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We describe an algorithm for global alignment of multiple protein-protein interac-

tion (PPI) networks, the goal being to maximize the overall match across the input

networks. The intuition behind our algorithm is that a protein in one PPI network

is a good match for a protein in another network if the former’s neighbors are

good matches for the latter’s neighbors. We encode this intuition by constructing

an eigenvalue problem for every pair of input networks and then using k-partite

matching to extract the final global alignment across all the species. We com-

pute the first known global alignment of PPI networks from five species: yeast,

fly, worm, mouse and human. The global alignment immediately suggests func-

tional orthologs across these species; we believe these are the first set of functional

orthologs that cover all the five species. We show that these functional orthologs

compare favorably with current sequence-only orthology prediction approaches, in-
cluding better prediction of orthologs for some human disease-related proteins.

Supplementary Information: http://groups.csail.mit.edu/cb/mna

1. Introduction

Over the past few years, the use of high-throughput experimental

techniques15,12 for discovering protein-protein interactions (PPIs) has led to

a tremendous increase in the corpus of available PPI data in various species.

A useful representation of this data is as a network: each node in such a

network corresponds to a protein and an edge between two nodes indicates

that the corresponding proteins interact. Analysis of such PPI networks has

yielded some deep biological insights9. In this paper, we explore methods

for comparing PPI networks across species. Such comparative analysis has

proven to be a valuable tool. It has led, for example, to the identification

of conserved functional components across various species, complementing

traditional sequence-only phylogenetic analysis. It also helps in identifying

errors in experimental PPI data and in transferring annotation across species.
∗Corresponding author. Also in the MIT Dept. of Mathematics.
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We also explore the use of such comparative analysis in improving orthol-

ogy predictions across species. Identifying cross-species gene correspondences

(orthologs) is a problem of fundamental biological importance— it is crucial

for transferring insights and information across species.

Contributions

One of the main contributions of this paper is the first algorithm for global

alignment of multiple protein interaction networks. We perform a global

alignment of PPI networks from five species: yeast, fly, worm, mouse, and

human. We pursue the following intuition: a node in a PPI network is a

good match for a node in another network if its neighbors are good matches

for the neighbors of the other node. To formalize the intuition, we construct

a set of eigenvalue problems in an approach similar to Google’s PageRank18

algorithm and then use k-partite matching to compute the final alignment.

The multiple network alignment directly leads to the first comprehensive

estimates of functional orthologs that incorporate both sequence and PPI

data and cover all the five species mentioned previously. These estimates

are more comprehensive than the two most commonly used orthology sets:

Homologene5 and Inparanoid16. Our list covers more genes than Homolo-

gene. Unlike Inparanoid, which considers pairs of species at a time, our

method analyzes data from all input species simultaneously.

We also introduce a novel approach, functional coherence, for evaluating

orthology predictions. Currently such predictions are evaluated by manually

analyzing selected sets of orthologs. In contrast, our automated approach

measures the functional similarity within each set of orthologous proteins

and computes an aggregate score. Using it, we demonstrate that our algo-

rithm makes predictions with slightly better overall quality than Homologene

and Inparanoid. Also, further analysis indicates that some of the improved

predictions from our method include disease-related proteins.

Related Work

PPI Network Alignment: The protein network alignment problem can be

formulated either as a global or a local network alignment problem. Much

of the previous work3,11,9 in the field has focused on the problem of local

network alignment (see Sec. 2). In contrast, we focus on the global alignment

problem. Recently, we have proposed the first algorithm for pairwise global

alignment of PPI networks. The multiple network alignment algorithm we

present in this paper is, we believe, the first algorithm for global alignment of

multiple protein networks. While this paper builds upon some of the methods

presented in our previous work, there are also many significant differences

between the two problems and the corresponding algorithms (see Sec. 2).

Pacific Symposium on Biocomputing 13:303-314(2008)



Functional Ortholog Prediction: Currently, orthology prediction is usually

done by using sequence-similarity information between various genes to esti-

mate sets of genes that have descended from a common ancestor. A key chal-

lenge here is to distinguish between orthologs and paralogs, the latter being

genes that are created by duplication after the two species have diverged.

We briefly describe here two commonly used orthology prediction meth-

ods: Inparanoid and Homologene (see Chen et al.6 for more). Inparanoid16

computes orthologs between pairs of species by making explicit assumptions

about the relative sequence similarity scores between orthologs and paralogs.

One of its drawbacks is that it is limited to pairwise orthology estimates, i.e.,

it cannot analyze data from multiple species simultaneously. Homologene5

is an approach that can simultaneously compute orthologs across multiple

species by using sequence-similarity scores to construct a tree of proteins

and, based upon certain heuristics, grouping them into clusters of ortholo-

gous genes.

Recently, efforts have been made to integrate PPI data into the orthol-

ogy prediction process, to identify sets of proteins that perform the same

function. Bandyopadhyay et al. 2 have described the use of local network

alignment results in identifying functional orthologs between yeast and fly.

In previous work, we have described a two-way global alignment algorithm

which directly suggests functional orthologs between yeast and fly; these pre-

dictions compare favorably with Bandyopadhyay et al.’s. This paper is the

first, we believe, to present functional orthologs across multiple species. By

integrating data from multiple species simultaneously, we should be able to

improve upon predictions made from pairs of species.

2. Problem Formulation

The input to our algorithm consists of two or more protein interaction net-

works (one per species). Each input network can be represented as an undi-

rected graph G = (V,E) where V is the set of nodes and E is the set of edges.

Furthermore, a confidence measure w(e) (0 < w(e) ≤ 1) may be associated

with each edge e in E. Additionally, the input may also consist of pairwise

node similarity measures between nodes from the different networks. In this

paper, these similarity measures are BLAST Bit-values, but other scores

(e.g., synteny-based scores10) can also be used. Given these inputs, our goal

is to find the best overall match (i.e, optimal global alignment) between the

input networks. This will directly lead to a list of functional orthologs.

Local vs. Global Network Alignment: Network alignment problems

vary in the scope of the input (two vs. multiple networks), and the kind
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Figure 1: Cartoon comparing global and local network alignments: The local

network alignment between G1 and G2 specifies three different alignments; the mappings

for each are marked by a different kind of line (solid, dashed, dotted). Each alignment

describes a small common subgraph. Local alignments need not be consistent in their

mapping– the points marked with ‘X’ each have ambiguous/inconsistent mappings under

different alignments. In global network alignment, the maximum common subgraph is

desired. In both cases, there are ‘gap’ nodes for which no mappings could be predicted

(here, the nodes with no incident black edges are such nodes).

of node-mapping desired. In general, the goal in all such problems is to

identify one or more mappings between the nodes of the input networks and,

for each mapping, the corresponding set of conserved edges. A mapping may

be partial, i.e., it need not be defined for all the nodes in the networks. Each

mapping implies a common subgraph between the input networks: when

protein a1 from network G1 is mapped to proteins a2 from G2 and a3 from

G3, then a1, a2, and a3 refer to the same node in the common subgraph;

the edges in the common subgraph correspond to the conserved edges. A

key difference between our approach and many previous network alignment

approaches is in the kind of mapping desired.

Much of the previous work3,11,9 has focused on local network alignment

(LNA), i.e., on finding local regions of isomorphism (i.e., same graph struc-

ture) between the input networks. Each such region implies a mapping in-

dependently of others. Many independent, high-scoring local alignments are

usually possible between two input networks; in fact, the corresponding lo-

cal alignments need not even be mutually consistent (i.e., a protein might be

mapped differently under each alignment; see Fig. 1).

In contrast, we focus on the global network alignment (GNA) problem.

The aim in GNA is to find the best overall alignment between the input

networks. The mapping in a GNA should cover all the input nodes: each

node in an input network is either matched to one or more nodes in other

network(s) or explicitly marked as a gap node (i.e., with no match in another

network). In contrast, a LNA algorithm outputs multiple, independent map-
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pings, each corresponding to a local region of similarity. Furthermore, these

partial mappings may be mutually inconsistent. The mapping corresponding

to a GNA is also required to be transitive: if a1 in G1 is mapped to a2 in G2

and a2 is mapped to nodes a3, a
′
3 in G3, then a1 should also be mapped to

a3, a
′
3. Our goal in GNA then is to find a comprehensive mapping between

the nodes of the input networks such that the size of the single correspond-

ing common subgraph is maximized. Our previous work17 contains a more

detailed comparison of the LNA and GNA problems.

A key difference between the multiple-network GNA (the focus of this

paper) and pairwise GNA (the focus of our previous work17) is in the scope

of the mapping desired. In the latter, we required that a node may be

mapped to at most one node in the other network, the motivation being to

find the best match for a node. In contrast, for the multiple networks case

we allow for a node to map to multiple nodes in another network. This

is necessary because gene duplication, mutation, and deletion events might

make it impossible to find a valid one-to-one, transitive mapping between

proteins across an arbitrary collection of species.

3. Algorithm

To describe a global alignment between input networks, we need to specify a

node mapping between the input networks and the corresponding common

subgraph. We focus on the computing the node mapping, since the subgraph

can be easily computed once the former is known.

Our algorithm works in two stages. First, given k input networks, we

create a k-partite graph H. Each of its k parts contains nodes from one of the

input networks. Edges are only allowed between nodes from different parts.

The presence of an edge eij implies that node i (from G1) can potentially

be mapped to j (from G2); the edge-weight Rij indicates the strength of the

potential match. In the second stage, we perform k-partite matching on H

to group nodes into clusters. All nodes in a cluster are then mapped to each

other in the corresponding GNA.

First Stage (Creating the k-partite graph): We start with the k input

PPI networks and sequence similarity scores between the nodes. For every

pair of input networks, we compute a score for every possible pairing between

the nodes of the two networks. Let Rij (Rij ≥ 0) be the score for the protein

pair (i, j) where i is from network G1 and j is from network G2. Intuitively,

Rij should capture how good a match i and j are: higher Rij implies a better

match. In the second stage, we will use these scores to guide our algorithm

towards the optimal k-partite matching of H.
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Figure 2: Intuition behind the First Stage of the algorithm: Here we show, for

a pair of small, isomorphic graphs how the vector of pairwise scores (R) is computed (see

Eqn. 1). Only a partial set of constraints is shown here. Here we show the vector of scores

R reshaped as a table, for ease of viewing (empty cells indicate a value of zero). Observe

that high values of R (e.g., Rcc′ or Rbb′ ) correctly indicate that the respective pairings
represent good matches.

To compute R (the vector of all Rijs for G1 and G2) we construct an

eigenvalue problem. First consider the case when no sequence similarity

scores are available (i.e., Rij depends only on G1 and G2’s topologies). We

require that Rijs satisfy the following system of constraints (for all i, j):

Rij =
∑

u∈N(i)

∑

v∈N(j)

1

|N(u)||N(v)|
Ruv i ∈ V1, j ∈ V2 (1)

where N(a) is the set of neighbors of node a, |N(a)| is the size of this set, and

V1 and V2 are the sets of nodes in G1 and G2, respectively. These constraints

can be re-written as an eigenvalue equation:

R = AR

A[i, j][u, v] = 1
|N(u)||N(v)|

(2)

where A is a |V1||V2|×|V1||V2| matrix and A[i, j][u, v] refers to the entry at the

row (i, j) and column (u, v) (the row and column are doubly-indexed). The

value of R we are interested in is the principal eigenvector of A. Typically,

A is a very large matrix (about 108 × 108 for fly-vs.-yeast GNA). However,

A is a stochastic matrix14 and both A and R are very sparse, so R can be

efficiently computed by iterative techniques, like the power method 14.

The intuition behind these equations is that they require that the score

Rij for any match (i, j) be equal to the total support provided to it by each

of the |N(i)||N(j)| possible matches between the neighbors of i and j. In

return, each match (u, v) must distribute back its score Ruv equally among
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the |N(u)||N(v)| possible matches between its neighbors (see Fig. 2 for an

example). We note that these equations also capture non-local influences on

the score Rij : it depends on the score of neighbors of i and j and the latter,

in turn, depend on the neighbors of the neighbors and so on. Also, these

equations can be extended to the weighted-graph case very naturally17.

It is straightforward to incorporate sequence similarity information, e.g.

BLAST scores, into this model. Let Bij denote the score between i and

j; for instance, Bij can be the Bit-Score of the BLAST alignment between

sequences i and j. Let B be the vector of Bijs. We first compute E, the

normalized version of B: E = B/|B|. The eigenvalue equation is then

modified to (this equation can also be solved by iterative techniques):

R = αAR + (1 − α)E where 0 ≤ α ≤ 1 (3)

Changing α lets us control the weight of the network data (relative to

sequence data) in this computation. For example, α = 0 implies no network

data will be used, while α = 1 indicates only network data will be used.

Second Stage (K-partite matching): We construct the k-partite graph

H as follows: for any pair of nodes i and j from different PPI networks, we

add an edge eij to H if Rij > 0, and set the edge-weight to Rij . We now

find a k-partite matching of H (recall that each part corresponds to nodes

from one PPI network). The matching must be transitive, i.e, if i is matched

to j and j is matched to l, then i must be matched to l. Furthermore, we

aim to match nodes connected by high-scoring edges. More precisely, our

goal is to find the maximum-weight k-partite matching of H where each set

of matched nodes may contain upto r nodes from each of the k parts. Here,

r is a user-defined parameter (r ≥ 1). Allowing a one-to-many mapping lets

us express that, for example, a particular fly protein has no corresponding

yeast protein but two corresponding human proteins. In our previous work

on two-way network alignment, this flexibility was not present.

The standard k-partite matching problem formulation requires that a

node can match at most one node in each of the other k − 1 parts. Our

formulation thus generalizes this problem (the standard version corresponds

to r = 1). However, the classical problem is already known to be NP-Hard13,

so our formulation is NP-Hard as well. Thus, it is unlikely that an exact

solution for it can be found efficiently. Here, we present an approach that

computes the matching by identifying a seed match and extending it:

• While the k-partite graph H has any edges left:

(1) Select the edge (i, j) with the highest score (let i be from G1 and j from

G2). Initialize a new match-set with i and j as its initial members.
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(2) In every other species (G3, . . . , Gk), if a node l exists such that (A)

Ril and Rjl are the highest scores between l and any node in G1 and

G2, respectively and, (B) the scores Rik ≥ β1Rij and Rjk ≥ β1Rij ,

add it to the set. These set of nodes form the primary match-set; it

has at most one node from each species.

(3) Add upto r− 1 nodes from different parts of the graph to the primary

match-set. Suppose u (from Gx) is in the primary match-set. Then,

a node v (from Gx) is added to the set if Rvw ≥ β2Ruw for each node

w (w 6= u) in the primary set.

(4) Remove from H all the nodes in this match-set and their edges.

Here, the parameters r, β1, β2 are user-defined (0 < β2, β1 < 1); we chose

their values such that the functional coherence (see Sec. 4.1) of the resulting

sets of matched nodes was maximized.

Given a mapping between the nodes of the input networks, the corre-

sponding common subgraph in the GNA can be identified relatively easily.

For example, if a1 is aligned to a2, and b1 is aligned to b2, the output sub-

graph should contain an edge between the corresponding nodes if and only

if both the input networks contain supporting edges.

4. Results

Datasets: We constructed PPI networks for five species: S. cerevisiae, D.

melanogaster, C. elegans, M. musculus, and H. sapiens. These networks

were constructed by combining data retrieved from the DIP8, BioGRID4

and HPRD7 databases. The relative coverage of the PPI data varied heavily;

the number of edges per species were: 36387 (human), 31899 (yeast), 25831

(fly), 4573 (worm), and 255 (mouse). Sequence data for the various proteins

was retrieved from Ensembl and the BLAST Bit-values were used as the

score of sequence similarity between input proteins. Even in species with

relatively high PPI coverage (e.g., yeast), there were many proteins that did

not occur in the PPI network. To ensure that these proteins were included

in the functional ortholog lists, we added singleton (disconnected) nodes

corresponding to each such protein in the respective PPI networks, thus

using only sequence data.

Global Alignment of Yeast, Fly, Worm, Human and Mouse net-

works: When performing the alignment, we chose the following parameter

settings: α = 0.6, r = 5, β1 = 0.1, β2 = 0.1. These settings correspond to the

node mapping with the best functional coherence (see Sec. 4.1).

We analyzed the common subgraph implied by the multiple alignment.

The common subgraph has 1663 edges that are supported by edges in at
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least two PPI networks and 157 edges that are supported by atleast three

networks. There are very few edges with support from four or more species;

however, this is not surprising since the worm and mouse networks are very

small. The size of the common subgraph is relatively small (only about 5%

of human PPI network). One reason for the small overlap between the PPI

networks, we believe, is that the current PPI data is both incomplete and

noisy. As the quality and quantity of data improves, this overlap should in-

crease further. Even with this incomplete data, we believe that the currently

computed (partial) set of node-pairings is robust. In previous work17, we

have performed experiments which suggest that the eigenvalue formulation

is robust to errors in PPI data, especially when sequence data is provided.

A naive approach to multiple network alignment would use current

sequence-based orthology predictions to perform the mapping; however, by

incorporating both sequence and network data, our algorithm performs much

better. The common subgraph implied by Homologene’s sequence-only map-

ping contains only 509 edges with support in two or more species and 40 edges

with support in three or more species. Thus, the addition of network topol-

ogy in computing the mappings increases the size of the common subgraph

by over three-fold (from 509 to 1663). A direct comparison can not be per-

formed against Inparanoid orthology lists because the Inparanoid’s pairwise

orthology lists can not be used for multiple network alignment. Instead,

we evaluated the total number of conserved edges implied by Inparanoid in

10 (= (52)) pairwise network alignments. Even though this final number,

1172, likely over-counts some conserved edges, it is significantly less than the

number of conserved edges implied by our algorithm.

The common subgraph in the global alignment consists of multiple com-

ponents, many of which are significantly larger than those from local align-

ment methods. Also, unlike the latter, these subgraphs correspond to a

variety of topologies: linear, complex-like, tree-shaped, etc. Some of them

are also enriched in proteins involved in a specific function (see Supp. Info.

for details).

4.1. Functional Coherence: Evaluating Orthology Predictions

We propose a method for scoring the quality of an ortholog list (i.e., a list

which specifies sets of orthologous proteins across two or more species). The

method is motivated by the lack of automated, direct measures of quality

of orthology lists. Currently, the most common strategy for comparing two

orthology lists is to identify pairs of proteins which are grouped differently

under the two lists and perform a manual, case-by-case analysis of some
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pairs. Because of the manual approach, a comprehensive evaluation can

be time-consuming. Recently, Chen et al.6 have described a computational

approach where they compare many ortholog lists to identify the list(s) with

the best overall agreement with the remaining ones. However, this approach

does not measure if the orthology predictions are biologically plausible.

We aim to find a direct, automated measure of ortholog quality by using

functional information. The intuition behind our method is simple: given

an ortholog list, we select the sets of orthologs that have many proteins with

known function. For each set, we collect all the Gene Ontology1 (GO) terms

corresponding to proteins in it. We evaluate if the set is functionally coher-

ent, i.e., if the GO terms describe similar functions. Finally, an aggregate

score (across all sets) is computed. Higher scores imply higher coherence, in-

dicating that the ortholog list groups proteins with known function together.

In Supp. Info., we describe the algorithm more precisely.

In Supp. Info., we describe some experiments which demonstrate that

the functional coherence scoring scheme does capture the desired biological

intuition. This scoring scheme allows us to measure how similar the functions

of proteins mapped to the same ortholog set are. One potential problem with

this approach is that there might not be enough proteins for which GO terms

are available to compute such scores. However, for both Homologene and

our functional ortholog predictions, there are over 1500 sets of orthologous

proteins such that functional information is available for at least 80% of the

proteins in the set. We believe that this degree of coverage is sufficient to

generate statistically reliable estimates of functional coherence. In Supp.

Info., we also describe in greater detail these sets of orthologs: their sizes,

group-wise coherence score etc.

Functional Orthologs from Multiple Network Alignment: In this

paper, we present the first known set of functional orthologs (FO) across five

species: yeast, fly, worm, mouse and human. The FO mapping is simply the

node mapping computed by our algorithm (see Supp. Info. for the list of

FOs). Of the 86932 proteins from the five species, 59539 (68.5%) of the pro-

teins in our list were matched to atleast one protein in another species (i.e.,

had at least one FO). In contrast, Homologene has lower coverage, predicting

at least one ortholog for only 33434 (38.5%) proteins. Also, the functional co-

herence of our predicted functional orthologs is comparable with that of Ho-

mologene and Inparanoid predictions. The functional coherence scores are:

0.220 (our predictions), 0.223 (Homologene) , and 0.206 (mean score across

Inparanoid’s pairwise ortholog sets). Homologene’s slightly better score may

partly be due to its use of data from many species (more than 5). Rather

Pacific Symposium on Biocomputing 13:303-314(2008)



than relying excessively on sequence-score based heuristics, our method uses

functional information (from PPI networks) to predict FOs— these scores

suggest that our approach is a simpler and better way of capturing func-

tional similarities between proteins. At the same time, our predicted FOs do

not deviate drastically from sequence-only predictions: 66% of protein-pairs

grouped together by Inparanoid are also grouped together by our approach.

Our predicted FOs have certain limitations. Our approach relies on PPI

data to identify functionally related proteins. For many proteins, however,

no PPI data is available. In such cases, the algorithm’s ability to identify

functionally-related sets of proteins may suffer. However, the expected in-

crease in the availability of PPI data should help overcome this limitation.

Case-study: Functional Orthologs of two Human Disease-related

Proteins: A key application of this work is in a more comprehensive pre-

diction in of orthologs of human disease-related genes in model organisms.

An accurate understanding of which genes in, say, fly are relevant in human

diseases would be of significant value in directing scientific work. The human

gene DHRC7 has been linked to the Smith-Lemli-Opitz syndrome. Homolo-

gene predicts only a mouse homolog for this gene. Our algorithm predicted

B0250.9 (from worm), dLBR (from fly) and YNL280C (from yeast) as or-

thologs. Each of these proteins has been observed to perform a function

similar to that of the human gene (sterol reductase). Similarly, B3GN3 is a

human gene observed to be differentially expressed in colon cancer. Homolo-

gene fails to find a fly homolog of this gene; our algorithm predicts the fly

gene brn as its homolog. This prediction is supported by the fact that both

the proteins are galactosyltransferases.

Another application of the proposed algorithm is to predict a comprehen-

sive human PPI network by combining PPI data from other species. Analysis

of the connections of disease-related proteins in this large network may offer

improved insights about the disease mechanisms and possible drug targets.

5. Conclusion

In this paper, we focus on the global network alignment problem and present

an algorithm for computing the global alignment of multiple protein inter-

action networks. The algorithm is simple, yet powerful— it provides users

the ability to control the relative weights of the sequence and network data

in the alignment. Using the algorithm we compute the first known global

alignment of PPI networks from five species: yeast, fly, worm, mouse and

human. The results provide valuable insights into the conserved functional

components across the various species. They also enable us to predict func-
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tional orthologs between these five species; the quality of these functional or-

thologs compares favorably with current sequence-only functional orthologs.

Our algorithm also has some parallels with Google’s PageRank algorithm,

specifically in the construction of eigenvalue problem(s) (see Supp. Info.).

In future work, we intend to more deeply explore the differences and

similarities between our predicted functional orthologs and currently used

ortholog lists. We also intend to improve the algorithm by exploring better

algorithms for k-partite matching. Finally, we plan to explore the application

of this algorithm to other biological and non-biological network data.
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