgk = 1|cgk = 1, fgk,w) the prior probability

that indicator variable sgk = 1 given the sequence features. As a sim-

plifying assumption, we will assume that each of the N sequence features

independently contribute to πgk with weight equal to wn, n = 1, · · · , N .

We will also assume that the sgk variables are a priori independent of one

another. This yields

P (S|C,F,w) =
∏

(g,k)

p(sgk|C,F,w)

=
∏

(g,k)|cgk=0

[sgk = 0]
∏

(g,k)|cgk=1

π
sgk

gk (1 − πgk)1−sgk (4)

πgk = P (sgk = 1|cgk = 1, fgk,w) =
1

1 + exp(−wTfgk)
(5)

where [H ] = 1 if H is true, otherwise [H ] = 0.

Given the above, we can write the probabilities in our model, condi-

tioned on the expression of miRNAs and a set of candidate miRNA targets,

as

P (X,S,Γ,Λ|C,F,Z,Θ,w, α) =P (S|C,F,w)P (Γ|α)P (Λ|α)
∏

g

P (xg|Z,S,Γ,Λ,Θ) (6)

Because we have formulated our model in a Bayesian framework, we can

marginalize out our nuisance parameters when calculating the likelihood of

the mRNA expression data or when calculating the posterior probabilities

of sgk = 1, e.g.,

P (X|C,F,Z,Θ,w, α) =
∑

S

∫

Γ

∫

Λ

P (X,S,Γ,Λ|C,F,Z,Θ,w, α) dΛ dΓ

(7)

Figure 1 shows the Bayesian network for our model of miRNA regulation.

Under our model, each transcript g in the network is associated with a
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Figure 1. Bayesian network used for modelling microRNA regulation using both se-
quence and expression features. Nodes correspond to observed and unobserved variables
as well as model parameters, with directed edges between nodes representing conditional
dependencies encoded by our probability model. Each variable node and all incom-
ing/outgoing edges associated with that node are replicated a number of times accord-
ing to the number of such variables in the model. Shaded nodes correspond to observed
variables and unshaded ones are unobserved. Model parameters which are estimated in
a pointwise fashion are shown without nodes.

set of indicator variables {sgk′}, k′ ∈ {k|cgk = 1} which indicate which of

its candidate miRNA regulators affect its expression level. The posterior

probabilities over these variables are the predictions of the model: these

posteriors are determined by combining priors over sgk which are deter-

mined by examining the sequence of transcript g and miRNA k in addition

to support from the expression data through our inference and learning

procedure. We describe our learning method in the next section.

2.3. Learning the model of gene and microRNA expression
Exact Bayesian learning of our model is intractable, so we use a variational

method12,13 to derive a tractable approximation. Our learning procedure

is similar to that for GenMiR++8,9. Here we will describe only the changes

and refer the reader to our previous work8 for the rest of the derivation.

In particular, we specify the Q-distribution via a mean-field factorization
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with Q(S,Λ,Γ|C) = Q(S|C)Q(Λ)Q(Γ) such that

Q(S|C) =
∏

g,k

Q(sgk|C) =
∏

(g,k)|cgk=0

[sgk = 0]
∏

(g,k)|cgk=1

β
sgk

gk (1 − βgk)1−sgk

Q(Λ) =

K
∏

k=1

Q(λk) =

K
∏

k=1

Gamma(λk; ak, bk)

Q(Γ) =

T
∏

t=1

Q(γt) =

T
∏

t=1

Gamma(γt; mt, nt) (8)

where βgk is the approximate posterior probability that a given miRNA-

target pair (g, k) is functional given the data. Using this Q-distribution, we

iteratively minimize the upper bound L(Q) on the negative data likelihood

with respect to the distribution over unobserved variables Q(S|C) (vari-

ational Bayes E-step), the distribution over model parameters Q(Γ)Q(Λ)

(variational Bayes M-step) and with respect to the regular model parame-

ters.

2.4. Setting the sequence-based priors using the posteriors

from the gene and microRNA expression model

The prior probability πgk = p(sgk = 1|cgk = 1, fgk,w) is parametrized by

the weight vector w. We estimate this weight vector by maximizing the

expected log-likelihood EQ[log p(S|C,F,w)] of the sgk variables. This then

reduces to a standard logistic regression problem, with each output label

set to βgk, or the expected value of sgk under Q(S). We can perform the

required optimization via a conjugate-gradient method, with the gradient

∇wEQ[log p(S|C,F,w)] and the Hessian ∇∇wEQ[log p(S|C,F,w)] given

by

∇wEQ[log p(S|C,F,w)] =
∑

(g,k)|cgk=1

fgk(βgk − πgk) (9)

∇∇wEQ[log p(S|C,F,w)] =
∑

(g,k)|cgk=1

fgkf
T

gkπgk(1 − πgk) (10)

We iteratively run the variational Bayes algorithm to estimate the approxi-

mate posterior probabilities βgk and then update the weight vector w until

convergence to a minimum of L(Q). We can then assign a score to each can-

didate miRNA-target interaction using the log posterior odds log
βgk

1−βgk
so

that a higher score reflects a higher posterior probability of a miRNA-target

pair (g, k) being functional.
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3. Results

To assess the impact of including sequence features, we downloaded human

miRNA and mRNA expression data generated by 14,15 in addition to the

set of TargetScanS 3 candidate human miRNA target-interactions from the

UCSC Genome Browser16 (build hg17/NCBI35) and mapped these inter-

actions to the expression data. This yielded 6,387 candidate miRNA-target

interactions between 114 human miRNAs and 890 mRNA transcripts, with

patterns of expression across 88 human tissue samples. We then learned

the GenMiR3 model without the sequence prior and once the algorithm

converged, we selected the 100 highest and 100 lowest-scoring miRNA-

target interactions and we downloaded the corresponding 3’UTR genomic

sequences for each of the corresponding targeted mRNAs from the UCSC

Genome Browser. The score assigned by GenMiR3 in the absence of se-

quence features predicts whether a given candidate miRNA-target interac-

tion is functional based on joint patterns of expression of miRNAs and their

target mRNAs across multiple tissues/cell types. We have previously shown

that a similar score can distinguish functional and non-functional candidate

miRNA/mRNA target pairs9. Here we use this ”expression-only” GenMiR3

score to compare predictions made using both sequence and expression fea-

tures with those made based solely on expression data. Once we evaluate

the sequence features alone, we use a Gene Ontology enrichment test to

evaluate the effect of combining these features with expression data using

the full GenMiR3 model.

3.1. Evaluating sequence features using cross-validation

We evaluate three different sequence features: the total hybridization

energy10, a measure of the free energy of binding of the miRNA to its

candidate target site that also considers any RNA secondary structure that

the target site may participate in; the context score11, an aggregate score

combining the AU content with ± 30 bp of each miRNA target site, prox-

imity to residues pairing to sites for coexpressed miRNAs, proximity to

residues pairing to miRNA nucleotides 13-16, positioning of sites within

the 3’UTR at least 15 nt from the stop codon and positioning away of sites

from the center of the 3’UTR; and the PhastCons score, which is a mea-

sure of the conservation of the whole target site basefd on the PhastCons

algorithm 17.

We calculated the total hybridization energy ∆Gtotal using a proce-

dure related to 10. Briefly, we set ∆Gtotal = ∆Ghybrid − ∆Gdisrupt, where

∆Ghybrid is the the total hybridization energy between a miRNA and its
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target mRNA computed by aligning the miRNA and target sequences and

evaluating the total energy of hybridization using standard energy parame-

ters. The expected disruption energy < ∆Gdisrupt > was then obtained by

using first calculating the probability that each base in the target site was

paired with another base in the 3’UTR using RNAfold18 and then using

these base pair probabilities to calculate the expected hybridization energy

of the target site in absence of the miRNA. If there was more than one

possible site for a given miRNA in the 3’UTR, we summed ∆Gtotal over all

sites.

We then downloaded the context scores from the TargetScan 4.0 web-

site 11 and we calculated the PhastCons score by summing all of log-

probabilities of conservation (obtained from the UCSC Genome Browser)

over all base positions of all sites with seed matches to the mature miRNA

in the target mRNA’s 3’UTR. We then normalized each of these three fea-

tures to be zero mean and unit variance.

We randomly split the above set of 200 high/low-scoring miRNA-target

interactions under the expression-only GenMiR3 model into 1000 training

and test sets of size 150/50 respectively. For each sequence feature, we

trained two logistic regression models for each of the training sets: one

with the feature included and a null model with the feature excluded. We

evaluated the test likelihood given the learned weights and computed the

average likelihood ratio between the test likelihood Lfeature for each feature

and the likelihood of the null model Lnull with no features. The median and

standard deviations of the test likelihood ratios over the 1000 training/test

splits are shown in Figure 2. The ∆Gtotal score is most predictive of the

Feature Median
(

Lfeature

Lnull

)

s.d.

∆Gtotal
10 2.3597 4.0859

PhastCons17 1.1262 1.9774

Context11 1.2129 2.0497

Figure 2. Sequence features and median test likelihood ratios computed over 1000
test/train splits; the total hybridization energy ∆Gtotal between a miRNA and its target
mRNA transcript is shown for high GenMiR3-scoring targets (solid) and low GenMiR3-
scoring targets (dashed)

three queried features, as including it in the model tends to increase the

median test likelihood with respect to the null model. Neither the Phast-
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Cons score nor the context score increased the median test likelihood with

respect to the null model. We also found that the individual features used

to compute the context score (such as AU content around the target site)

did not increase the test likelihood with respect to the null model, nor was

there a significant difference in these median feature values between high-

and low-scoring GenMiR3 targets (data not shown). For the ∆Gtotal score

however, we found that the high-scoring GenMiR3 miRNA-target interac-

tions indeed have a lower median ∆Gtotal score than low-scoring GenMiR3

candidates (p = 0.0138, Wilcoxon-Mann-Whitney (WMW) test; Figure 2).

3.2. Evaluating sequence features using functional

enrichment analysis

We have also previously shown that predicted target sets of many microR-

NAs are enriched for Gene Ontology Biological Process (GO-BP) categories
9. As such, we reasoned that more accurate target predictions should show

higher levels of GO-BP enrichment and we used GO-BP enrichment to

assess target prediction accuracy. To calculate the different sequence fea-

tures, we downloaded 3’UTR sequences for each of the mRNAs putatively

targeted by a miRNA and filtered out all 3’UTR’s with length greater than

5,000 bp and those without a published context score. This process yielded

410 candidate miRNA-target interactions between 89 human miRNAs and

150 mRNA transcripts. We then computed ∆Gtotal for each of these 410

candidate miRNA-target interactions and trained GenMiR3 on the expres-

sion data and ∆Gtotal as a sequence feature.

To compute GO-BP enrichment, we downloaded human GO-BP anno-

tations from BioMart19. After up-propagation, we had a total of 13,003

functional annotations of which we removed annotations which were asso-

ciated with less than 5 annotated Ensembl genes, leaving us with 2,021

GO-BP annotations. To establish the target sets, we selected the top 25%

of candidate miRNA-target interactions for each miRNA under four scoring

schemes:

(1) GenMiR3 score obtained from expression features alone

(2) GenMiR3 score obtained from both ∆Gtotal and expression features

(3) ∆Gtotal alone

(4) Context score

We computed enrichment by using Fisher‘s exact test to measure the statis-

tical significance of the overlap between each GO-BP category and predicted
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target set of each of the 89 miRNAs in our data set (for a total of 179,869

enrichment scores). For each miRNA, we used these p-values to compute

the number of significantly enriched categories (FDR < 0.05, linear step-

up20), shown in Figure 3(a) and the maximum − log10 p-value across the

GO-BP categories, shown in Figure 3(b). As can be seen, selecting miRNA

targets on the basis of either expression alone, ∆Gtotal alone, or both, yields

a higher number of enriched GO categories than selecting on the basis of

the context score alone (p = 8.2016× 10−4, p = 2.7903× 10−5, p = 0.0049,

respectively, Wilcoxon-Mann-Whitney). Our results also indicate, however,

that adding the ∆Gtotal sequence feature to the model for expression does

not significantly improve the GO enrichment GenMiR3 target sets. We will

discuss possible reasons for this in the last section.

(a) (b)

Figure 3. Cumulative frequency plots of a) Number of significant GO categories per
miRNA at FDR= 0.05 and b) maximum GO enrichment scores per miRNA obtained
from using the GenMiR3 score obtained from expression features alone (solid), using the
GenMiR3 score obtained from both ∆Gtotal and expression features (dashed), ∆Gtotal

alone (star) and the context score (circle).

4. Discussion and conclusion
In this paper we have proposed the GenMiR3 probabilistic model for

miRNA regulation using both sequence and expression features. We ex-

amined three sequence features: the total energy of hybridization ∆Gtotal

between the microRNA and target, conservation of the target site and the

context score, which itself is an aggregate score based on five sequence fea-

tures. Using cross-validation, we found that the ∆Gtotal sequence feature

was the best predictor of GenMiR3 score computed from expression fea-

tures alone. Using a functional enrichment analysis, we found that selecting

miRNA targets based on GenMiR3 score (with and without ∆Gtotal) and

the ∆Gtotal score alone yielded a significantly higher number of enriched

GO categories than selecting on the basis of the context score.
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The relative performance of the context score11 compared to the total

hybridization score10 was particularly surprising. Many of the features in-

cluded in the context score should be predictive of whether or not the target

site is likely to be single-stranded or double-stranded prior to miRNA bind-

ing, whereas the total hybridization score is a more direct indicator of this

state. The results of our tests therefore suggest that single-strandedness of

the miRNA target site is the most accurate sequence feature for predicting

binding.

There are a number of possible explanations for the fact that adding

the ∆Gtotal sequence feature to the model for expression does not improve

the enrichment of GenMiR3 target sets. It is unlikely that the expression

features are redundant with ∆Gtotal, as ∆Gtotal and expression-only Gen-

MiR3 scores cease to be correlated outside of the 100 highest and lowest

scoring interactions under GenMiR3 (ρ = −0.0696, p = 0.1595, Spearman

correlation), suggesting ∆Gtotal and the expression data are making dif-

ferent predictions about miRNA targets. It is unclear whether ∆Gtotal

or GenMiR3 are making better predictions, as we may have reached the

limitation of the power of the GO analysis and require a more sensitive

test. The expression signal does appear to be quite strong though because,

when added to the GenMiR3 model, ∆Gtotal does not change GenMiR3

predictions: the Spearman correlation is 0.99 between the expression-only

GenMiR3 posteriors and the posteriors in the GenMiR3 which also accounts

for sequence data. This suggests that when expression data is limited or

unavailable, the ∆Gtotal sequence prior will be a very useful addition to the

GenMiR3 model, in addition to being predictive of functionality in its own

right.
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