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This paper concerns with predicting the regulatory targets of a transcription factor
(TF). We propose and study a joint model that combines the use of DNA-protein
binding, gene expression and DNA sequence data simultaneously; a parametric
mixture model is used to realize unsupervised learning, which however can be
extended to semi-supervised learning too. We applied the methods to an E coli
dataset to identify the target genes of LexA, which, along with applications to
simulated data, demonstrated potential gains of jointly modeling multiple types of
data over using only one type of data.

1. Introduction

This paper concerns with identifying the transcriptionally regulated target
genes of a transcription factor (TF). The task is commonly approached
based on one of the three data types: DNA-protein binding data (also
called ChIP-chip data or genome-wide location analysis) surveying genome-
wide DNA-TF interactions 11,12,microarray gene expression data compar-
ing expression changes before and after perturbing the function of, e.g.
by knocking-out, a TF-coding gene 5, and DNA sequence data which are
aligned and scanned to find specific binding sites or motifs of a TF 1,13,
Because of relatively high noise levels with high-throughput data, using
only one data source may result in high false positives or false negatives.
As a compensation, it is now widely recognized that an integrative analysis
of multiple types of data should be more efficient in identifying the target
genes of a TF 2,4,19,26. With the ever-increasing availability of various types
of high-throughput data, a main challenge is how to integrate them effec-
tively. In the literature, there are several classes of the approaches. First,
one can use one type of data to validate results from analyses of other types
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of data 24. Second, one first conducts a separate analysis on each type of
data and then combine their results 27. Third, regression analyses of one
type of data (e.g. gene expression) on another type (e.g. DNA sequence)
3,4,23. Fourth, one uses one type of data to generate priors or hypotheses
for analyzing other types of data; e.g. Liu et al 14 used binding data to
generate candidate binding regions, then used DNA sequence data to locate
binding sites; Xie et al 29 used expression data to generate a prior list of
potential binding targets, which was then utilized to analyze binding data.
Finally, a joint model of multiple types of data can be employed to use
all the data simultaneously to draw inference or make predictions, which
is presumably more efficient than many other alternatives; our method be-
longs to this class, which also includes the following ones for detecting the
targets of a TF. Wang et al 26 proposed a parametric mixture model for
both DNA sequence data and binding (or expression) data; our method
is similar to theirs except that we used three data sources and a differ-
ent format of DNA sequence data. Pan et al 18 proposed a nonparametric
mixture model; it requires duplicated arrays, not applicable to the E coli
expression data to be analyzed here. Xie 28 proposed a fully parametric
Bayesian approach using binding, expression and DNA data; because of
analytically intractable posterior probability calculations, computationally
intensive simulation methods (MCMC) were used to draw inference. Our
work here shows that a simple parametric mixture model similar to that of
Wang et al 26 works well, even when some parametric modeling assump-
tions are moderately violated, while accommodating more than two sources
of data; furthermore, we extend the method from unsupervised learning to
semi-supervised learning.

This paper is organized as follows. We first introduce our joint model as
a parametric mixture model, then we outline an EM algorithm to estimate
the parameters in the model and thus obtain posterior probabilities to draw
inference. We present an application of the methods to an E coli dataset
to identify the targets of LexA, comparing the results with the known and
putative targets listed in regulonDB (v5.5) 21 and in Wade et al 25. We
also show results of simulation studies to demonstrate statistical efficiency
gains from joint modeling over using only one data source. We end with a
short discussion on some possible future work.
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2. Methods

2.1. A Joint Model

Our goal is to identify which genes in a genome are the targets of a given
TF. To be concrete, we consider three data sources corresponding to DNA-
protein binding, gene expression and DNA sequence data, as to be used
for an E coli example. We assume that the three data sources can be
summarized as (Xi, Yi, Zi) for each gene i, i = 1, ...G: Xi is a summary or
test statistic measuring the relative abundance of the TF binding to gene
i, or the statistical significance of rejecting a null hypothesis that gene i

is not bound by the TF; Yi is a test statistic for differential expression
of gene i when the TF-coding gene’s function is perturbed; Zi is a score
measuring the degree to which one of its subsequences matches a known
motif for the TF. Depending on whether gene i is a target or not, we
have Ti = 1 or Ti = 0 respectively. To realize unsupervised learning, it
is natural to assume that (Xi, Yi, Zi) comes from a mixture distribution:
f(x, y, z) = πf1(x, y, z) + (1− π)f0(x, y, z), each component corresponding
to the subpopulation of the genes with Ti = 1 or Ti = 0 respectively, and
π is the prior proportion of the target genes. Further, we assume that
conditional on Ti, the three data sources are independent; that is

f(x, y, z) = πf11(x; θ11)f12(y; θ12)f13(z; θ13) +

(1− π)f01(x; θ01)f02(y; θ02)f03(z; θ03),

where θjk’s are the (unknown) parameters for distributions fjk. To infer
whether gene i is a target, we use the posterior probability

Pr(Ti = 1|Xi, Yi, Zi) =
πf11(Xi; θ11)f12(Yi; θ12)f13(Zi; θ13)

f(Xi, Yi, Zi)
.

Here we use fjk = φ(.; µjk, σjk), a normal probability density function with
mean µjk and variance σ2

jk.

2.2. Estimation via EM

An EM algorithm 6 can be derived to estimate the unknown θjk’s. Given
Ti, the complete data log-likelihood is

log Lc =
G∑

i=1

Ti log πf1(Xi, Yi, Zi) + (1− Ti) log(1− π)f0(Xi, Yi, Zi).
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The E-step is to calculate the conditional expectation

Q = E(log Lc|Data) = τi[log π + log f1(Xi, Yi, Zi)] +

(1− τi)[log(1− π) + log f0(Xi, Yi, Zi)],

where τi = Pr(Ti = 1|Xi, Yi, Zi). The M-step maximizes the above Q with
respect to the unknown parameters. We use the generic notation θ(m) to
denote the updated estimate of θ in iteration m; it is easy to verify that,
at iteration m + 1,

τ
(m+1)
i =

π(m)f
(m)
1 (Xi, Yi, Zi)

π(m)f
(m)
1 (Xi, Yi, Zi) + (1− π(m))f (m)

0 (Xi, Yi, Zi)

where

f
(m)
j (Xi, Yi, Zi) = φ(Xi; µ

(m)
j1 , σ

(m)
j1 )φ(Yi; µ
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j2 , σ

(m)
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(m)
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j3 ),

for j = 1, 2, and
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and π(m+1) =
∑G

i=1 τ
(m+1)
i /G, where the updates for other µjk and σjk’s

are similar and omitted. The above iterations are continued until conver-
gence. Because the EM may converge to a local maximum point, multiple
starting values are needed, and the one with the maximum log-likelihood is
chosen. The resulting estimates are maximum likelihood estimates (MLEs);
the final τi are used to rank the genes for their likelihoods of being a target.

2.3. Other Models

The above joint model is for three data sources; it is straightforward to have
a model for more or less than three data sources, and its corresponding EM
updates for parameter estimation. For example, if we use only one source
of data, say Xi’s, we can have a corresponding mixture model

f(x) = πf1(x; θ1) + (1− π)f0(x; θ0),
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and the posterior probability Pr(Ti = 1|Xi) = πf1(Xi; θ1)/f(Xi). The EM
updates are

τ
(m+1)
i =

π(m)φ(Xi; µ
(m)
11 , σ

(m)
11 )

π(m)φ(Xi;µ
(m)
11 , σ

(m)
11 ) + (1− π(m))φ(Xi;µ

(m)
01 , σ

(m)
01 )

,

and the updates for µ11, µ01, σ11, σ01 and π are exactly the same as before.
Again at the convergence, we use the posterior probabilities τi to rank the
genes.

2.4. Extensions to Semi-supervised Learning

The approaches taken so far are unsupervised learning, assuming that no
known targets for the TF, which is not usually true. Supervised learning
approaches have been proposed 32, which however may not work well if
there are only few known targets for the TF, e.g., for LexA. We can extend
our proposal to semi-supervised learning, combining the strengths of un-
supervised and supervised learning, which is an advantage of the mixture
model 15. Suppose that the first G1 genes are known targets while the
remaining ones may or may not be. The models are the same as before.
The parameter estimation procedures are also similar except that τi = 1
for i = 1, ..., G1.

Although in general semi-supervised learning improves over unsuper-
vised or supervised learning, for our example, because there were only
few known targets of LexA, the results of semi-supervised learning were
similar to that of unsupervised learning. We will skip the discussion of
semi-supervised learning. Nevertheless, we expect that this semi-supervised
learning will be useful for other TFs and other types of data.

3. Results

3.1. E coli data

We extracted the DNA-protein binding data 25 and gene expression data 5

from the authors’ supplied web sites respectively, and DNA sequence data
from the NCBI and Affymetrix web sites.

The binding data contained two LexA samples (called LexA1 and LexA2
respectively) and two control samples (one Gal4 and one MelR (no Ab,
no antibody) samples) hybridized on four Affymetrix Antisense Genome
Arrays respectively. We downloaded the raw intensity data (i.e. CEL files)
from the authors’ supplied web page. Largely following Wade et al 25,
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we processed the data in below steps. First, we used the Bioconductor
R package affy to pre-process the data, including background correction
with MAS 5 algorithm, and quantile normalization. Second, we calculated
four log2 intensity ratios (LIRs), corresponding to the four combinations of
any two arrays, for each probe: LexA1/Gal4, LexA1/no Ab, LexA2/Gal4,
LexA2/no Ab; a large LIR indicated a locus containing enriched LexA.
Third, we mapped each probe to a genome position based on the Affymetrix
Ecoli ASv2 annotation file. Fourth, for each of the four array combinations,
we smoothed the LIRs over all probes with a sliding window of 1250 bp.
Fifth, for each gene in each array combination, we identified its LIR peak
among the probes belonging to the gene’s coding and intergenic regions
(if any) separately. Finally, each gene i’s binding score or signal Xi was
taken to be the average of its four LIR peaks from its coding region, or if
there were probes from its intergenic region, Xi was the larger one of i) the
average of its four LIR peaks from its coding region and ii) that from its
intergenic region. The final step differed from that in Wade et al: they had
an extra step to identify a candidate LexA-bound region/block containing
≥ 20 consecutive probes with all LIRs ≥ 0.17; they calculated the average
of the four peaks only for the genes with such blocks, which were taken as
candidate binding targets of LexA; they identified about 50 such binding
targets. Because for our purpose, we would like to obtain a binding score
for every gene, obviously we could not follow their route. This procedural
difference contributed to some differences in Xi’s between theirs and ours.

The expression data were drawn from four cDNA microarrays profil-
ing gene expression levels for the wild type before and 20-minute after
UV treatment, and for the lexA mutant before and 20-minute after UV
treatment, respectively; a common control sample was used for each array.
Two-channel intensities on each array were normalized using the loess local
smoother to eliminate dye bias, as implemented in the R package sma 30

Suppose that normalized log-ratios of the two-channel intensities for gene i

on the four arrays were M1i,...,M4i respectively, then we used the summary
statistics for gene expression data as Yi = (M1i −M2i)− (M3i −M4i). Be-
cause LexA is known to be a repressor of some “SOS response” genes, it is
expected that the transcriptional targets of LexA should have larger values
of Yi’s (i.e. expression changes).

To extract DNA sequence data, on July 21, 2006, we downloaded ten
known binding sites of LexA from regulonDB (v4.0), involving nine genes
each with a binding site except two binding sites for gene lexA 20. We input
either these ten binding sites or five of them (in the order of #2, #4,...,#10
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as ranked by MEME) into MEME 1 to find a top motif (Table 1). We then
used scanACE 19 to scan the whole genome with a very low threshold such
that at least one subsequence matching the motif could be obtained for
most genes; we assigned the maximum of all the matching scores for gene i

as Zi, the summary statistic for the sequence data. Depending on whether
the ten or five known binding sites were used to obtain the top motif, the
resulting sequence data were denoted as Seq 1 (S1) or Seq 2 (S2).

After combining the three data sources and deleting genes with any
missing values, we obtained G = 3779 genes in the combined data.

3.2. Analysis

Table 1. Ranks given by various methods for known (marked by ∗) and
putative targets annotated in regulonDB (and in our data). Seq1 and
Seq2 were the sequence scores obtained from the top motif using the nine
and four known targets (marked by ∗ and ∗∗) respectively.

Gene Bind Expr B+E Seq1 Seq2 B+E+S1 B+E+S2

polB 156 114 135 153 1593 127 146
phrB 1346 1826 2083 530∗ 81∗∗ 1516 452
uvrB 48 172 92 31∗ 6∗∗ 78 46
dinG 96 448 213 138 143 169 171
ftsK 75 3757 223 127 303 173 199
sulA 11 12 1 17∗ 728 1 1
umuD 31 29 1 19 8 1 1
umuC 192 12 1 3454 3652 34 37
ydjM 30 111 53 70 74 49 44
ruvB 2780 313 509 1471 2966 645 708
ruvA 127 147 141 10 38 94 108
uvrC 3015 3104 3646 3008 796 3377 2692
uvrY 3538 3473 3679 3008 796 3384 2685
recN 7 5 1 33 36 1 1
oraA 82 50 54 1220 871 61 59
recA 12 15 1 23∗ 4∗∗ 1 1
rpsU 464 1214 766 1097∗ 304 896 572
dnaG 2906 3621 3451 782 177 2620 954
rpoD 2906 3749 3455 782 177 2621 953
t150 2121 175 262 50 76 176 178
uvrD 263 245 274 4∗ 50 106 160
lexA 15 61 1 7∗ 1∗∗ 1 1
dinF 2549 217 323 7 1 118 77
uvrA 41 169 77 14∗ 114 58 72
ssb 41 143 74 14∗ 114 54 68

We considered using binding data alone, expression data alone, sequence
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data alone (either using the motif found from the 10 or 5 known binding
sites), both binding and expression data, and all the three data sources.
For each type of data, a two-component mixture model was fitted, and
the posterior probabilities were used to rank the genes, as discussed ear-
lier. To motivate the mixture model for each data source, we fitted a
two-component normal mixture model to each data source separately; it
appeared that the mixture model fitted each data source well (not shown).
The parameter estimates (π̂j , µ̂j1, µ̂j0, σ̂

2
j1, σ̂

2
j0) with j = 1, ..., 4 for the four

data sources were (0.063, 0.11, 0.89, 0.07, 0.64), (0.174, 0.02, 0.20, 0.16, 2.81),
(0.278, 12.8, 15.3, 2.5, 7.3) and (0.196, 17.1, 19.7, 2.4, 7.3). As a compari-
son, the joint model with the binding, expression and Seq 1 data re-
sulted in estimates π̂ = 0.122, and (µ̂j1, µ̂j0, σ̂

2
j1, σ̂

2
j0) with j = 1, ..., 3 as

(0.11, 0.51, 0.07, 0.51), (0.01, 0.29, 0.21, 3.53), and (13.3, 14.9, 4.0, 11.2) for
the three types of the data respectively.

Table 1 gave the results for all known/putative targets listed in regu-
lonDB (v5.5) 21, downloaded in November 1, 2006, and in our combined
data. In general, combining multiple types of data increased the chance of
detecting the true targets as compared to using only binding data alone;
for example, the ranks based on binding and expression data, or based on
the three data sources, were higher, in some cases much higher, than those
based on using binding data alone. This was due to the fact that our joint
analysis combined the evidence from all the three data sources. For ex-
ample, each of umuD, recA and lexA was ranked relatively high (but not
highest) based on each of the three data sources alone, and combining any
two or three sources of data led to a highest ranking (i.e. tied at the 1st
with posterior probability equal to 1); umuC was ranked only at the 192nd
based on the binding data alone, with the incorporation of the expression
data its rank improved to a tied 1st.

We also obtained the results (not shown) for the putative targets with
a common motif (Class II) and without any common motif (Class III)
identified based on only the binding data by Wade et al. For the genes
in class III, because no common motifs were found in the DNA sequences
of the genes, it was not surprising that a separate or combined use of
sequence data gave the genes lower ranks than those based on the binding
data alone. More surprisingly, for most genes, a combined analysis using
both the binding and expression data also gave lower ranks than that based
on the binding data alone, due to low level expression changes.
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3.3. Simulation

To further evaluate and compare the methods with various sources of data,
we did a simulation study; the simulated data were generated from the
fitted models for the real data to mimic real situations. Four simulation
set-ups were considered. 1) Case I: we assumed that the joint model fitted
to the three data sources (with Seq 1) was correct, and simulated data
from the fitted joint model; this represented an ideal scenario for the joint
analysis. 2) Case II: we assumed that the binding data came from its
component from the fitted joint model as in 1), but each of the other two
data sources came from a two-component normal mixture model as fitted
to each data source separately (Figure 1); because there were a higher
proportion of the genes in the first component for the expression data and
sequence data, the joint model did not hold: in particular, the second
component f02 and f03 were not a single normal distribution, but a mixture
of two normals. This was a scenario for which a two-component mixture
model for binding data alone was correct but a joint model was not. 3)
Case III was similar to Case I except that some between-gene correlations
were introduced for the binding data (which might arise when the probe
intensities were smoothed as in the real data). Specifically, the genes were
randomly divided into blocks with size about 10, then we added some noises
drawn from N(0, σ10) to binding data (as generated in Case I) such that the
genes within each block had correlated Xi’s. Hence all the methods had an
incorrect independence assumption. 4) Case IV was a combination of Cases
II and III: some between-gene correlations as in Case III were introduced to
the binding data while other aspects were the same as in Case II. For each
case, 100 independent datasets were generated; the realized false discovery
rates (FDRs) were averaged over the 100 replicates for each method in each
case.

Figure 1 summarized the results for using binding data alone, using
both binding and expression data, and using all three types of data. It
was clear that, compared to using only binding data, using more than
one data source largely reduced the FDR; that is, at any given number of
estimated positives (i.e. claimed targets), the joint model could identify
a much larger number of true targets (and hence fewer false negatives).
Although using three data sources improved over using two data sources,
because of limited information available from sequence data (as measured
by the small difference between the two component distributions for the
sequence data), the improvement was not dramatic.
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Figure 1. Comparison of the FDRs from the three methods for simulated data.

4. Discussion

We have demonstrated possible efficiency gains with a parametric mixture
model to jointly combine multiple types of data for target detection. A
key feature of our joint model is its simplicity, however, this does not ex-
clude some possible modifications or extensions. First, rather than using
a single normal distribution fjk for each component for each data source,
a more flexible choice is to use a mixture distribution for each fjk; for the
E coli data here, we considered this idea for binding data but it did not
lead to much improvement, perhaps due to the goodness-of-fit of a single
normal distribution to each component. We emphasize that, with some
appropriate transformation, such as the Z-transformation 7, the normality
of some component distributions is expected; furthermore, McLachlan et
al 16 demonstrated that a two-component normal mixture model worked
quite well for several typical expression datasets. Second, rather than using
a sequence score for each gene, we may supply the sequence best matching
the motif, and use a multinomial model for each component of the sequence
data f3k, as done in Wang et al 33. This could possibly help refine the motif
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model. We may also consider using multiple motifs for lexA and their mul-
tiple matching sequences for each gene. Third, an advantage of the mixture
model is to use the estimated posterior probabilities to estimate FDR and
false non-discovery rate (FNR) 16, However, such a use critically depends
on the correctness of the assumed mixture model 18. Because here we aim
to use a simple parametric model which may or may not hold exactly, we
did not pursue the task of estimating FDR or FNR, which however is impor-
tant in practice. To relax the possibly too strong parametric assumption,
we may consider the use of a more flexible mixture model approach as out-
lined above, alleviating the issue of FDR/FNR estimates’ dependence on
correct modeling. These are all interesting topics for future research.
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