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Genomewide association scan (GWAS) data mining has found moderate-effect “gold 
nugget” complex trait genes.  But for many traits, much of the explanatory variance may 
be truly polygenic, more like gold dust, whose small marginal effects are undetectable by 
traditional methods.  Yet, their collective effects may be quite important in advancing 
personalized medicine.  We consider a novel approach to sift out the genetic gold dust 
influencing quantitative (or qualitative) traits.  Out of a GWAS, we randomly grab 
handfuls of SNPs, modeling their effects in a multiple linear (or logistic) regression.  The 
model’s significance is used to obtain an iteratively updated pseudo-Bayesian posterior 
probability associated with each SNP, which is repeated over many random draws until 
the distribution becomes stable.  A stepwise procedure culls the list of SNPs to define the 
final set.  Results from a benchmark simulation of 5 quantitative trait genes among 1,000, 
in 1,000 random subjects, are contrasted with marginal tests using nominal significance, 
Bonferroni-corrected significance, false discovery rates, as well as with serial selection 
methods. Random handfuls produced the best combination of sensitivity (0.95) 
specificity (0.99) and true positive rate (0.71) of all methods tested and better 
replicability in an independent subject set.  From more extensive simulations, we 
determine which combinations of signal to noise ratios, SNP typing densities, and sample 
sizes are tractable with which methods to gather the gold dust. 

1. Introduction 

The Gold Rush of the 1840s and 50s produced a flood of prospectors in the 
American West.  Fortified by dreams of easy discovery and driven by a desire 
for great fame and wealth, the only thing that separated the bold visionaries from 
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the reckless fools was the luck of where they staked their claims.  Today, a 
“Genetic Gold Rush” is taking place.  Scientists compete with one another to be 
the first to find novel complex disease genes.  Using the increasingly affordable 
technology of Genome-Wide Association Scan (GWAS) SNP chips, new 
scientific prospectors are becoming inspired by the early successes such as 
macular degeneration1 and obesity2.  Like the initial 1844 discovery of gold at 
Sutter’s Mill, these first GWASes have generated much excitement and high 
expectation that all such searches will be simple, straightforward, and lucrative.  
With talk of “low hanging fruit” there is much optimism that the dream of 
personalized medicine may actually be around the corner.   

While the first GWASes appear to have discovered some new signals, these 
do not appear to explain a large portion of the variance in the target traits that 
our heritability estimates would indicate are in the genome.  For example, the 
FTO gene identified by Frayerling et al., (2007)2 is homozygous in only 16% of 
adults (in Caucasian populations) and increases risk for obesity by 1.67-fold 
(approx 3kg of weight on average).  As the total heritability for BMI is roughly 
in the 50% range, the FTO gene is clearly only one small “gold nugget” in the 
entire genomic treasure.  Over 40 years experience with painstaking candidate 
gene work in humans would indicate that there may be many genes of small 
effect for complex traits.  For instance, the AGT gene has been studied since the 
1980s as a strong candidate for hypertension, but has been estimated in large 
populations to explain only 0.1% of the variance3 which may explain why some 
studies have detected an effect while others have not.  Many genomic scanning 
techniques will fail to find such small effect size genes, which individually are 
trivial, but which in the aggregate may explain a substantial part of the variance, 
especially when epistatic interactions are considered45.  Instead of concentrating 
only on finding the relatively few gold nuggets, perhaps we should consider 
ways to gather many small effect “gold dust” variants, not because any one grain 
is by itself important, but because in the aggregate, a pouch of gold dust can be 
very valuable. 

2. Methods 

We consider several alternative methods for “gathering the gold dust” in a 
genomic scan.  

2.1. Univariate Screening 

The traditional method for identifying signals in a GWAS is to screen one SNP 
at a time, and choose the most significant SNPs.  In the univariate screening 
category, we considered 3 variations, choosing: 
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1. N = all SNPs that are nominally significant (α= 0.05) 
2. B = all SNPs that are significant at the Bonferroni level (α = 0.05/M) 
3. F = all SNPs that are significant using the False Discover Rate.   

Intuitively, if there are no epistatic interactions between SNPs, and all signals 
operate additively and independently, then there is little information to be gained 
about the impact of any one SNP on the phenotype by considering other SNPs 
simultaneously.  In that case, we might expect that some kind of univariate 
screening procedure which evaluates the marginal effects of each SNP would 
give the most efficient and powerful estimates of the genomic signals.  
However, if the actions of genetic signal variants are more complex, if there are 
epistatic interactions, genes which down and up regulate the action of other 
genes, AND/OR logic “gate-keeper” variants which are required to be present 
for other SNPs to have any appreciable impact, particular haplotypic 
combinations that increase or decrease phenotypic risk, or even environmental 
factors that potentiate and reveal a set of related genes in a pathway, then we 
may miss such signals in univariate screening, since we only examine the 
marginal impact of each SNP.  In that case, we might prefer a method which 
examines SNPs in combination, using a multivariate modeling approach.   

2.2. Random Handfuls 

The random handful approach is a pseudo-Bayesian algorithm, in which we 
serially update information that a SNP is a signal for a phenotype, based upon 
the results of randomly drawn multivariate models predicting that phenotype.  
Let S  = { Si | i =1,2, …, M} be the set of SNPs in a GWAS, of size “M.”  Let 
H* be the set of true signal SNPs for a fixed phenotype Y.  SNPs in H* are 
either themselves causative functional variants (which would be the most 
extraordinary luck), or more likely, they are SNPs in LD with causative variants.  
Then (S  \ H*) is the set of noise SNPs for Y. 

Let P0[Si∈H*] be any prior probability density function (p.d.f.) on S.  If we 
wish to remain agnostic about the genetic causes of Y, then the initial priors will 
be flat for all SNPs, i.e. P1[Si∈H*] = (1/M).  If we wish to incorporate prior 
knowledge about the genetic architecture of Y, either from some other 
association or linkage scan, or from a microarray experiment, or from biological 
knowledge of the genetic pathways, then we may suitably choose some other 
prior P1[Si∈H*]. 

Let H ≡ {Sj}, be a set of SNPs of a fixed size (say L), drawn at random from 
S, which we will call a “random handful”.  Let M(H) denote the multivariate 
model predicting Y from H.  If Y is a continuous phenotype (e.g. lipid level), 
M(H) is a multivariate regression model: 
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 E[Y | H] = αH + Σj (βH
j Sj) (1) 

If Y is a categorical outcome (e.g. diabetes), then M(H) is a multivariate logistic 
regression model: 

 Prob[Y | H] = 1 / (1+ exp(αH + Σj (βH
j Sj)) (2) 

If Y is a survival outcome (e.g. age-at-onset of hypertension), then M(H) is a 
multivariate proportional hazards model: 

 Y(t) d Λ(t, H)  = Y(t) exp(αH + Σj (βH
j Sj)) d Λ0(t, H) (3) 

where Λ0(t, H)  is the baseline hazard function 
In all three cases, it is trivial to include additional fixed effect covariates 

into these models, such as age, sex, diet, lifestyle, exposures, etc. by simply 
adding more linear combination terms, i.e. the extended model becomes (αH + Σj 
(βH

j Sj) + Σj γj Xj ) for covariates Xj.  Even when they are not the main focus of 
our research, proper modeling of important covariates can reduce unexplained 
variance and therefore increase our power to detect gene signals (e.g. see 
Province et al., 20046).  However, as incorporation of such covariates is simple 
in both the random handful and the univariate screen approaches, in order to 
keep the notation crisp and to maintain our focus, we will ignore this 
complication here and concentrate on the case of no non-genetic covariates.   

Based upon the results of any model M(H) predicting Y, we can update 
information on the probability that each SNP Si in H is amongst the signals for 
Y (i.e. that Si∈H*).  If M(H) predicts Y well, then it is more likely that H 
contains some signal SNPs, so we raise the posterior probability that each Si in 
H is a signal.  Conversely, if M(H) predicts Y poorly, then the component SNPs 
in H are less likely to be signals, so that Si∉H* is more probable and we lower 
the probability that it is a signal.  As we randomly pick many random handfuls 
of SNPs and evaluate each of those multivariate models, any given SNP Si will 
be sampled many times in the context of many other background SNPs (many 
different Hs), so we get better and better estimates of the probability that Si is a 
signal.  At stage 1, we use the intial prior P1[Si∈H*].  With each new random 
handful, Hk, we serially update the posterior probabilities for each SNP Si, so 
that the posterior from the kth random handful becomes the prior for the next 
(k+1)th random handful, as depicted in Figure 1.   
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Figure 1.  Random Handful Algorithm  Given prior probability rankings at stage k that SNPs are 
signals : 1) we randomly select a handful of SNPs, Hk of size L.  2) Next, we evaluate the 
multivariate model M(Hk) predicting the phenotype, Y, from Hk.   3) We update the posterior 
probabilities at stage (k+1) to get new rankings that SNPs are signals.  4) Posterior probabilities now 
become the Priors for the next Hk+1 random handful.  The procedure is terminated when the top L 
handful of SNPs is consistently and stably ranked at the top in successive updates.  5) Finally, a 
standard stepwise algorithm is applied to the (now stable) top L set, to select the final significant 
independent set of SNPs, forming the multivariate model M(H*). 

Formally, at stage k, if Pk[Si ∈ H*] is the current prior that Si is a 
signal, then given the results of the kth multivariate model M(Hk) for a random 
handful of SNPs containing Si, the posterior probability that Si is a signal SNP 
is:  
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We approximate P[M(Hk) | Si ∈ H*] by the power of the multivariate model 
M(Hk) to detect SNP Si ∈ H* since this is the probability under the alternative.  
In calculating this power, we assume all other SNPs in Hk are random noise, so 
that all of the R2 from the multivariate model M(Hk) is due to the single SNP Si.  
Of course, this assumption may not be correct since H may contain many other 
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signal SNPs as well, and we could weight the various possibilities by their 
corresponding probabilities (again making certain assumptions about that 
distribution) to obtain a “better” estimate of the desired conditional probability.  
However, there are 2L possible ways for the L SNPs in Hk to be distributed as 
either noise or signal SNPs, which is too many to exhaustively evaluate.  For the 
purposes of this algorithm, we are not as much interested in the exact value of 
the posterior probability that a SNP is a signal, as we are in approximately 
ranking the SNPs according to those probabilities.  Again, we need not spend an 
inordinate amount of effort to ensure we have gathered every tiny last grain of 
gold, so long as we wind up with a pretty valuable pile that is mostly gold in the 
end.   

We also use the current kth stage prior distributions Pk[Si ∈ H*] in selecting 
which SNPs to include in the corresponding random handful Hk to evaluate for 
the next stage.  We form the cumulative distribution of the priors across all M 
SNPs (normalizing by the sum) and then select Hk via importance sampling 
according to this distribution.  In this way, the SNPs with the currently highest 
probabilities of being a signal, are more likely to be included in the model 
M(Hk).  This strategy has two advantages.  First, if the current probabilities are 
accurate, we are efficiently refining the posterior probabilities for the most likely 
signal SNPs, and thus likely to converge more quickly to the correct set of signal 
SNPs H*.  Second, if the higher probability for a SNP Si is inaccurately high for 
some reason (e.g. by the luck of the draw, it has always accidentally been in the 
company of other signal SNPs in each previous Hj in which it was evaluated, 
even though it itself is not a signal), then preferentially sampling such a SNP in 
Hk gives us the opportunity to correct the probability for Si with an additional 
model.   

We approximate P[M(Hk) | Si ∉ H*] as the product of the overall p-value 
for the multivariate model M(Hk) times the type-III SSQ p-value for the 
particular SNP Si in the model (i.e. the p-value for the test of the independent 
contribution of Si to Y).  This is also not strictly speaking correct, as the model 
is not independent of one of its components.  But again, we prefer a simple 
approximation to a more complex solution at this stage.  This approximation is 
intuitively appealing, as we would like to include call a SNP as a signal if both 
the multivariate model which contains it is significant as well as if its 
conditional test of independent contribution is significant. 

We continue iterating until the algorithm consistently ranks the top L SNPs 
from one stage to the next.  Then we take these top L SNPS as potential signals.  
The final step is to do a traditional stepwise model, selecting only the significant 
SNPs from the top L.  This insures that each SNP in the final random handful 
model is making an independent contribution to prediction of the phenotype. 
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The Random Handfuls algorithm is written as a SAS MACRO (SAS™)7. 
Within each iteration, multivariate regression is done using PROC REG and 
power is calculated using PROC POWER.   

2.3. Simulation 

To evaluate the performance of the methods, we conducted several Monte Carlo 
simulation experiments in SAS™.  As large scale simulations can take excessive 
amounts of CPU time, our initial experiments have been relatively small, to 
allow us to explore a more broad space of conditions.  In the first series of 
experiments, we simulate N=1,000 unrelated subjects on which we conduct an 
M=1,000 SNP scan, with 5 signal SNPs, each of which explains 2% of the 
variance of Y (a quantitative trait), which therefore has a total heritability of 
10%.  We generate SNPs without LD.  The second simulation is an extension of 
the first, in which we add 5 pairs of epistatically interacting SNPs (none of 
which have any main effects).  Each of these interactions has a heritability of 
2%, for a total trait heritability of 20% for all main effects and interactions.  For 
each condition, we generate 100 replications and analyze with all 4 methods. 

3. Results 

Results from the simulations are shown in Table 1.  We tabulate the average 
performance across all replications, of each of the 4 methods (Nominally 
significant, Bonferroni significant, FDR significant, and Random Handfuls 
algorithm) for finding polygenic SNPs.  We can classify each of the M=1,000 
SNPs as real signals (including all main effect SNPs as well as each pair of 
SNPs involved in any interaction) vs. the noise.  Thus, in each replication we 
can calculate agreement statistics for each screening method to capture the 
signals.   

Not surprisingly, when there are no interactions (top half of Table 1), 
selecting all nominally significant SNPs at P<0.05 is highly sensitive (99%.), 
and the specificity runs at 95%, which corresponds well to the expected 5% false 
positives.  However, the true discovery rate is only 9%, since most positives will 
be false.  Selecting only Bonferroni or FDR significant SNPs trades much of the 
sensitivity (now down to 66% and 78%, respectively) for increased specificity 
and much improved True discovery rates (99% and 96%, respectively).  There is 
considerably less noise in our final answer when we correct for multiple 
comparisons.  The random handful algorithm competes well in this regard, 
having the high sensitivity and specificity of the Nominal criteria with a much 
higher True Discovery Rate.  We also calculate the Kappa statistic, which is the 
amount of agreement beyond that expected by chance (perfect agreement yields  
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Table 1  Results from Monte Carlo Simulation 
Comparing 4 Methods for Detecting Small Gene Polygenic Aggregate Effects 

(N = 1,000 Subjects, K = 100 Replications) 

 
M = 1,000 SNPs  Total h2 = 10% 
H* = 5 Additive signal SNPs  (h2g=2% each) 

Method Sensitivity Specificity 

True 
Discovery 

Rate Kappa 
Training 

R2 
Test 
R2 

Nominal 0.99 0.95 0.09 0.16 0.26 0.01 
Bonferroni 0.66 0.99 0.99 0.77 0.08 0.07 
FDR 0.78 0.99 0.96 0.85 0.09 0.08 
Random 
Handfuls 0.95 0.99 0.71 0.81 0.12 0.07 
 
M = 1,000 SNPs  Total h2 = 60% 
H* = 5 Additive SNPs (h2g=2% each)+ 5 Epistatic Interaction SNP-pairs (h2g=10% each) 

Method Sensitivity Specificity 

True 
Discovery 

Rate Kappa 
Training 

R2 
Test 
R2 

Nominal 0.44 0.95 0.12 0.16 0.37 0.06 
Bonferroni 0.27 0.99 0.99 0.42 0.17 0.09 
FDR 0.28 0.99 0.93 0.42 0.14 0.08 
Random 
Handfuls 0.34 0.99 0.89 0.49 0.12 0.09 

 
For each of the 4 methods (Nominal, Bonferroni, FDR and Random Handfuls) , we tabulate average 
agreement statistics (sensitivity, specificity, true discovery rate and Kappa) across all replications, 
quantifying the agreement of that method to the true classification of SNPs into signals vs. noise 
(signals are all main effect SNPs as well as any SNP involved in an epistatic interaction).  We also 
show the percent of variance explained (R2) from the sum of risk variants across all SNPs chosen in 
the corresponding model, both in the original Training dataset (on which the SNPs were originally 
selected) as well as on an independent Training dataset of equal size. 

Kappa=1, while chance agreement corresponds to Kappa=0).  Kappa is poor 
for the Nominal selection method, and in the 75%-85% range for each of the 
Bonferroni, FDR and Random Handful methods.   

We also evaluated the amount of variance explained by the selected SNPs 
in both the original training dataset (on which the models were developed) as 
well as on an independent test set of equal size.  Since the true heritability in 
each dataset is 10%, we can see that the Nominal model overfits to noise in the 
training dataset, producing an R2=26%.  Of course, such a model does not 
reproduce well in an independent test dataset, explaining only 1% of the 
variance.  Each of the Bonferroni, FDR and Random Handful methods run much 
closer to the expected 10% of explained variance.   Thus, the Random Handful 
method is as good as or sometimes exceeds the operating characteristics of the 
other methods, when there are no epistatic interactions. 
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When there are epistatic interactions without main effects (bottom half of 
Table 1), the pattern of results is similar.  None of the methods was very 
successful in capturing the epistatic interacting SNPs without main effects 
(including the random handfuls algorithm).  However, the random handfuls gave 
scored at least as good and sometimes better than the other algorithms across all 
measures of performance.  

4. Discussion 

Many complex traits (such as obesity, diabetes, heart disease, cancer, etc.) have 
heritabilities in the 30-50% range.  If all of the variance in a 50% heritable trait 
were due to large effect genes explaining 10% of the variance or more, there 
would only be 5 such in the genome, and the current statistical methods for 
genomic scans would easily find these.  However, suppose there are only two 
such large effect genes, explaining 20% of the variance between them, and the 
remaining 30% of the variance is due to 30 polygenes, each of which explains 
only 1% of the variance, or worse, 300 polygenes, each of which explain only 
0.1% of the variance (as is the order of magnitude in our AGT – hypertension 
example3).  Then the current methods which concentrate only on the marginal 
effects of variants will almost surely fail to find any gold dust.   

It is disappointing that the Random Handfuls method was not successful in 
detecting interactions without main effects.  We are currently incorporating a 
refinement of the algorithm to explicitly find such effects.  There are too many 
possible interactions to consider all of them in a brute force way.  For instance, 
if there are L main effects then there are  
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possible 2-way interactions.  If we formally test for each of these in each 
random handful of size L, we can easily fit to noise.  We are examining the 
utility of a two stage test within each random handful iteration to handle this 
problem.  In the first stage of each iteration k, we add a single variable which is 
the sum of all 2-way interaction terms that can be made from the L main effects 
in the current random handful Hk, and test for its significance.  If it is not 
significant, we stop at stage 1 and consider only main effects as before.  If the 
aggregate interaction term is significant then we move to stage 2 and potentially 
add all pair-wise interactions in a stepwise algorithm.  The conditional 
probabilites in the Bayesian formula for each SNP Si are the most significant p-
values of either the main effect test or of any pair-wise interaction.  The idea is 
that the noise interaction terms will tend to cancel out, so that the aggregate 
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interaction term provides a good 1 d.f. screen to test whether any interactions are 
present.  If they are, then we test for which ones should be incorporated. 

Our random handfuls method is similar in spirit and philosophy to Bayesian 
averaging and model selection methods, in which a lot of genetic work has been 
done recently (e.g. Viallefont et al., 20018; Blangero et al., 20059; among 
others).  We do not claim that our current algorithm is the best or most optimal 
method for finding the “gold dust” genes.  Much refinement of the technique is 
possible and under development.  But we do believe that methods in this vein 
can be useful to mine the gold for complex traits, and that more investigators 
should consider novel ways to find the aggregate effects of small effect genes, 
instead of fixating on the few gold nuggets.   
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