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DNA methylation is a type of chemical modification of DNA that adds a methyl

group to DNA at the fifth carbon of the cytosine pyrimidine ring. In normal cells,

methylation of CpG dinucleotides is extensively found across the genome. How-

ever, specific DNA regions known as the CpG islands, short CpG dinucleotide-rich

stretches (500bp - 2000bp), are commonly unmethylated. During tumorigenesis,

on the other hand, global de-methylation and CpG island hypermethylation are

widely observed. De novo hypermethylation at CpG dinucleotides is typically

associated with loss of expression of flanking genes, thus it is believed to be an

alternative to mutation and deletion in the inactivation of tumor suppressor genes.

In this paper, we report that sequences flanking CpG sites can be used for predict-
ing DNA methylation levels. DNA methylation levels were measured by utilizing

a new high throughput sequencing technology (454) to sequence bisulfite treated

DNA from four types of primary leukemia and lymphoma cells and normal periph-

eral blood lymphocytes. After measuring methylation levels at each CpG site, we

used 30 bp flanking sequences to characterize methylation susceptibility in terms
of character compositions and built predictive models for DNA methylation sus-

ceptibility, achieving up to 75% prediction accuracy in 10-fold cross validation

tests. Our study is first of its kind to build predictive models for methylation
susceptibility by utilizing CpG site specific methylation levels.
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1. Introduction

DNA methylation, the addition of a methyl group to the fifth carbon of a
cytosine residue within the context of a CpG dinucleotide, is the only known
epigenetic modification of DNA that can be inherited without changing the
DNA sequence 1. In normal cells, CpG methylation is extensively found
across the genome and widely believed to act to silence gene expression
and/or retrotransposition of parasitic repeat sequences 2. However, signif-
icantly less CpG methylation is observed within specific regions known as
the CpG islands, short CpG dinucleotide-rich stretches (500bp - 2000bp),
commonly found within the promoter and first exon of active genes 2.

Patterns of epigenetic modifications that arise during tumorigenesis are
quite different from normal cells 3. These alterations include global hy-
pomethylation of CpG dinucleotides as well as localized hypermethylation
at CpG islands 4. It is now firmly established that CpG island hyperme-
thylation is a powerful mechanism of transcriptional repression in cancer
genomes, including silencing of tumor suppressor genes 5. However, while
DNA hypermethylation of several promoter CpG islands is frequently ob-
served in cancers, other CpG island-containing genes remain unaffected
by this epigenetic modification 6. This observation indicates that some
CpG island sequences are more susceptible to aberrant methylation, while
others remain resistant to alteration by DNA methylation. While the rea-
son for this differential susceptibility to DNA methylation is unknown, re-
cent reports suggest that DNA pattern information may play a key role in
distinguishing between methylation-sensitive and -resistant CpG islands.
7,8,9,10,27,26

A widely used experimental method to measure DNA methylation is
Methylation Specific PCR (MSP), a bisulfite conversion based PCR tech-
nique 11. The target DNA is first modified with sodium bisulfite which
converts un-methylated cytosine to uracil while methylated cytosine re-
mains 5-methyl cytosine. The technique is accurate, however limited to
detecting only highly specific regions of individual genes. Several genome-
wide methylation detection methods have been developed in the past few
years, such as differential methylation hybridization (DMH) 12 and methy-
lation DNA immunoprecipitation (MeDIP) 13. Both methods are microar-
ray based experiments. DMH uses methylation specific restriction enzymes
and MeDIP uses 5-methyl cytosine antibody to distinguish methylated and
unmethylated DNA. These methods can be used for genome-wide methyla-
tion detection, allowing researchers to quickly profile methylation pattern
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alteration. However, technical issues, such as hybridization efficiency for
microarrays and antibody efficiency, affect their accuracy. Usually, MSP or
bisulfite sequencing is performed to further validate the methylation levels
of the genes of interest.

In the past, due to the limitation of sequencing technology, bisulfite
sequencing has been performed only for determining specific regions of in-
dividual genes. With the development of high throughput sequencing tech-
nology, we are now able to perform methylation profiling on genome-wide
scale. In particular, the 454 sequencing technology (454.com) combines
emulsion PCR and pyrosequencing technique and it can determine up to
100Mbp in a single biological experiment with an average read length of
250 bp. The approach produces sequences of a very high quality with
an accuracy over 99% 30 and resolution of single 5-methylcytosine, thus
highly reliable for profiling methylation patterns. In this paper, we utilized
the methylation data measured using the new high throughput sequencing
technique to build predictive models for methylation susceptibility.

2. Related work and Motivation

There has recently been a significant research development in predict-
ing DNA methylation susceptibility based on DNA patterns. Feltus et
al 24 showed that a classification function based on the frequency of
seven sequence patterns was able to discriminate methylation-prone from
methylation-resistant CpG island sequences with over 80% accuracy in an
experiment designed using over-expressed DNMT1. Feng et al 27 devel-
oped a support vector machine classifier for predicting methylation status
of CpG islands and showed relationship between nucleotide sequence con-
tents and transcription factor binding sites. Bock et al 26 showed that CpG
island methylation in human lymphocytes was highly correlated with DNA
sequence, repeats, and predicted DNA structure.

All previous studies used rather coarse-grained methylation information
in long DNA regions, rather than CpG site specific information. With such
coarse grained information, patterns as short as 3bp were used to build pre-
dictive models. Use of such short patterns utilizes frequencies of patterns,
not specific patterns, for the predictive models. For example, a pattern of
length 4bp, CCGC, is over-represented in unmethylated CpG Islands with
a p-value of 5.18×1010 in Bock et al 26. This means that CCGC occurs
both in methylation susceptible and resistant sequences, but their occur-
rence frequencies in susceptible and resistant sequences are significantly
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different. On the other hand, Handa and Jeltsch’s analysis 20 reported
that flanking sequences of up to +/-four base-pairs surrounding the cen-
tral CG site that are characteristic of high (5’-CTTGCGCAAG-3’) and low
(5’-TGTTCGGTGG-3’) levels of methylation in human genomic DNA.

In this paper, we investigated on whether specific DNA sequences, not
just their frequencies, can be used for predicting methylation susceptibil-
ity. We used CpG flanking sequences with CpG site specific methylation
information measured by sequencing bisulfite treated DNA from four types
of primary leukemia and lymphoma cells and normal peripheral blood lym-
phocytes with a new high-throughput sequencing technology (454). This
study is first of its kind that uses CpG site specific methylation information
to build predictive models.

3. Research Goal

Once we measured methylation level at each CpG site (explained in
“Method” Section), we investigated two research questions:

(1) Is there any significant difference in DNA character composition of
CpG flanking sequences of methylation susceptible sites and methy-
lation resistant sites?

(2) Is it possible to use the CpG flanking sequence composition to build
predictive models for methylation susceptibility?

The first research question is directly motivated by using the high
throughput sequencing technique. Indeed, the answer to the first question
is positive as shown in Section 6.2. In addition to the significant differ-
ence in DNA character composition of CpG flanking sequences, we also
observe that CpG sites in the same region of a gene are quite different in
terms of methylation level as shown in Figure 5. If methylation levels of
multiple CpG sites in the same genomic region are different, we may be
able to distinguish methylation susceptible CpG sites from resistant sites
using sequence-specific features, especially CpG flanking sequences. Thus
the second question of modeling methylation susceptibility using machine
learning techniques was investigated in this paper.

4. Data

A massively parallel sequencing (454-sequencing) experiment was designed
on 25 gene-related CpG islands in four different tumor types, such as acute
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lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), fol-
licular lymphoma (FL), and mantle cell lymphoma (MCL), and normal
peripheral blood lymphocytes (PBL) 31. These 25 genes, listed below, were
previously reported to be highly methylated in leukemia and lymphoma.

CYP27B1 (Chr12: 56446851-56447152), PON3 (Chr7: 94863816-
4864092), KCNK2 (Chr1: 213322021-213322250), PCDHGA12 (Chr5:
140790654-140790834), DDX51 (Chr12: 131193754-131194006), PTPN6
(Chr12: 6930334-6930791), DAPK (Chr9: 89302286-89302749), CDKN2B
(Chr9: 21998564-21998941), TP53 (Chr17: 7531401-7531767), CDKN1C
(Chr11: 2863438-2863596), TRIM36 (Chr5: 114543737-114544155),
ZNF677 (Chr19: 58449649-58450000), LRP1B (Chr2: 142604668-
142604910), LHX4 (Chr1: 178469412-178469574), NKX2-3 (Chr10:
101282587-101282884), ALDH1L1 (Chr3: 127381582-127381801), EFNA5
(Chr5: 107035339-107035619), CCND1 (Chr11: 69165258-69165515),
DLC-1 (Chr8: 13034845-13035136), TGFB2 (Chr1: 216586512-
216586822), ZNF566 (Chr19: 41671827-41672234), ADAM12 (Chr10:
128066859-128067044), MYOD1 (Chr11: 17697405-17697613), MME
(Chr3: 156280330-156280527), and MGMT (Chr10: 131155100-
131155259).

Prior to sequencing, bisulfite treatment was performed. Bisulfite treat-
ment converts all unmethylated cytosines to uracil while methylated cy-
tosines remain unaltered after the treatment. Thus, by aligning the se-
quences of the bisulfite treated DNA and comparing altered/unaltered cy-
tosines, we can measure DNA methylation level. 454 pyro-sequencing on
the bisulfite treated DNA is the most accurate method that can be used to
measure DNA methylation. As a result, a total of 294,631 sequences was
generated with an average read length of 131 bp (range 35-300bp).

From the sequences of bisulfite treated cells, we collected sequences of
30 bases centered around each CpG site and grouped the sequences into
two classes: methylation susceptible site sequences (MS) and methylation
resistant site sequences (RS). See “Method” Section for detail. There were
41 CpG sites, thus 41 sequences in MS. We randomly selected 41 sequences
(41 CpG sites) out of 84 sequences (81 CpG sites) in RS and used the
sequence sets to build predictive models.
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5. Method

5.1. Estimating methylation level of a CpG site

The methylation level of a CpG site was estimated by counting the number
of C’s and T’s in two columns that are predominantly either CG or TG. For
example, such columns are highlighted in the alignment in Figure 1.

Figure 1. An alignment of bisulfite treated sequences and identification of methylated

sites.

Intuitively, counting characters in an alignment of sequences will give
us a good estimation of methylation level of a CpG site. There are two
problems with this simple approach. First, aligning 2,000 to 3,000 sequences
for each sequenced region of 25 genes is very time consuming. Second, even
though we use a high performance machine to align the sequences, it is
only an estimation of methylation level of a CpG site. In particular, there
are sequencing errors which makes the estimation of methylation level of
a CpG site more complicated. We used a sequence sampling technique to
estimate methylation level as follows:

(1) Sample 20% of sequences in each DNA region. This results in a set of
400 to 500 sequences, which is large enough to estimate methylation
level and also can be aligned using ClustalW 22 in a reasonable
amount of time.

(2) Then look for two columns where predominantly either CG (methy-
lated) or TG (unmethylated). Estimation of methylation level of a
CpG site is computed by counting the number of CG’s.

We repeated the sampling task 25 times, so there were 25 estimated
methylation level per each CpG site. Then we defined a CpG site as a
methylation susceptible site when the estimated methylation level X ≥
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Tsusceptible with a p-value less than 0.01, assuming X following a Gaussian
distribution. We define a CpG site as a methylation resistant site when the
estimated methylation level X ≤ Tresistant with a p-value less than 0.01,
assuming X following a Gaussian distribution. The two threshold values
are set to Tsusceptible = 0.5 and Tresistant = 0.01.

5.2. Preparing input data to prediction algorithms

We collected sequences of 30 bases around each CpG site and grouped the
sequences into two classes: methylation susceptible site sequences (MS) and
methylation resistant site sequences (RS). An alignment of sequences in MS
has 30 columns, each of which becomes an attribute. Each sequence in MS
is designated as “UP” class label. We used the WEKA package 23, thus
each attribute has four possible values:

@attribute C1 {A,T,G,C}
and each sequence of 30 bases in MS is represented as

T,T,T,A,T,T,T,A,T,T,G,T,A,A,C,G,G,T,T,A,A,G,G,T,T,G,G,T,T,T,UP

Sequences in RS were represented in the same way as those in MS, except
the class label being designated as “DOWN.”

For classification tests, we used four machine learning algorithms in
WEKA: SMO that implements John C. Platt’s sequential minimal opti-
mization algorithm 21 for training a support vector classifier using polyno-
mial or RBF kernels; IBk-type classifier 17 that is a simple distance measure
to find the training instance closest to the given test instance, and predicts
the same class as this training instance; Multilayer Perceptron that uses
backpropagation to classify instances (all nodes are sigmoid); and a Naive
Bayes classifier 18.

5.3. Character composition analysis

To analyze character composition
of CpG flanking sequences, we compared sequences in MS and RS using
Weblogo 19 (http://weblogo.berkeley.edu) and the two sample logo 14

(http://www.twosamplelogo.org/). Weblogo uses only one sequence in-
put file and compare its character frequencies to a random model, thus we
used MS and RS separately and generated two Weblogos. The two sam-
ple logo uses two input sequence sets simultaneously, thus the name “two
sample”, and effectively highlighted character composition difference in MS
and RS.
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6. Result

6.1. CpG methylation is not uniform

Our data analysis of methylation level showed that methylation level was
not uniform even in the upstream region of a single gene (see Figure 5
for CYP27B gene). Thus we conjectured that there should be biological
mechanisms, possibly sequence specific ones, for DNA methylation, which
inspired us to investigate into building predictive models for methylation
susceptibility.

6.2. Analysis of character composition

(A) methylation susceptible (B) resistant

Figure 2. Relative entropy of CG flanking sequences using WebLogo. Logos of methy-

lation susceptible sequences and Logos of methylation resistant sequences.

We computed logos (relative entropy with respect to a random model)
of CG flanking sequences using WebLogo. As shown in Figure 2, flanking
sequences of susceptible CpG sites (MS) are more like random characters
while flanking sequences of methylation resistant CpG sites (RS) consis-
tently lack cytosine (C) with adenine (A), guanine (G), and thymine (T)
over-represented.

To further investigate how different character composition of se-
quences in MS and RS, we used the two sample logo technique 14

(http://www.twosamplelogo.org/).
The two sample logo in Figure 3 highlights character composition dif-

ference clearly: characters in the upper panel for methylation susceptible
sequences and characters in the lower panel for methylation resistant se-
quences. The over-represented characters in the two sample logo analysis
agree well with the methylation susceptibility experiments using DNMT1 in
Handa and Jeltsch’s analysis 20, which reported flanking sequences of up to
+/-four base-pairs surrounding the central CG site that were characteristic
of high (5’-CTTGCGCAAG-3’) and low (5’-TGTTCGGTGG-3’) levels of
methylation in human genomic DNA. Five positions of the two sample logo
(11, 12, 14, 17, and 18) agreed with Handa and Jeltsch’s analysis. Only two
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(13 and 20 in the two sample logo) out of eight flanking positions disagree
with Handa and Jeltsch analysis 20. However, in Handa’s analysis, G is
prominent in both methylation susceptible and resistant sequences. In our
analysis, T is prominent in methylation susceptible sequences, which may
be worth further investigation. In summary, among eight CpG flanking
characters, only one position (13 in the two sample logo) disagrees with a
published methylation susceptibility analysis.

Figure 3. Two sample logo plot showing the DNA character composition difference.

6.3. Predicitive model for methylation susceptibility

Since this is to determine either of two classes, UP and DOWN, we used
four classification methods in WEKA: SMO, Multilayer Perceptron (MP),
Näıve Bayes (NB), Instance Based Classifier (IBk). The prediction accu-
racy was measured with the standard 10 fold cross validation. As shown in
Figure 4, all four algorithms achieved over 70% accuracy with 30bp flanking
sequences. We expect that the prediction accuracy drops as the length of
the flanking sequences decreases. To measure the effect of flanking sequence
length, we used flanking sequences of 30 bp to 2bp with a 2bp decrease in
length (one from the left end and the other from the right end). The pre-
diction accuracy of SMO, NB, and MP did not drop much until the flanking
sequence length was reduced to 10bp, which agrees with the experimental
result in Handa and Jeltsch’s analysis.

6.4. Is this cancer specific?

Given that methylation levels are measured for four types of primary lym-
phoma and leukemia cells and normal peripheral blood lymphocytes, it is
natural to ask whether there is difference in methylation level between can-
cer types and normal cells. Our quick, initial analysis was not able to find
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Figure 4. Prediction accuracy of four classification models using 10 fold cross validation.

X-axis is the length of CpG flanking sequences.

distinctive methylation patterns between four leukemia cells and one nor-
mal cells, as shown in Figure 5 for CYP27B gene. In general, we observed
that methylation levels in leukemia cell lines were higher than in the nor-
mal cell lines, as expected. However, this was not true at all CpG sites.
For example, some CpG sites in the upstream region of the CYP27B gene
showed higher methylation in the normal cell line compared to the cancer
cell lines. We plan to investigate this question further with new data sets.

7. Discussion

In this paper, we utilized CpG site specific methylation information to char-
acterize CpG site methylation susceptibility. First, we showed that there
was significant difference in DNA character composition between methy-
lation susceptible and resistant sequences. In particular, comparison of
methylation susceptible and resistant sequences using the two sample logo
technique showed that over-represented characters in methylation suscep-
tible sequences are in agreement with the analysis by Handa and Jeltsch
showing CpG flanking sequence specificity for methylation susceptibility.
Secondly, we used the CpG flanking sequences to build predictive models
for methylation susceptibility and achieved over 75% prediction accuracy
in 10 fold cross validation tests. This study is first of its kind that uses
CpG site specific methylation information to build predictive models.
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Figure 5. Methylation level of each CpG sites in the upstream region of CYP27B gene.

Two fragments, Forward (upper panel) and Reverse (lower panel), were sequenced after

bisulfite treatment.

Further study includes characterization of leukemia specific methylation
pattern signatures and related sequence and machine learning analysis.
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