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Similarities between different protein structures have led to the identification of
protein families based upon some measure of structural similarity. Using these
similarities one can classify proteins into structural families and higher-order
groupings from which inferred function can be transferred. When taken for
a large number of proteins, these schemes point to evolutionary relationships
between organisms. We propose a novel classification scheme based upon the
structurally-inspired dynamics of each protein. This classification scheme has
the advantages of being quantitative, automatically assigned, and able to also
make distinctions within protein families. Results are presented for five pro-
tein families illustrating the correct identification of previously un-classified
structures and sources of intrafamily distinctions.
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1. Introduction

The comparison of proteins from different organisms relies heavily upon
the paradigm that sequence encodes for protein structure which in turn de-
termines protein function. Often protein function is not a easily definable
quantity1 making some associations unreliable. More directly, proteins can
be grouped into families based upon shared structural characteristics since
structural changes are generally more conservative than sequence changes.
Two widely used structurally-based classification systems are SCOP (Struc-
tural Classification of Proteins)2 and CATH (Class, Architecture, Topology,
and Homologous superfamily).3 Both classification systems require some
manual intervention and depend upon the additional step of defining the
domains within a protein structure. The assignment of such domains is not
a unique process and adds another layer of complication to such classifica-
tions.
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We contend that structurally-inspired information, specifically protein
dynamics, are important for making the correct functional assignment of
proteins.4 Information regarding dynamics is absent in both of the two
structural classification systems mentioned above. In this paper we present
an automatic assignment criteria for grouping protein families based upon
their entire structure rather than the added step of domain identification.
Thus although the analysis presented here is similar to the SCOP and
CATH classifications it differs by considering the dynamics of complete
protein structures.

The Gaussian Network Model (GNM)5,6 provies an efficient calculation
of protein dynamics by representing the protein structure by an elastic net-
work of residues. This creates a coarse-grained representation of the struc-
ture and its dynamics. As a result, comparison of low frequency (global)
modes of motion from GNM to proteins with a similar Rossmann-fold dis-
played a striking similarity.7 A related study applied to the globin family
observed a similar trend that similar protein structures exhibited similar
dynamics.8 Preliminary analysis at the superfamily level found that regions
with high mobility also demonstrated high levels of evolutionary fluctua-
tions.9 In this work we quantify the degree of similarity in dynamics with
the aim of exploring how these dynamics play a role in defining protein func-
tion. We generalize these comparisons to families of proteins based upon
the SCOP classification schemes, allowing a new automatic classification of
each protein in terms of their GNM-defined dynamic similarities.

2. Methods

2.1. Protein Family Selection

The Protein Data Bank (PDB)10 was used in conjunction with the iGNM
database11 to select the families of proteins used in this study. The iGNM
database is an online resource of pre-computed GNM analysis for all struc-
tures deposited in the PDB. The low frequency eigenvectors, termed slow
modes, were used in the analysis presented here because these slow modes
have previously been associated with global motions and likely (large-scale)
functional motions.12

The SCOP (v 1.71) classification was used as the inital basis for familial
groupings. Five families were chosen from the SCOP database site such that
the proteins in these families represented different functions, architectures
and number of residues. A family was considered if it had more than 25
member structures with the same number of residues. Since the number of
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structurally resolved residues does not always match the protein sequence
length, the list of SCOP family member PDB structures was checked against
the iGNM database to determine the number of nodes (residues) present
in each structure. Only structures with the same number of residues were
selected for use in this study. Requiring the proteins to have the same
length allowed a direct comparison of them against each other using the
dot product of their modes of motion (see below). Once this number of
residues was determined, an additional set of structures was obtained by
retrieving all structures present in the iGNM with this number of residues.
Thus each protein family studied had a set of structures already deemed
part of the (SCOP) family and a second set of (non-family) structures each
having the same length as those in the family. The analysis was carried out
for the five SCOP families listed in Table 1.

Table 1. List of protein families tested.

Abbreviation: Name Residue count Family Non-family

FABP: Fatty acid binding protein-like 131 30 42
Glob: Globins 153 84 58
CytC: monodomain cytochrome c 108 28 70
DHFR: Dihydrofolate reductases 159 27 46
PoBP: Phosphate binding protein-like 517 30 6

2.2. GNM

The GNM5,6 treats the structure as an elastic network model where amino
acid residues within a cutoff distance, rc are connected by springs with
a uniform force constant. In this model, the Cα atom positions of each
residue serve as the nodes. Denoting Rij as the distance between residues
i and j, a Kirchhoff or connectivity matrix, Γ, is constructed such that
off-diagonal elements are −1 when Rij ≤ rc and 0 when Rij > rc; while
the diagonal elements are the sum of off-diagonal elements. The normal
modes characterizing the motion of this network are found by eigenvalue
decomposition of the Kirchhoff matrix according to Eq. (1)

Γ = UΛUT (1)

where U is a matrix composed of eigenvectors, ui (1 ≤ i ≤ N), and Λ is the
diagonal matrix of the eigenvalues λi. Despite being a purely topological
model, GNM and related models have been widely used to characterize
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functionally relevant motions in terms of a few low frequency (small λ)
modes.4

For each of the structures in the protein families, the 20 slowest mode
(lowest frequency) eigenvectors were downloaded from the iGNM database.
The correlation between residue fluctuations (∆Ri) due to a specific mode
is calculated according to Eq. (2).

[∆Ri ·∆Rj ]k =
3kbT

γ
λ−1

k [uk]i[uk]j (2)

Here [uk]i is the ith element of the eigenvector uk, λk is the eigenvalue, T

is the absolute temperature and kb is the Boltzmann constant.
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Fig. 1. Relationships between mode shapes. a) The lowest mode shape [u1]2 is plotted
for each family structure with gray dashed lines. The thick black line highlights the
average mode shape. b) The lowest mode shape for each non-family structure is plotted
in gray dashed lines and contrasted with the average family mode shape in black.

Figure 1 illustrates the lowest mode shape [u1]2 plotted against residue
number. By inverting Eq. (2) one can see that this is proportional to the
lowest mode self-fluctuation or mobility. In Fig. 1a) the results are plotted
for each of the family protein structures as gray dashed lines. One can
see that each structure has a slightly different degree of mobility in this
plot. Clearly there are some regions of qualitative agreement such as the
coincidence of minima, highlighted by the average curve in black. It has
previously been demonstrated that these minima serve as hinge sites that
correlate with binding and/or catalytic sites.12 Complimenting this previous
insight, we observe that the largest variations occur not in these hinge sites
but in the mobile regions between such hinges. As shown here, the general
mode shape illustrates the ability of GNM to cluster groups of structures by
their dynamics. Additionally the variations in the degree of modal mobility
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points to the ability of GNM to differentiate between similar structures.
Figure 1b) shows the same average slow mode mobility in black compared
results for each of the non-family structures (dashed lines). Unlike the case
of structures from a family, there is no observable trend for mobility among
non-family structures. Beyond this qualitative observation, we desire to
develop a more quantitative comparison for a large number of structures.

2.3. Quantitative Mode Comparisons

Letting xα and yβ represent the αth and βth eigenvectors of proteins x

and y respectively, one can define the dot product between eigenvectors of
different proteins according to Eq. (3).

P xy
αβ = xα · yβ =

N∑

i=1

xαiyβi (3)

Using the fact that these are eigenvectors, we ignore elements of Eq. (3)
corresponding to the same protein. Thus if k represents the number of
eigenvectors being considered we define a (k × k) matrix for each pair of
proteins in the dataset given by Eq. (4).

kP(x, y) =




P xy
11 P xy

12 · · · P xy
1k

P xy
21 P xy

22 · · · P xy
2k

...
...

. . .
...

P xy
k1 P xy

k2 · · · P xy
kk


 (4)

Thus when we compare L proteins, we can define a large (kL × kL)
matrix comprised of smaller (k×k) matrices, which compare the individual
k lowest modes of each protein against the k slowest modes of the other
proteins in the family set. The amount of correlation data contained here
makes it hard to recognize the correlations between proteins. In order to
succintly compare the data, two correlation metrics are introduced as func-
tions of the number of eigenvectors being compared, denoted by k. The first
correlation, Mk(x, y), defines the maximum dot product between the slow-
est k modes for each pair of structures (Eq. (5)) and the second (Eq. (6))
calculates the sum of the maximum values for each column, j, in the smaller
(k × k) matrix.

Mk(x, y) = max (|kP(x, y)|) (5)

Sk(x, y) =
k∑

j=1

Mj(x, y) (6)
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Two different measures of correlation were introduced because it is not
clear how correlations between different modes in different structures should
be computed a priori. The Mk correlation measure is concerned with iden-
tifying any two highly correlated eigenvectors between the two proteins
without regard for the specific order of these low frequency modes. This
acccounts for the possibility of mode mixing which occurs when the lowest
eigenvector from one protein is highly correlated with an eigenvector from
another protein that is not the lowest frequency mode. In contrast, the
second correlation measure, Sk, focuses on identifying how well the entire
subspace spanned by the low frequency eigenvectors of one protein matches
the subspace spanned by the low frequency eigenvectors of another protein.

By averaging these measures over the set of family structures we can
determine the average amount of correlation a structure has with respect
to a protein family. For a family with lf proteins, the family averaged, Mk

value for the xth protein, 〈Mk(x)〉f , is defined by Eq. (7) along with a family
averaged standard deviation, 〈σM

k 〉f .

〈Mk(x)〉f =
1
lf

lf∑
y=1

Mk(x, y) (7)

Similarly, the family averaged, Sk value for the xth protein, 〈Sk(x)〉f , is
defined in Eq. (8) along with an average standard deviation, 〈σM

k 〉f .

〈Sk(x)〉f =
1
lf

lf∑
y=1

Sk(x, y) (8)

3. Results

3.1. Classification of Protein Families by Dynamics

In order to determine a suitable number of modes to consider we performed
calculations for all values of k ≤ 20. Taking the average of the family
averaged metrics in Eq. (7) and Eq. (8), defines an overall correlation value
for each protein family.

〈〈Mk〉f 〉 =
1
lf

lf∑
x=1

〈Mk(x)〉f (9)

Figure 2 plots these family-averaged values (〈〈Mk〉f 〉 and 〈〈Sk〉f 〉) as
a function of the number of modes, k. The Mk averages when k = 1 are
relatively low (0.67) in the case of FABP. This is due to the fact that using
only one eigenvector from each protein prevents considering the correlation
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Fig. 2. The family averaged metrics calculated for different numbers of modes. a)
〈〈Mk〉f 〉 b) 〈〈Sk〉f 〉/k

between potentially mixed modes. However, as more modes are included,
this situation is quickly remedied. By the time k = 5, the value of 〈〈Mk〉〉
has reached an asymptote and so k = 5 was chosen for the results presented
here. Due to the high average family correlation expressed by M5, this
measure suggests a means to distinguish family from non-family structures.

The trend for 〈〈Sk〉f 〉/k in Fig. 2b) is different, generally reflecting the
a greater disparity for larger values of k. However, as illustrated by FABP,
more than one mode is required to account for potential mode mixing.
The overall lower correlation of Sk when compared to Mk makes Sk more
appropriate for monitoring distinctions within a family. To keep the analysis
consistent with Mk and allow for intrafamily distinctions, we set k = 5 for
the Sk results presented here.

We plot the Mk(x, y) correlation values between each pair of protein
structures using a scheme that runs from no (zero) correlation in blue to
maximal (one) correlation in red. Figure 3 shows this plotted for FABP,
Glob and CytC in panels a) through c) respectively with each row and
column corresponding to a specific protein structure. The proteins identified
by SCOP as family members are plotted first in each case. Similarly, we
plot the Sk(x, y) values with a color scheme ranging from no correlation
in blue to maximal correlation in red. Figure 3d) through f) plots this
correlation for the family members of these three families. Results for the
other two protein families (DHFR and PoBP) are similar and thus not
shown explicitly. As mentioned above, these results are shown for k = 5
although the calculations were repeated for all values of k ≤ 20.

To understand the significance of these plots, consider CytC (Fig. 3c)
as an example. The first 28 rows and columns correspond to the 28 CytC
family proteins and are shown in shades of red to signify their high corre-
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Fig. 3. Correlation measure (k = 5) plots for three protein families. a) M5 for FABP
b) M5 for Glob c) M5 for CytC. The known family members are listed first followed by
other proteins outside the family. In each case there are clear distinctions between family
and non-family structures. High correlation corresponds to red and low correlation is in
blue. For the S5 plots, only the subset corresponding to family members is plotted to
show the intra-family distinctions. d) S5 for FABP e) S5 for Glob f) S5 for CytC.

lation. By contrast, the last 70, non-family structures (rows and columns)
are in shades of greens and yellows indicating low correlation (0.3 to 0.6).
This distinction in color clearly shows a difference between the modes of
proteins within the SCOP family compared to the modes of proteins not
in the family. This trend is observed for each of the five protein families
studied. Such a trend suggests Mk correlations of protein dynamics can be
used as a classifying technique.

The clear distinction between Mk values for proteins in the family versus
non-family proteins makes idenfication of potential candidates for inclusion
in the family relatively simple. There are some proteins in Fig. 3a) and
b) not classified as being part of the SCOP family that share the same
color pattern as those within the family. This indicates a high degree of
correlation between the eigenvectors from these structures and those in the
family implying that they should be considered as part of the family.
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3.2. Identification of Dynamically Similar Proteins

The numerical values behind the similar color patterns are used to identify
these candidate structures with respect to the family average 〈Mk(x)〉f
values defined in Eq. (7). Specifically, we consider a structure as a family
candidate if its family averaged value is within three standard deviations of
the mean family averaged value as defined in Eq. (10).

〈Mk(x)〉f ≥ 〈〈Mk〉f 〉 − 3〈σM
k 〉f (10)

Thus instead of looking at the correlation color patterns illustrated in Fig. 3,
we can plot the family averaged, 〈Mk(x)〉f , values against protein index as
in Fig. 4a). Indicatting the 3σM

5 limits by gray dashed lines quickly identifies
three potential candidates for the FABP family according to the criteria in
Eq. (10). These three candidate structures have protein indices 57, 66 and
68 corresponding to PDBids 1t8v, 1yiv and 2a0a.
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Fig. 4. The family averaged correlation measures for different proteins in a family illus-
trate the candidate and outlier criteria. (a) 〈M5(x)〉f values for each FABP family and
non-family structure. The mean family value, 〈〈M5〉f 〉, is shown by a black dashed line
and the candidate 3σM

5 range is indicated by gray dashed lines. (b) 〈S5(x)〉f values for
each CytC family and non-family structure. The mean family value, 〈〈S5〉f 〉, is shown
by a black dashed line and the outlier σS

5 range is indicated by gray dashed lines.

Table 2 summarizes the mean family averaged values as well as the
number of candidates for each family. In the case of FABP, none of these
three structures are part of the SCOP family. 1t8v is a fairly recent PDB
structure which is annotated as a fatty acid binding protein, but due to its
recent deposition it has not been included in the SCOP database. The other
two structures, 1yiv and 2a0a, are annotated as a myelin protein and dust
mite allergen respectively. Visual inspection of these structures confirms
that they contain the dominant β-barrel structure of FABP structures and

Pacific Symposium on Biocomputing 13:426-437(2008)



October 1, 2007 9:6 WSPC - Proceedings Trim Size: 9in x 6in rader

Table 2. Family averaged correlation metrics and standard deviations

Family 〈〈M5〉f 〉 〈σM
5 〉f Candidates 〈〈S5〉f 〉 〈σS

5 〉f Outliers

FABP 0.9411 0.0484 3 4.1579 0.4818 2
Glob 0.9617 0.0377 10 4.2958 0.5221 17
CytC 0.9804 0.0267 0 4.5958 0.3373 3
DHFR 0.9852 0.0104 0 4.3925 0.4174 0
PoBP 0.9967 0.0083 0 4.4045 0.0710 0

suggests a new potential functional mechanism for these structures, namely
as a fatty acid binding protein.

Analysis of the Glob family indicated ten candiate structures all of
which are recent myoglobin structures which are not included in the SCOP
database. Correct identification of these structures as part of the Glob fam-
ily by comparison of their dynamic modes serves to confirm the applicabil-
ity of this method to distinguish protein families. The other three families:
CytC, DHFR and PoBP do not have any candidate proteins.

3.3. Intrafamily Distinctions

After demonstrating the ability of this method to distinguish family from
non-family structures, the ability to distinguish variations among structures
within a family was also investigated. As can be seen in Fig. 3d) through
f), correlations among structures within a family are not uniform but have
variations. Regions with lower correlation (greens, yellows and oranges in
these panels) correspond to structures that are potential family outliers.
Similar to the definition of candidates in Eq. (10), we define such outliers
as being more than one standard deviation (〈σS

k 〉f ) away from the mean
family averaged Sk value as in Eq. (11).

〈Sk(x)〉f ≤ 〈〈Sk〉f 〉 − 〈σS
k 〉f (11)

Again the actual values of 〈〈SS
5 〉f 〉 and 〈σS

5 〉f used for each of the families
are listed in Table 2. Using this outlier criteria we are able to pick out
structures that may be structurally and/or functionally distinct from within
a family in an automated fashion.

Beginning with CytC as an example case, one can see two green-yellow-
orange bands in Fig. 3c) representing protein indices 18 and 21 that are
less correlated with other CytC structures in general. Figure 4b) plots the
family averaged correlation measures, 〈S5(x)〉f , for each protein along with
the outlier criteria from Table 2. In this plot one can see that all non-
family members fall below the 〈σS

5 〉f level shown with a dashed gray line
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because there were no candidates this family. More importantly, there are
three outliers corresponding to protein indices 18,21 and 27. These indices
refer to PDBids 1fhb, 1nmi and 1yic. Since these outliers have the same
overall family structure, the differences identified by this analysis of the
dynamics are due to some other factor(s). Using similar analysis, FABP
had two outliers: PDBids 1ael and 1tou (indices 4 and 25 in Fig. 3a) and
Glob had 17 outliers identified (protein indices 21–24, 30–35 and 69–75 in
Fig. 3b).

Examining the structures that were deemed to be outliers as a whole we
are able to determine a few reasonable explanations for these differences.
The outliers for FABP and CytC were structures that were determined by
NMR rather than X-ray crystallography. Although these were not the only
NMR structures in the datasets representing these families, it suggests that
structures that are not forced to conform to the Ramachandran phi-psi plot
may adopt a “looser” structure with measurable differences in dynamics.
Further supporting this claim is the fact that one of the CytC outliers,
1nmi, is an averaged NMR structure which would not necessarily reflect
the true dyanamics of the CytC family. The 17 outliers in the Glob family
correspond to all of the structures of one type of globin: leghemoglobin
from a specific species: yellow lupin. In this case, these structures serve
to form a sub-family within Glob that can be seen visually by the green-
yellow bands in Fig. 3b).DHFR and PoBP had no outliers according to
the criteria of Eq. (11). However examination of the most varied structures
support the claims of sub-family organization by speciation and differences
due to ligand-binding state (data not shown).

4. Conclusions

We have demonstrated an automatic family classification scheme for protein
structures based upon their computed dynamics. Comparisions using the
low frequency eigenvectors of structures accurately assigns these structures
to a unique protein family. Using this precomputed data, Eq. (10) provides
a measure for assigning newly determined structures as candidates to a
particular protein family.

In addition, this method provides a quantitative measure of the differ-
ences within protein families. These differences can be investigated in terms
of outliers or most dynamically different as indicated in the text. Examina-
tion of the outliers indicates that differences within the familes can be at-
tributed to some combination of differences in ligand-binding state, method
of structural determination and sequence. These factors are an initial list of
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possible explanations, and more research on a larger set of structures needs
to be done in order to obtain a more complete understanding of what these
variations in dynamics correspond to universally.

Finally we introduce a new direction for protein classification schemes
that is both automatic and relies upon the dynamics of protein structures.
In the version presented here, the comparisons were only made for struc-
tures that had the same number of residues. Admittedly, this restricted
the number of families this analysis is applicable to. However, it is clear
that dynamics can be used to make meaningful distinctions both between
and within protein families. In the future we anticipate generalizing this
method to allow comparisons between structures having different numbers
of residues. It is expected that such an extension will allow for more family
comparisons and thus more general results regarding the relationships be-
tween protein structures, dynamics and functions to surface. This method
can also provide an automatic classification scheme to aid in the iden-
tification of functions for so called “hypothetical proteins” produced by
structural genomics initiatives.
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