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Recent advances in bioinformatics promote drug-design methods that aim to reduce side-effects.
Efficient computational methods are required to identify the optimal enzyme-combination (i.e.,
drug targets) whose inhibition, will achieve the required effect of eliminating a given target
set of compounds, while incurring minimal side-effects. We formulate the optimal enzyme-
combination identification problem as an optimization problem on metabolic networks. We
define a graph based computational damage model that encapsulates the impact of enzymes
onto compounds in metabolic networks. We develop a branch-and-bound algorithm, named
OPMET, to explore the search space dynamically. We also develop two filtering strategies to
prune the search space while still guaranteeing an optimal solution. They compute an upper
bound to the number of target compounds eliminated and a lower bound to the side-effect re-
spectively. Our experiments on the human metabolic network demonstrate that the proposed
algorithm can accurately identify the target enzymes for known successful drugs in the litera-
ture. Our experiments also show that OPMET can reduce the total search time by several orders
of magnitude as compared to the exhaustive search.

1. Introduction
In pharmaceutics, the development of every drug mainly involves target identification,
validation and lead inhibitor identification 9. Traditional drug discovery approaches
focus more on the efficacy of drugs than their toxicity (untoward side effects). Lack
of predictive models that account for the complexity of the inter-relationships between
the metabolic processes often leads to drug development failures. Toxicity and/or lack
of efficacy can result if metabolic network components other than the intended target
are affected. The current focus is on identification of biological targets (gene products,
such as enzyme or protein) for drugs, which can be manipulated to produce the desired
effect (of curing a disease) with minimum disruptive side-effects 23,27.

Enzymes catalyze reactions, which produce metabolites (compounds) in the
metabolic networks of organisms. Enzyme malfunctions can result in the accumula-
tion of certain compounds which may result in diseases. We term such compounds
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as Target Compounds and the remaining compounds as Non-Target compounds. For
instance, the malfunction of enzyme phenylalanine hydroxylase causes buildup of the
amino acid, phenylalanine, resulting in phenylketonuria 26, a disease that causes mental
retardation. It is, therefore, needed to locate the optimal enzyme set which can be ma-
nipulated by drugs to prevent the excess production of target compounds with minimal
damage. Formally, we define damage of inhibiting an enzyme (or a set of enzymes) as
the number of non-target compounds whose production is stopped by the inhibition of
that enzyme (or set of enzymes).

Given a metabolic network and a set of target compounds, we consider the prob-
lem of identifying the set of enzymes whose inhibition eliminates the target compounds
and incurs minimum damage. Evaluating all enzyme combinations is not feasible as
the number of such combinations increases exponentially with the number of enzymes.
Hence, more efficient computational methods are needed. In our earlier work 25, we
developed a heuristic solution to this problem. Here, we propose OPMET, an Optimal
enzyme drug target identification algorithm based on Metabolic networks, to solve this
problem optimally. This paper has two main contributions. 1) We propose a branch-
and-bound algorithm, named OPMET, to explore the search space. Based on the dam-
age model, OPMET dynamically updates the priorities as the search space is explored.
2) We develop two filtering approaches which are combined with the OPMET to prune
the search space while still guaranteeing an optimal solution.

Our experiments on the human metabolic network demonstrates that the proposed
algorithm can accurately identify the target enzymes for known successful drugs in the
literature. Our experiments also show that our methods reduce the total search time
by several orders of magnitude as compared to the exhaustive search. OPMET prunes
91.6 % of the search space. It generates the optimal enzyme combination within the
exploration 0.005 % of the search space on average.

The rest of the paper is organized as follows. Section 2 formally defines the prob-
lem and describes our proposed cost model. Section 3 presents the proposed OPMET
algorithm with filtering strategies. Section 4, discusses experimental results. Section 5
discusses the related work. Section 6 concludes the paper.

2. Problem definition
We develop a graph based representation that captures the interactions between reac-
tions, compounds, and enzymes. Our graph representation is a variation of the boolean
network model 24,16. R, C, and E denote the set of reactions, compounds, and en-
zymes respectively. The vertex set consists of all the members of R ∪C ∪E. A vertex
is labeled as reaction, compound, or enzyme based on the entity it refers to. Let VR,
VC , and VE denote the set of vertices from R, C, and E. A directed edge from vertex
x to vertex y is then drawn if one of the following three conditions holds: (1) x rep-
resents an enzyme that catalyzes the reaction represented by y. (2) x corresponds to a
substrate for the reaction represented by y. (3) x represents a reaction that produces the
compound mapped to y.
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Figure 1. A graph constructed for a hypothetical
metabolic network with three reactions R1, R2, and
R3, two enzymes E1 and E2, and nine compounds
C1, · · · , C9. Circles, rectangles, and triangles de-
note compounds, reactions, and enzymes respectively.
Here, C4 (shown by double circle) is the target com-
pound. Dotted lines indicate the subgraph removed
due to inhibition of enzyme E2.

Figure 1 illustrates a small hypotheti-
cal metabolic network. In this figure, C4

is the target compound (i.e., the produc-
tion of C4 should be stopped). In order
to stop the production of C4, R2 has to
be prevented from taking place. The ob-
vious solution is to disrupt one of its cat-
alyzing enzymes (E2 in this case). An-
other is by stopping the production of one
of its reactant compounds (C2 or C3 in
this case). If we stop the production of
C2, we need to recursively look for the
enzyme which is indirectly responsible
for its production (E1 in this case). Thus,
the production of the target compound
can be stopped by manipulating eitherE1

or E2.
Figure 1 shows the disruption of E2 and its effect on the network. Inhibiting E2 re-

sults in the knock out of compounds C5, C8 and C9 in addition to the target compound,
C4. Note that the production of C7 is not stopped since it is produced by R1 even after
the inhibition of E2. We define the number of non-target compounds knocked out as
the damage, the manipulation of an enzyme set causes to the metabolic network. In this
case, the damage of inhibiting E2 is 3 (i.e., C5, C8 and C9). The damage of inhibition
of E1 is 2 (i.e., C2 and C5). The important observation is that E1 and E2 both achieve
the effect of disrupting the target compound, C4. Hence, E1 and E2 are both potential
drug targets. However, E1 is a better drug-target than E2 since it causes lesser damage.

Formally the optimal enzyme combination identification problem is: “Given a set
of target compounds T (T ⊂ C), find the set of enzymes X (X ⊆ E) with minimum
damage, whose inhibition stops the production of all the compounds in T .”

For simplicity, we assume that the input compounds to all reactions are present in
the network and that there are no external inputs. Different enzymes and compounds
may have varying levels of importance in the metabolic network. We consider all the
enzymes and compounds to be of equal importance. This assumption can be relaxed
by assigning weights to enzymes and compounds based on their role in the network.
Also, we are not incorporating back-up enzyme activities 20 in this paper. This can be
achieved by creating vertices for sets of enzymes in our graph representation. However,
we do not discuss these extensions in this paper.

3. Proposed methods
This section proposes OPMET, a branch and bound algorithm that considerably reduces
the number of possible combinations to be searched while still guaranteeing to find an
optimal solution. Section 3.1 describes the basic branch and bound algorithm. Our
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prioritization (Section 3.2) and filtering (Section 3.3) strategies further improve this
algorithm by reducing the search space.

3.1. State space and basic search strategy of OPMET
Let E = {Ei| ∀i, 1 ≤ i ≤ m} denote the set of enzymes for a metabolic network.
The search space is modeled as a tree structure. Every node of this tree corresponds to
a state in the search space and it is represented by a 4-tuple ([eπ1 , eπ2 , · · · , eπm

], k,
d, remove). Here, π1, · · · , πm is a permutation of 1, 2, · · · , m. The first parameter
corresponds to the state of all the enzymes (i.e., eπi

corresponds to enzymeEi). eπi
= 1

if Ei is inhibited. Otherwise, eπi
= 0. The parameter k indicates that the first k

enzymes are considered at that search state. The decision to inhibit or not inhibit has
been fixed for enzymes from 1 to k − 1 and we now set eπk

= 1 and eπi
= 0, ∀i,

k < i ≤ m. The damage incurred due to inhibited enzymes at that state is represented
by d. The final parameter, remove, is a boolean variable. It takes value True if the
inhibited enzymes stop the production of all the target compounds. Otherwise, it is
set to False. We call a node with remove = True as a true node, and a node with
remove = False as a false node.
OPMET Algorithm: We start with the root node ([0, 0, · · · , 0], 0, 0, False) indicating
that all enzymes are present in the network. As the search space is traversed, we keep
the true node with the minimum damage found so far as the current true solution and
store the associated damage value as D, the global cut-off threshold. D is initialized to
the number of compounds in the network. At any point, we have an active set of nodes
A, stored in a stack structure. A contains the nodes currently being considered. Let
node N = ([eπ1 , eπ2 , · · · , eπm

], k, d, remove) be the node on top of this stack (i.e.,
the node to be evaluated). There are three cases:
• Case 1: N has damage d > D. In this case we prune the subtree rooted at N . We

then backtrack.
• Case 2: N is a true node with damage d < D. In this case, we save N as the

current true solution and update D with the damage value of N . We then backtrack.
• Case 3: N is a false node with damage d < D. In this case, we insert N in

the active set A for backtracking purposes. We then create a new node N ′ by setting
eπk+1 = 1 in N (i.e., we inhibit the enzyme Eπk+1 ). The resulting node is N ′ = ([eπ1 ,
eπ2 , · · · , eπm

], k+1, d′, remove′). The node N ′ is evaluated in the next step similarly.
Backtracking involves following steps. First we pick the top node from the active

nodes stack A. Let N ′ = ([e′π1
, e′π2

, · · · , e′πm
], k′, d′, remove′) denote this node. We

then set eπk′+1
= 0 (indicating the node we are backtracking from) and eπk′+2

= 1
in N ′ (i.e., we inhibit the enzyme eπk′+2

). The resulting node becomes the node to
be evaluated in the next step. The first two cases above stop expanding the tree at the
current node. The former one implies that the current node is a possible solution. The
latter one implies that the current node incurs too much damage to lead to a possible
solution. The third case happens when the current node does not stop production of all
the target compounds, but the damage is lower than the damage of the current best solu-
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tion. Such nodes may produce a possible solution with the inhibition of more enzymes.
Thus, they need to be explored further to ensure that we find an optimal solution. The
search terminates when there are no more nodes to explore. At this stage, the current
true solution is the optimal solution.

3.2. Improving the OPMET algorithm by enzyme prioritization
In order to benefit from the pruning power of OPMET cases 1 and 2 (see Section 3.1),
we need to compute the permutation π1, · · · , πm carefully. The earlier we place the
enzymes in the optimal solution in this permutation, the better, as OPMET reaches
the optimal solution earlier under such an ordering. Thus, reaching the solution with
the smallest possible damage value (i.e., the optimal solution) increases the chances of
pruning the remaining nodes of the search tree. This section develops a cost model to
prioritize the enzymes dynamically.

3.2.1. Cost model
We develop a cost model as the basis for enzyme ordering in OPMET. This cost model
takes both the observed and potential damage resulting from the inhibition of an enzyme
set into the cost computation. For each enzyme Ei ∈ E, we compute a weight W (Ei)
as W (Ei) = 0 if Ei inhibited and W (Ei) = 1 otherwise. We assign fractional weights
between 0 and 1 to the reaction and compound nodes and the edges. Intuitively, the
weight of a node or edge denotes the rate at which that node or edge appears in the
network. The weight of each node is calculated as follows:
• Cost Rule 1: Let Rj be a reaction node. Let wi, 1 ≤ i ≤ k, denote the weights

of the incoming edges to Rj . We compute the weight of Rj as W (Rj) = minki=1{wi}.
This is intuitive since a reaction takes place only if all the inputs are present.
• Cost Rule 2: Let Cj be a compound node. Let wi, 1 ≤ i ≤ k, denote the weights

of the incoming edges to Cj . We compute the weight of Cj as W (Cj) = 1
k

∑k
i=1{wi}.

This weight evaluates to zero only if all the reactions that produce Cj stops.
We define the weight of an edge as the weight of the node for which it is the outgoing

edge. In order to compute the cost ofEi, we set the weight ofEi to zero (i.e.,W (Ei) =
0). The weights of all the reaction and compound nodes are assigned progressively by
a breadth-first search, according to the above scheme. The weights of all the nodes and
edges which can be reached from Ei are recomputed to reflect the change. We define
an impact vector for each enzyme based on the effects of its inhibition.

Definition 3.1. Given a network with n compounds, Cj , 1 ≤ j ≤ n. Let Wi(Cj)
denote the weight of the node corresponding to Cj after the inhibition of enzyme Ei.
We define the impact vector of Ei as I(Ei) = [Wi(C1), Wi(C2), · · · , Wi(Cn)]. We
term Wi(Cj) as the impact of Ei on Cj , ∀j.

The impact vector of an enzyme approximates the amount of each compound that
remains after the inhibition of that enzyme. Every entry of the impact vector is a frac-
tional number between 0 and 1, where 0 indicates that the corresponding compound
does not exist after inhibition of the corresponding enzyme. We define the cost of an
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enzyme as follows:

Definition 3.2. Given a network with n compounds, Cj , 1 ≤ j ≤ n. Assume that the
compoundsCj , ∀j, 1 ≤ j ≤ k ≤ n constitute the set of target compounds. Assume that
the remaining compounds Cj , ∀j, k+ 1 ≤ j ≤ n constitute the non-target compounds.
Let I(Ei) = [Wi(C1), · · · , Wi(Cn)] denote the impact vector ofEi. We define the cost
of Ei as cost(Ei) = I(Ei) · V T , where V = [v1, · · · , vn] is the normalization vector:
vi = n−k

k for 1 ≤ i ≤ k, and vi = −(n−kn−k ) for k < i ≤ n.

Each target compound contributes a positive value and each non-target compound
contributes a negative value to the cost of an enzyme. This is justified since the cost
promotes removal of target compounds and demotes the removal of non-target com-
pounds.

3.2.2. Ordering of enzymes in OPMET
Based on the impact vector of individual enzymes, we propose an incremental strat-

egy for ordering of enzymes in OPMET. LetR = [r1, r2, · · · , rn] denote the remaining
fractions of compounds. Here, ri ∈ [0, 1] corresponds to compound Ci, ∀i. We initial-
ize ri = 1, ∀i indicating that all compounds are being produced without any disruption.
Let V be the normalization vector as given in Definition 3.2. Let I(Ei) be the impact
vector of enzyme Ei (see Definition 3.1). Assume N = ([eπ1 , eπ2 , · · · , eπm

], k, d,
remove) be the node currently being evaluated (i.e., the decision to inhibit or not in-
hibit has been fixed for eπ1 , eπ2 , · · · , eπk−1 ). We now need to decide which enzyme
has to be evaluated next. In details, for every enzyme in the remaining enzyme set (eπi

,
∀i, k ≤ i ≤ m), we compute the new remaining fractions of compounds (Ri). This
is done by a Vector Direct Product of R and the impact vector of Ei (I(Ei)). That is,
Ri = R� I(Ei). Vector direct product is defined as X�Y = [x1y1, x2y2, · · · , xnyn],
where X = [x1, · · · , xn] and Y = [y1, · · · , yn]. The resulting vector Ri is an approx-
imation to the impact of inhibition of the enzyme Ei in addition to already inhibited
enzymes. This is justified since the quantity of a compound eliminated by a combina-
tion including Ei will be at least as much as the quantity eliminated by Ei alone. A
good candidate enzyme at this step is the one that ensures that lesser of the target com-
pounds remain after its inhibition. Also, it should ensure that the non target compounds
suffer the minimum possible damage. Our cost model satisfies these requirements.
Then, we compute the cost of each enzyme as the dot product of Ri and V . That is,
Cost(Ei) = Ri · V T . Suppose that the enzyme (Ej) is with the minimum cost, that is,
j = arg minj {Cost(Ej)}. Based on the minimum cost, we update the ratio R = Rj
and select Ej as the next enzyme to inhibit. Thus, this strategy chooses the next best
enzyme to inhibit dynamically.

The cost of finding the best enzyme takes O(mn), where m and n denote the num-
ber of enzymes and compounds in the metabolic network respectively. This is because
a vector product costs O(n), and O(m) such products are carried out.
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3.3. Filtering strategies
So far, we have described how OPMET traverses the state space. In this section we
propose two filtering strategies to eliminate large portions of the search space quickly
while still guaranteeing the optimal solution. The following theorem (proof is not given
to save the space) establishes a relationship between the impact of enzymes and their
damage.

Theorem 3.1. Let E = {E1, E2, · · · , Er} be a set of enzymes. Let Cj be a compound
in the metabolic network. Let di(Cj), 1 ≤ i ≤ r, denote the impact of Ei on Cj . If the
inhibition of all the enzymes inE stops the production of Cj , then

∑r
i=1(1−di(Cj)) ≥

1.

Next, we describe our filtering strategies.
Target Filter: A combination of enzymes can not be the solution if their inhibition
does not delete all the target compounds. This is the motivation behind our Target
filter. The target filter eliminates a bulk of the search space when it is proven that
there is no combination of enzymes in this space that can stop the production of all the
target compounds (i.e., there is no useful drug target). This filtering strategy is based
on Theorem 3.1. Formally, let node N = ([eπ1 , eπ2 , · · · , eπm

], k, d, False) be a node in
the search space. Let T denote the set of target compounds. Backtrack if∑k

i=1(1− di(C))eπi
+

∑n
i=k+1(1− di(C)) < 1,∃C ∈ T.

In this inequality, the first term indicates the impact of enzymes, which are currently
part of the solution set, on the target compounds. The second term represents the impact
of the remaining enzymes on the target compounds.
Non-target Filter: This filter quickly determines if there is any solution in the subtree
with a damage d < D, the global cut-off threshold (see Subsection 3.1). This filter
utilizes Theorem 3.1 similar to the Target Filter. The idea is as follows. At a given node
N , for each target compound, C, we find the minimum number of enzymes, m such
that

∑m
i=1(1− di(C))eπi

≥ 1. This gives us the minimum number of enzymes needed

to delete C. Let mmax be the maximum value of m for any target compound (i.e, we
will need at least mmax enzymes to delete the entire target compound set). Now, we
sort the remaining enzymes (enzymes not considered so far) in the ascending order of
their damage values. Let dmax be the damage of the enzyme at index mmax. If dmax
in addition to the damage incurred so far is greater thanD, we prune the sub tree rooted
at N .

4. Experimental results
We verify the biological validity of the proposed algorithm by employing it on known
existing drugs. We evaluate the performance of the OPMET algorithm using the fol-
lowing three criteria: 1) Number of nodes generated: It represents the total number of
enzyme combinations tested to complete the search. 2) Optimal node rank: This indi-
cates the number of nodes explored before the method arrives at the optimal solution.
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3) Execution time: This indicates the total time taken by the method to finish the search.
We extracted the metabolic network information of E. Coli from KEGG 15. The

metabolic network in KEGG is divided into smaller networks according to their specific
functions. We chose six of these networks for our experiments, based on the number of
enzymes. We devised a labeling scheme for the networks which begins with ‘N’ and
is followed by the number of enzymes in the network. For instance, ‘N20’ indicates a
network with 20 enzymes. For each network, we constructed query sets of sizes one,
two and four target compounds, by randomly choosing compounds from that network.
Each query set contains 10 queries.
Qualitative analysis of OPMET: We first evaluate how well the proposed cost model
reflects the biological process. We do this by querying well studies drugs in the litera-
ture using OPMET. KEGG contains a database of known drug molecules along with the
enzymes they inhibit and their therapeutic category. We use the drugs at this database
as our benchmarks. Due to space limitation, we report only four of them. The value in
parenthesis that starts with letter “D”, “C”, or “E” (e.g., D02562) is the unique identifier
assigned to the corresponding drug, compound, or enzyme respectively in KEGG.
1. Benoxaprofen (D03080). This drug inhibits arachidonate 5-lipoxygenase
(E1.13.11.34) which appears in several networks including arachidonic acid
metabolism network (hsa00590). In Pharmacology, 5-lipoxygenase inhibitors will
decrease the biosynthesis of LTB4 (C02165), cysteinylcontaining leukotrienes LTC4
(C02166), LTD4 (C05951) and LTE4 (C05952). According to our graph model, the re-
moval of 5-lipoxygenase eliminates three of these compounds LTB4, LTC4 and LTD4
in arachidonic acid metabolism network. Inhibition of this enzyme also eliminates five
more compounds, namely 5(S)-HPETE (C05356), 5-HETE (C04805), LTA4 (C00909),
20-OH-LTB4 (C04853) and 9(S)-HPOD (C14827). These compounds can be consid-
ered as damage in our model. Running OPMET with LTB4, LTC4, LTD4 and LTE4
as the target compound finds LTA4H (E3.3.2.6) and LTC4 synthase (E4.4.1.20) as the
optimal enzyme set. The inhibition of these enzymes eliminates only one non-target
compound, 20-OH-LTB4 (C04853). OPMET potentially finds a better solution in this
experiment than the existing drug as the same compound is eliminated by the existing
drug in addition to four other compounds. Indeed, recent research supports our model
since the anti-inflammatory effect of the levels of LTA4H 22 and LTC4 29 have been
observed.
2. Rasagiline (D02562). This is an antiparkinsonian drug. It inhibits amine ox-
idase (E.1.4.3.4) which appears in several metabolic networks. In the histidine
metabolism network (hsa00340), the removal of amine oxidase eliminates the com-
pounds Methylimidazole acetaldehyde (C05827) Methylimidazoleacetic acid (C05828)
according to our graph model. Levels of pros-methylimidazoleacetic acid has correla-
tion with severity of Parkinson’s disease in patients 3,21. This demonstrates that, our
model can predict the intended target well. When OPMET is run on the same network
with methylimidazoleacetic acid and the methylimidazole acetaldehyde as the target
compounds it finds amine oxidase as the optimal target. This implies that Rasgiline is
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Table 1. Average number of nodes generated and Optimal Node Rank
of exhaustive search and OPMET with random and dynamic enzyme
ordering. Optimal Node Rank is given in parentheses.

Id Exhaustive Search Random OPMET Dynamic OPMET

N14 16,384 4,190 (1,220) 3,273 (3.77)

N17 131,072 58,379 (22,303) 38,973 (2.54)

N20 1,048,576 147,605 (100,845) 78,257 (11.36)

Table 2. Average number of nodes generated and Optimal Node Rank of OPMET with no-filtering
(A), non-target filter (B), target filter (C), and both filters (D). Optimal Node Rank is given in paren-
theses. (E) shows the average execution time (millisecond) for the both filters method.

N17 N20 N24 N28 N32

A 38973 (2.54) 78257 (11.36) 509278 (55893.25) 158989 (10834.55) 4151032 (3.61)

B 35806 (2.54) 76125 (11.36) 462980 (55103.58) 156956 (10803.00) 1512615 (3.61)

C 415 (2.54) 3496 (11.36) 55987 (56.75) 12735 (10801.90) 1049377 (3.61)

D 394 (2.54) 3428 (11.36) 55865 (6.71) 12710 (10801.90) 1044263 (3.61)

E 529.64 2619.34 46273.13 10025.50 816913.55

targeting the optimal enzyme according to our model.
For Ozagrel (D01683) and Erythromycin acistrate (D02523), running OPMET can

find the same target enzyme as the actual drug. (details omitted)
Evaluation of prioritization strategies: We compare our OPMET algorithm with a
random ordering of enzymes and an exhaustive search. We do not include our filtering
strategies here as the goal is to focus on the enzyme ordering. We present the results
only up to a network of size 20 enzymes. This is because, beyond this, the search space
grows rapidly, necessitating the use of filtering strategies.

Table 1 shows the average number of nodes generated and the average optimal node
rank of OPMET to that of an exhaustive search. The results show that OPMET with
dynamic enzyme ordering is the best strategy for all the tested networks. It generates
the least number of nodes in all the experiments. All the methods generate significantly
large number of nodes for N17. This is because the number of reactions and compounds
of this network is much larger than the other networks, resulting in more interactions in
the network. OPMET has small Optimal Node Ranks. On an average, it arrives at the
optimal solution within the generation of 0.008 % of the number of nodes possible in an
exhaustive search. This is significantly better than the random ordering which arrives
at the optimal solution within the generation of 11 %.
Evaluation of filtering strategies: We measure how much our filtering strategies re-
duce the search space. The experiments are performed using OPMET with dynamic
enzyme ordering. Table 2 shows the average number of nodes generated, the average
optimal node rank and the average execution time for the combined filters. The com-
bined filters show the best pruning. On an average, the combined filters prune 91.5 % of
the nodes generated in the method without filters. We also see that most of this benefit
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is obtained from the Target Filter (it filters 91.4 % of the nodes generated by the method
without filters). The combined filter generates only 12700 nodes for N28 (0.004 % of
an exhaustive search). All the methods have the same optimal node rank for networks
except N24. This suggests that OPMET yielded the optimal solution as early as possi-
ble for these networks. For N24, the combined filter shows that filtering strategies can
also lead to advancement in finding the optimal solution. For N24, Target filter arrives
at the optimal solution 99 % earlier and the combined filters arrive at the optimal solu-
tion 99.9 % earlier than the method without filters (the additional 0.9 % improvement
is obtained from the non-target filter). We observe that the target filter is more efficient
than the non-target filter and the combined filter has the best performance. We observe
that there is no clear correlation between the size of the target compound set and the
number of nodes explored (results are not shown due to space limitation).

5. Related Work
Classical drug discovery approaches involve incorporating a large number of hypotheti-
cal targets into in-vitro or cell-based assays and performing automated high throughput
screening (HTS) of vast chemical compound libraries 30,9. Post-genomic advances
in bioinformatics have fostered the development of rational drug-design methods and
reduction of serious side-effects 8,5,4. This has engendered the concept of reverse phar-
macology 27, in which, the first step is the identification of protein targets, that may
be critical intervention points in a disease process 23,1. The reverse approach is driven
by the mechanics of the disease and hence is expected to be more efficient than the
classical approach 27.

Rapid identification of enzyme (or protein) targets needs a thorough understand-
ing of the underlying metabolic network of the organism affected by a disease. The
availability of fully sequenced genomes has enabled researchers to integrate the avail-
able genomic information to reconstruct and study metabolic networks 28,13. These
studies have revealed important properties of these networks 10,2,18. The potential of
an enzyme to be an effective drug target is considered to be related to its essential-
ity in the corresponding metabolic network 14. Lemke et. al proposed the measure
enzyme damage as an indicator of enzyme essentiality 17,19. Recently, a computa-
tional approach for prioritizing potential drug targets for antimalarial drugs has been
developed 31. A choke-point analysis of P.falciparcum was performed to identify es-
sential enzymes which are potential drug targets. The possibility of using enzyme in-
hibitors as antiparasitic drugs is being investigated through stoichiometric analysis of
the metabolic networks of parasites 6,7. These studies show the effectiveness of com-
putational techniques in reverse pharmacological approaches.

A combination of microarray time-course data and gene-knockout data was used to
study the effects of a chemical compound on a gene network 12. An investigation of
metabolite essentiality is carried out with the help of stoichiometric analysis 11. These
approaches underline the importance of studying the role of compounds (metabolites)
during the pursuit of computational solutions to pharmacological problems.
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6. Conclusions
In this paper, we formulated the optimal enzyme-combination identification prob-

lem as an optimization problem on metabolic networks. We proposed OPMET, a
branch-and-bound algorithm to explore the search space dynamically. We also devel-
oped two filtering strategies to prune the search space while still guaranteeing an opti-
mal solution. The filters compute an upper bound to the number of target compounds
deleted and a lower bound to the side-effect respectively.

Our experiments on the human metabolic network demonstrates that the proposed
model can accurately identify the target enzymes for known successful drugs in the
literature. More specifically, OPMET found the same target enzyme as Rasagiline,
Ozagrel, and Erythromycin acistrate when their target compounds are given as input.
OPMET found a different set of enzymes than Benoxaprofen for the target compounds
of Benoxaprofen. OPMET’s solution in this case has a great potential to be better
than Benoxaprofen since OPMET’s solution damages only one non-target compound
whereas Benoxaprofen damages five non-target compounds including the compound
damaged by OPMET’s solution. Our experiments also show that OPMET can reduce
the total search time by several orders of magnitude as compared to the exhaustive
search. The optimal solution is reached by OPMET within the exploration of 0.005
% of the total search space on an average, proving that our methods are effective in
approximating the impact of an enzyme on a compound. OPMET with combined filters
pruned 91.6 % of the search space on average.
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