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1. Abstract

The identification of transcription factor binding sites commonly relies on

the interpretation of scores generated by a position weight matrix. These

scores are presumed to reflect on the affinity of the transcription factor

for the bound sequence. In almost all applications, a cutoff score is chosen

to distinguish between functional and non-functional binding sites. This

cutoff is generally based on statistical rather than biological criteria. Fur-

thermore, given the variety of transcription factors, it is unlikely that the

use of a common statistical threshold for all transcription factors is ap-

propriate. In order to incorporate biological information into the choice of

cutoff score, we developed a simple evolutionary model that assumes that

transcription factor binding sites evolve to maintain an affinity greater than

some factor-specific threshold. We then compared patterns of substitution

in binding sites predicted by this model at different thresholds to patterns
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of substitution observed at sites bound in vivo by transcription factors in

S. cerevisiae. Assuming that the cutoff value that gives the best fit between

the observed and predicted values will optimally distinguish functional and

non-functional sites, we discovered substantial heterogeneity for appropri-

ate cutoff values among factors. While commonly used thresholds seem

appropriate for many factors, some factors appear to function at cutoffs

satisfied commonly in the genome. This evidence was corroborated by local

patterns of rate variation for examples of stringent and lenient p-value cut-

offs. Our analysis further highlights the necessity of taking a factor-specific

approach to binding site identification.

2. Introduction

A gene’s expression is governed largely by the differential recruitment of

the basal transcription machinery by bound transcription factors.1,2 In this

way, transcription factor binding sites are fundamental components of the

regulatory code, and this code’s decipherment is partially a problem of rec-

ognizing their location and affinity.3 These are usually determined using

position weight matrices, although a number of more recently developed

methods are beginning to become adopted.4 We use position weight matri-

ces here due to their ease of use with evolutionary analysis and their estab-

lished theoretical ties with biochemistry. A position weight matrix generates

a score comprising the log odds of a given subsequence being drawn from

a binding site distribution of nucleotide frequencies vs. an analogous back-

ground distribution.5 The score’s p-value is used to determine the location

of binding sites: subsequence scores above a predetermined cutoff designate

that subsequence to be a binding site, and subsequence scores below the

cutoff designate the subsequence to be ignored.

The interpretation of regulatory regions is thus dependent on the choice

of the p-value cutoff. However, this choice is not straightforward, although

it is commonly made to conform to established but biologically arbitrary

statistical standards, e.g. p < .001. In addition to assuming that this partic-

ular p-value is appropriate, the user here also assumes that a single p-value

is appropriate for all transcription factors. Being that score shares an ap-

proximately monotonic relationship with affinity,6,7 this implies that the

nature of the interaction between different transcription factors and their

binding sites is the same. This may not be the case. For example, some

transcription factors may require a stronger binding site to compensate for

weaker interactions with other transcription machinery, and so a lenient

cutoff would be inappropriate. Conversely, the choice of a stringent cutoff
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could eliminate viable sites of factors that commonly rely on cooperative in-

teractions with other proteins to be recruited to the DNA. A single common

standard of significance is a compromise that may not be reasonable.

Ideally, biological information should inform the choice of a p-value and

its consequent ramifications in the determination of function. Several recent

approaches have well used expression8 and ChIP-chip9 data towards under-

standing binding specificity. Here we take advantage of selective pressure as

a third source of information. Tracking selective pressure has the advantage

of directly interpreting sequence in terms of its value to the organism in its

environment; to a degree, function can be inferred by observing the impact

of selection. To this end, we propose a simple selective model of binding site

evolution. Selection prevents the fixation of low affinity sites that may not

affect expression to a satisfactory level and does not maintain unnecessary

high affinity sites. We train the model on the ChIP-chip data available in

yeast, and we find evidence for a wide heterogeneity in required binding site

affinity between factors. Supporting recent work by Tanay,10 many factors

appear to require only weak affinity for function, and we find some evidence

that these may rely on cooperative binding to achieve specificity.

3. Results and Discussion

3.1. Definition and training of the affinity-threshold model

In order to use selection as a means to investigate function, a model must

be defined to describe how selection acts on functional and non-functional

binding site sequence. Our model was created to be the simplest possible

for our purposes. We assume that binding sites evolve independently from

other sites in their promoter, but that all sites that bind the same fac-

tor evolve equivalently. We interpret a binding site’s function in a binary

manner: our model supposes that there exists a satisfactory level of ex-

pression and that binding site polymorphisms that are able to drive this

expression level or greater have equal fitness, while binding site polymor-

phisms that cannot are deleterious. By assuming that this deleterious effect

is large enough to preclude fixation in S. cerevisiae, our model imposes an

effective threshold on permitted affinity: it does not allow a substitution to

occur if it drops the position weight matrix score beneath a given bound-

ary. Analogous reasoning lets us treat repressors identically. By imposing

a threshold on permitted affinity and by relying on the assumption that

position weight matrix score shares a monotonic relationship with affinity,6

we impose a threshold weight matrix score.
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Our purpose in training the model is to find where that threshold lies for

each factor, which we accomplish using simulation. For any given threshold

and matrix, we simulate the relative rates of substitution that would be

expected, and then we compare these rates to empirically determined rates

to choose the most appropriate threshold. The simulation is run as follows:

we start with the matrix’s consensus sequence, and make one mutation

according to the neutral HKY11 model. The sequence’s score is evaluated:

if it exceeds the threshold, the mutation is considered fixed and the count

of substitutions at that position is incremented, and if not, no increment is

made and the sequence reverts back to the original sequence. This mutate-

select process is repeated. Assuming that the impact of polymorphism is

negligible, removing a given fraction of mutations by selection will reduce

the substitution rate by that fraction. Thus, the proportion of accepted

over total mutations at each position is evaluated to be the rate of mutation

relative to the neutral rate.

We use sum-of-squares as a distance metric to compare each affinity-

threshold rate distribution to the empirical distribution, and we considered

the best-fitting affinity threshold to be the affinity threshold that generates

the distribution with the smallest distance to the empirical relative rates.

3.2. The affinity-threshold model well describes binding site

substitution rates

The Halpern-Bruno model12 has been incorporated into effective tools for

motif discovery13 and identification,14 and it has been shown to well de-

scribe yeast binding site relative rates of substitution.15 These rates are also

generated by our model, and so we judged our model’s accuracy by compar-

ing its performance to the Halpern-Bruno model’s performance (fig. 1). We

aligned ChIP-chip bound regions and computed summed position-specific

rates of substitution for the aggregate binding sites of the 111 transcrip-

tion factors that met our conservation requirements. We were able to find

a threshold at which the affinity-threshold model better resembled the em-

pirical data than the Halpern-Bruno model did for 42 of the 49 factors with

adequate training data (see Methods). The affinity-threshold model well

approximates the position-specific substitution rates of most factors.

The best-fitting score threshold for a transcription factor’s binding sites

may correspond to their minimum non-deleterious affinity for that tran-

scription factor. If this minimum is variable and can be found through our

evolutionary analysis, then we should be able to detect that variability ro-

bustly. To this end, we used a bootstrap to assess the reliability of our
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Fig. 1. Position specific rate variation and model predictions for (a) Fkh2, (b) Fhl1,
and (c) Aft2: relative rate (subst/substtot) vs position in site. The black line marks the
empirical rates, the dashed line marks the Halpern-Bruno predicted rates, and grey line
marks the best-fitting affinity-threshold. The grey bar contains the set of rates predicted
by all affinity thresholds within the factor’s 95% confidence interval

predictions, resampling the the aligned sites. Although most transcription

factors had large confidence intervals, they were dispersed over sufficiently

wide intervals such that we could form three distinct sets (table 1). We

grouped factors with lower bounds greater than 5.9 into a ”stringent thresh-

old” set, factors with upper bounds lower than 5.1 into a ”lenient threshold”

set, and factors with upper bounds lower than 12 and lower bounds greater

than -2 into a ”medium threshold” set; transcription factors appear to have

variable site affinity requirements. We use these sets in all further analysis.

3.3. The affinity-threshold model predicts extant score

distributions for most factors

If the affinity-threshold model is a reasonable approximation of the evolu-

tion of the system, then it should describe other properties of the system

beyond the position-specific rate variation of binding sites. One additional

prediction of the model is the distribution of binding site scores. For each
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Table 1. Affinity threshold confidence intervals and corresponding site prevalence for transcription
factors in the stringent (left), medium (middle), and lenient (right) threshold groups

CIa Prev.b CIa Prev.b CIa Prev.b

Reb1p 8.3-11.1 .226-.117 Cin5p −0.4-8.5 .997-.294 Sut1p −9.9-4.2 .988-.845
Bas1p 5.8-13.6 .566-.005 Mbp1p 2.7-11.7 .793-.059 Aft2p −9.8-4.2 .988-.794
Fkh2p 8.1-15.2 .497-.003 Fhl1p 4.2-11.3 .702-.048 Phd1p −9.8-5.1 .998-.867
Cbf1p 6.2-12.0 .219-.028 Gcn4p 4.0-10.6 .682-.080 Ace2p −9.9-−0.8 .999-.999
Abf1p 11.0-12.9 .108-.075 Swi6p 3.8-9.9 .854-.166 Yap6p −9.9-4.2 .993-.909
Sum1p 6.2-14.5 .484-.009 Ste12p 1.0-6.5 .997-.705 Adr1p −9.5-2.3 .991-.856
Tye7p 8.6-11.3 .183-.037 Nrg1p −1.3-7.0 .968-.388 Hap5p −9.4-−2.1 .993-.993
Mcm1p 8.7-19.5 .133-.002 Mot3p −2.9-5.1 .996-.595
Hap4p 11.0-14.9 .059-.003

Note: a 95% confidence interval, log base two scores
b Prevalence: first and second quantities are the fraction of all promoters containing a site meeting
the lower and upper bounds of the CI, respectively

factor in the groups determined above we sampled the Markov chain and

computed the mean binding site score under the affinity-threshold model.

We compared this to the average maximum score for that transcription fac-

tor in ChIP-chip bound regions (fig. 2). Although it had a downward bias,

the affinity-threshold model predicted the extant distribution of stringent-

and medium- threshold transcription factor binding sites. However, it fared

worse with the lenient-threshold binding sites, suggesting that the evolution

of these sites may not operate within the simplifying bounds of the model,

i.e. perhaps their evolution is governed by a more complex fitness landscape

instead of our stepwise plateau. Nevertheless, average maximum scores in

bound regions for these factors are still found commonly in the genome.

3.4. Stringent- and lenient-threshold binding sites have

distinct patterns of local evolution

The lenient set of transcription factors allows for binding sites that would

be found often by chance in the genome. If this lenient affinity is truly

sufficient, these transcription factors may rely on other bound proteins to

separate desired from undesired binding sites. In contrast, sites meeting

the affinity threshold for stringent-threshold transcription factors should

be high-occupancy sites without a need for additional information due to

their strong predicted affinity.

To investigate this hypothesis, we counted the average number of dif-

ferent transcription factors bound at each promoter for each of the factors

used in the Harbison et al ChIP-chip experiments. Let “lenient-group sites”
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Fig. 2. Predicted average score at best-fitting affinity threshold vs. average maximum
score in ChIP-chip bound regions (log base two scores). Stringent-, medium-, and lenient-
threshold transcription factors presented as black, dark grey, and light grey dots, respec-
tively.

refer to sites bound by lenient-threshold transcription factors (e.g. Sut1p,

table 1), and let “medium-group” and “stringent group” sites be defined

similarly. As expected, the stringent and lenient groups were separated, the

lenient group promoters having just under three more unique bound fac-

tors per promoter for each of three binding significance cutoffs. However,

the medium and lenient groups were not well separated.

We used the variation in local substitution patterns to determine

whether medium and lenient group factors could be distinguished by an

enrichment of local binding events. While medium and lenient group sites

have similar numbers of different transcription factors bound to promoters

that they also bind, lenient group sites will have a higher density of other

binding sites immediately surrounding theirs if recruitment by other pro-

teins is necessary for their function. This density should be reflected in the

local pattern of evolution, as the sequence will be comparatively restrained.

We calculated rates of substitution surrounding the binding sites of
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Table 2.
Average number of binding sites
per promoter, grouped by best-fit
affinity threshold and ChIP-chip
binding p-value

Group p < X
.005 .001 .0001

Stringent 7.78 4.74 3.33
Medium 10.30 7.09 5.13
Lenient 10.73 7.59 6.25

stringent-, medium-, and lenient-threshold transcription factors. All tran-

scription factors in each set were pooled and the rate of substitution was

calculated and summed by distance to the transcription factor edge. All

three sets have a reduced rate of substitution at the position adjacent to

the binding site (fig. 3a), suggesting that some of these weight matrices do

not describe the entire factor. Lenient group sites have a depressed rate

of substitution relative to the areas surrounding the medium and stringent

group sites (fig. 3b, p ∼= 0, χ2 = 160.8, 1df), consistent with a hypothesis

of increased local binding. In contrast, the regions surrounding stringent

group sites are marked by a shoulder of increased substitution rate (fig.

3a). This shoulder suggests a model in which high-affinity sites sterically

inhibit transcription factors from binding to adjacent regions, preventing

them from being used as regulatory material. The stringent and lenient

group sites are distinguished by their expected patterns of local substitu-

tion rate variation.

Transcription factors may best interact if they are on the same side of

the DNA,16–18 suggesting that binding sites of interacting factors should

be phased at approximately 10.4 base pairs to match the periodicity of the

double helix, although this will vary according to the particular nature of

interaction between the two proteins. If binding sites coordinated in this

manner, the substitution rate should match this periodicity. We evaluated

the fit of a model that allowed for a 10.4 base pair periodicity in the rate,

although the noted variability between interacting factors will reduce the

quality of this match. We fit the twenty base region ten bases from the

edge of the transcription factor, allowing for two turns of the DNA while

avoiding possible occluding effects of the original bound factor. The regions

local to lenient group sites fit this model significantly better than they fit a

uniform rate model (fig. 3c, p = .0053, χ2 = 10.53, 2df), while the regions

surrounding medium and stringent group sites did not.
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Fig. 3. Local rate of substitution (subst/site) vs distance to binding site edge (bp). The
solid, dotted, and dot-dashed lines mark the local rates surrounding stringent-, medium-,
and lenient-affinity group transcription factor binding sites. In (c), the grey line marks
the predicted periodic rate of evolution near lenient-affinity group sites

4. Conclusion

We developed a simple model of binding site evolution to investigate the

possibility of differences in transcriptions factors’ requirements for binding

site affinity. Unlike other models of binding site evolution, the affinity-

threshold model is geared toward understanding the transcription factor

itself rather than its binding sites. The model was used to create three

groups of transcription factors with stringent, lenient, and intermediate

requirements for binding site affinity, and these groups were supported by

the extant distribution of binding sites and their distinctive patterns of

localized substitution rate. We note that some factors appear to evolve

and exist at thresholds that poorly distinguish their binding sites from

background sequence, perhaps making consideration of context essential

for their accurate identification.
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5. Methods

5.1. Rate of binding site evolution

We downloaded the S. cerevisiae sequences used in the Harbison et al19

study and used bi-directional best FASTA20 hits (p < 1e−5) to find the

orthologous subsequences in S. paradoxus, S. mikatae, S. kudriavzevii, and

S. bayanus contigs available at SGD.21 We aligned the sequences using

Mlagan.22

We obtained ChIP-chip binding data from Harbison et al, using all avail-

able conditions for each factor. We used a binding p-value cutoff of .001 to

determine binding, but the analysis was fairly robust to using different cut-

offs: we also calculated rates of evolution for of transcription factor binding

sites for binding p-values of .005 and .0001 and observed similar groups,

although some stringent-threshold factors were lowered to the medium-

threshold group using the former data set. We downloaded weight matrices

for 124 factors,9 and we used Patser23 to designate the highest-scoring sub-

sequence(s) within each bound locus to be the subsequence responsible for

binding. This choice precludes the inclusion of many functional weak sites,

but we wished to minimize the impact of non-functional sites. Alignment

errors, binding site turnover, and changes in cis-regulation all will introduce

neutral sequence evolution into the model training data, biasing our choice

of threshold downward. In particular, Borneman et al24 highlighted rapid

changes in binding for two transcription factors across three yeast species.

We hoped to minimize the impact of such by imposing minimal criteria for

conservation: we discarded alignments with gaps and alignments contain-

ing a sequence with a score beneath zero. We used maximum parsimony for

all determinations of substitution rate. Although progress has been made

towards determining the neutral mutation processes in S. cerevisiae inter-

genic sequence,25 we wished to avoid remaining uncertainties and so in all

cases we compared relative rates within the binding site instead of absolute

rates. We did not further analyze transcription factors for which we were

unable to train on at least two mutations per position. We calculated the

Halpern-Bruno rates according to the method described in Moses et al.15

5.2. Simulation of the affinity-threshold model

We simulated the affinity-threshold model for a wide range of thresholds

for each of the 124 weight matrices described by MacIsaac et al. We cal-

culated position-specific substitution rates for score thresholds between -10

and the position weight matrix’s maximum in increments of 0.1. This pro-
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cess starts with the consensus sequence and is run for eighteen million

iterations. We determined 95% bootstrap confidence intervals of the best-

fitting threshold by finding the best-fitting affinity threshold for each of

10,000 resamples of the aligned binding sites. Software will be available

from http://rana.lbl.gov/∼rlusk/PSB2008/.

5.3. Predicted equilibrium distribution of scores

We sampled every 20,000th sequence generated by the Markov chain for

the best-fitting affinity threshold model for each transcription factor in

the three groups. We compared the mean score of these sequences with

the mean maximum score of the sequences meeting a p < .001 ChIP-chip

binding cutoff.

5.4. Periodicity testing

We evaluated two nested models against the ±10 − 30 base pair region

surrounding each binding site. The first supposed a uniform rate α across

the region to determine kp Poisson-distributed mutation events at each

position p, and the second added a periodicity of 10.4 to this rate with

magnitude β and phase γ. tp is the number of gapless alignment columns

at that position. The maximum likelihood parameters were discovered by

direct search.

L(k | α, β, γ; t) =

30
∏

p=10

e−f(α,β,γ)tp

[

f(α, β, γ)tp

]kp

kp!

f(α, β, γ) =
[

1 + β sin(2π
p − γ

10.4
)
]

α

Significance was determined using a likelihood ratio test with β either al-

lowed to fluctuate between zero and one or held to zero.
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