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String matching plays an important role in biomedical Term Normalisation, the task of link-
ing mentions of biomedical entities to identifiers in reference databases. This paper evaluates
exact, rule-based and various string-similarity-based matching techniques. The matchers are
compared in two ways: first, we measure precision and recall against a gold-standard dataset
and second, we integrate the matchers into a curation tool and measure gains in curation speed
when they were used to assist a curator in normalising protein and tissue entities. The evaluation
shows that a rule-based matcher works better on the gold-standard data, while a string-similarity
based system and exact string matcher win out on improving curation efficiency.

1. Introduction

Term Normalisation (TN) [1] is the task of grounding a biological term in text to a
specific identifier in a reference database. TN is crucial for automated processing
of biomedical literature, due to ambiguity in biological nomenclature [2, 3, 4,
5]. For example, a system that extracts protein-protein interactions (PPIs) would
ideally collapse interactions involving the same proteins, even though these are
named by different word forms in the text. This is particularly important if the
PPIs are to be entered into a curated database, which refers to each protein by a
canonical unique identifier.

A typical TN system consists of three components: an ontology processor,
which expands or prunes the reference ontology; a string matcher, which com-
pares entity mentions in articles against entries in the processed ontology; and
finally a filter (or a disambiguator) that removes false positive identifiers using
rules or statistical models [6, 7]. The string matcher is arguably the core compo-
nent: a matcher that searches a database and retrieves entries that exactly match
an entity mention can form a simple TN system. The other two components are
important but they can be viewed as extras that may help further improve the per-
formance of the matcher. A reasonable assumption is that if a matching system
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can help improve curation speed, then more complex TN systems should be even
more helpful. Indeed, the matching systems described in this paper can be used as
stand-alone TN modules, and can also work in conjunction with external ontology
processors and filters.

Much work has been carried out on evaluating performance of TN systems on
Gold Standard datasets [6, 8]. However, whether such systems are really help-
ful in speeding up curation has not yet been adequately addressed. This paper
focuses on investigating matching techniques and attempts to answer which ones
are most helpful in assisting biologists to perform TN curation. We emphasise
assisted, rather than automated curation because, at least in the short term, replac-
ing human curators is not practical [9, 10], particularly on TN tasks that involve
multiple types of biological entities across numerous organisms. We believe that
designing tools that help improve curation efficiency is more realistic. This paper
compares different techniques for implementing matching: exact, rule-based, and
string similarity methods. These are tested by measuring recall and precision over
a Gold Standard dataset, as well as by measuring the time taken to carry out TN

curation when using each of the matching systems. In order to examine whether
the matching techniques are portable to new domains, we tested them on two types
of entities in the curation experiment — proteins and tissues (of human species).

This paper is organised as follows: Section 2 gives a brief overview of related
work. Section 3 summarises the matching algorithms that we studied and com-
pared. Section 4 presents experiments that evaluated the matching techniques on
Gold Standard datasets, while Section 5 describes an assisted curation task and
discusses how the fuzzy matching systems helped. Section 6 draws conclusions
and discusses directions of future work.

2. Related Work

TN is a difficult task because of the pervasive variability of entity mentions in
the biomedical literature. Thus, a protein will typically be named by many ortho-
graphic variants (e.g., IL-5 and IL5) and by abbreviations (e.g., IL5 for Interleukin-
5), etc. The focus of this paper is how fuzzy matching techniques [11] can handle
such variability. Two main factors affect performance of fuzzy matching: first, the
quality of the lexicon, and second, the matching technique adopted. Assuming the
same lexicon is used, there are three classes of matching techniques: those that
rely on exact searches, those that search using hand-written rules, and those that
compute string-similarity scores.

First, with a well constructed lexicon, exact matching can yield good re-
sults [12, 13]. Second, rule-based methods, which are probably the most widely
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used matching mechanism for TN, have been reported as performing well. Their
underlying rationale is to alter the lexical forms of entity mentions in text with a
sequence of rules, and then to return the first matching entry in the lexicon. For
example, one of the best TN systems submitted to the recent BioCreAtIvE 2 Gene
Normalisation (GN) task [14] exploited rules and background knowledge exten-
sively.a The third category is string-similarity matching approaches. A large
amount of work has been carried out on matching by string similarity in fields
such as database record linkage. Cohen et al. [15] provided a good overview on a
number of metrics, including edit-distance metrics, fast heuristic string compara-
tors, token-based distance metrics, and hybrid methods. In the BioCreAtIvE 2
GN task, several teams used such techniques, including Edit Distance [16], Soft-
TFIDF [17] and JaroWinkler [18].

Researchers have compared the matching techniques with respect to perfor-
mance on Gold Standard datasets. For example, Fundel et al. [12] compared
their exact matching approach to a rule-based approximate matching procedure
implemented in ProMiner [19] in terms of recall and precision. They concluded
that approximate search did not improve the results significantly. Fang et al. [20]
compared their rule-based system against six string-distance based matching al-
gorithms. They found that by incorporating approximate string matching, overall
performance was slightly improved. However, in most scenarios, approximate
matching only improved recall slightly and had a non-trivial detrimental effect
upon precision. Results reported by Fang et al. [20] and Fundel et al. [12] were
based on measuring precision and recall on Gold Standard datasets which con-
tained species-specific gene entities. However, in practice, curators might need
to curate not only genes, but many other types of entities.Section 5 presents our
investigation on whether matching techniques can assist curation in a setup more
analogous to these real-world situations.

3. Matching Techniques

This section outlines the rule-based and the string similarity-based algorithms that
were used in our experiments. Evaluation results from the BioCreAtIvE 2 GN
task on human genes seem to indicate that rule-based systems perform better. The
weakness of rule-based systems, however, is that they may be less portable to new
domains. By contrast, string similarity-based matching is more generic and can
be easily deployed to deal with new types of entities in new domains.

aSee Hirschman et al. [6] for an overview of the BioCreAtIvE 1 GN task and Morgan and
Hirschman [8] for the BioCreAtIvE II GN task.
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3.1. Rule-based Matching

For each protein mention, we used the following rulesb to create an ordered list of
possible RefSeqc identifiers.

(1) Convert the entity mention to lowercase and look up the synonym in a lowercase
version of the RefSeq database.

(2) Normalise the mentiond (NORM MENTION), and look up the synonym in a nor-
malised version of the RefSeq database (NORM lexicon).

(3) Remove prefixes (p, hs, mm, m, p and h), add and remove suffixes (p, 1, 2) from
the NORM MENTION and look up result in the NORM lexicon.

(4) Look up the NORM MENTION in a lexicon derived from RefSeq (DERIVED lexi-
con).e

(5) Remove prefixes (p, hs, mm, m, p and h), add and remove suffixes (p, 1, 2) from
the NORM MENTION, and look up result in the DERIVED lexicon.

(6) Look up the mention in the abbreviation map created using the Schwartz and
Hearst [21] abbreviation tagger. If this mention has a corresponding long form or
corresponding short form, repeat steps 1 through 5 for the corresponding form.

3.2. String Similarity Measures

We considered six string-similarity metrics: Monge-Elkan, Jaro, JaroWinkler,
mJaroWinkler, SoftTFIDF and mSoftTFIDF. Monge-Elkan is an affine variant of
the Smith-Waterman distance function with particular cost parameters, and scaled
to the interval [0, 1]. The Jaro metric is based on the number and order of the
common characters between two strings. A variant of the Jaro measure due to
Winkler uses the length of the longest common prefix of the two strings and re-
wards strings which have a common prefix. A recent addition to this family is a
modified JaroWinkler [18] (mJaroWinkler), which adapts the weighting parame-
ters and takes into account factors such as whether the lengths of the two strings
are comparable and whether they end with common suffixes.

We also tested a ‘soft’ version of the TF-IDF measure [22], in which similar
tokens are considered as well as identical ones that appear in both strings. The
similarity between tokens are determined by a similarity function, where we used

bSome of the rules were developed with reference to previous work [13, 20].
cSee http://www.ncbi.nlm.nih.gov/RefSeq/.
dNormalising a string involves converting Greek characters to English (e.g., α→alpha), converting to
lowercase, changing sequential indicators to integer numerals (e.g., i, a, alpha→1, etc.) and removing
all spaces and punctuation. For example, rab1, rab-1, rabα, rab I are all normalised to rab1.
eThe lexicon is derived by adding the first and last word of each synonym entry in the RefSeq database
to the lexicon and also by adding acronyms for each synonym created by intelligently combining the
initial characters of each word in the synonym. The resulting list is pruned to remove common entries.
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JaroWinkler for SoftTFIDF and mJaroWinkler for mSoftTFIDF. We deem two to-
kens similar if they have a similarity score that is greater than or equal to 0.95 [17],
according to the corresponding similarity function.

4. Experiments on Gold Standard Datasets

We evaluated the competing matching techniques on a Gold Standard dataset over
a TN task defined as follows: given a mention of a protein entity in a biomedical
article, search the ontology and assign one or more IDs to this protein mention.

4.1. Datasets and Ontologies

We conducted the experiments on a protein-protein interaction (PPI) corpus an-
notated for the TXM [18, 23] project, which aims at producing NLP-based tools
to aid curation of biomedical papers. Various types of entities and PPIs were an-
notated by domain experts, whereas only the TN annotation on proteins was of
interest in the experiments presented in this section.f 40% of the papers were
doubly annotated and we calculated inter-annotator agreement (IAA) for TN on
proteins, which is high at 88.40%.

We constructed the test dataset by extracting all 1,366 unique protein men-
tions, along with their manually normalised IDs, from the PPI corpus. A lexicon
customised for this task was built by extracting all synonyms that are associated
with RefSeq IDs that were assigned to the protein mentions in the test dataset. In
this way, the lexicon was guaranteed to have an entry for every protein mention
and the normalisation problem can be simplified as a string matching task.g Note
that as our data contains proteins from various model organisms, and thus this TN

task is more difficult than the corresponding BioCreAtIvE 1 & 2 GN tasks, which
dealt with species-specific genes.

4.2. Experimental Setup

We applied the rule-based matching system and six similarity-based algorithms
to the protein mentions in the test dataset.h A case-insensitive (CI) exact match
baseline system was also implemented for comparison purpose.

fWe have an extended version of this dataset in which more entity types are annotated. The curation
experiment described in Section 5 used protein and tissue entities in that new dataset.
gAlthough we simplified the setup for efficiency, the comparison was fair because all matching tech-
niques used the same lexicon.
hWe implemented the string-similarity methods based on the SecondString package. See http:
//secondstring.sourceforge.net/
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Given a protein mention, a matcher searches the protein lexicon, and returns
one match. The exact and rule-based matchers return the first match according
to the rules and the similarity-based matchers return the match with the highest
confidence score. It is possible that a match maps to multiple identifiers, in which
case all identifiers were considered as answers.

In evaluation, for a given protein mention, the ID(s) associated with a match
retrieved by a matcher are compared to the manually annotated ID. When a match
has multiple IDs, we count it as a hit if one of the IDs is correct. Although this
setup simplifies the TN problem and assumes a perfect filter that always success-
fully removes false positives, it allows us to focus on investigating the matching
performance without interference from NER errors or errors caused by ambiguity.

4.3. Results and Discussion

We used metrics precision (P ), recall (R) and F1, for evaluation. Table 1 shows
performance of the matchers.

Table 1. Precision (P ), recall (R) and F1 of fuzzy matching techniques as tested on the PPI

corpus. Figures are in percentage.

Matcher P R F1 Matcher P R F1

MongeElkan 51.3 51.3 51.3 mSoftTFIDF 66.0 61.5 63.7
Jaro 59.4 59.3 59.3 Rule-based 81.4 57.5 67.4
JaroWinkler 61.7 61.6 61.7 mJaroWinkler 61.2 61.1 61.1
SoftTFIDF 66.5 62.2 64.3 Exact Match (CI) 77.2 33.8 47.0

Both the rule-based and the string-similarity based approaches outperformed
the exact match baseline, and rule-based system outperformed the string-
similarity-based ones. Nevertheless, the SoftTFIDF matcher performed only
slightly worse than the winner,i and we should note that string-similarity based
matchers have the advantage of portability, so that they can be easily adopted to
other types of biomedical entities, such as tissues and experimental methods, as
long as the appropriate lexicons are available.

Among the similarity-based measures, the two SoftTFIDF-based methods out-
performed others. As discussed in [22], two advantages of the SoftTFIDF over
other similarity-based approaches are: first, token order is not important so permu-

iThe rule-based system yields higher recall but lower precision than the similarity-based systems.
Tuning the balance between recall and precision may be necessary for different curation tasks. See
[23] for more discussion on this issue.
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tation of tokens are considered the same, and second, common but uninformative
words do not greatly affect similarity.

5. Curation Experiment

We carried out a TN curation experiment where three matching systems were sup-
plied to a curator to assist in normalising a number of tissue and protein entities.
A matcher resulting in faster curation is considered to be more helpful.

5.1. Experimental Setup

We designed a realistic curation task on TN as follows: a curator was asked to nor-
malise a number of tissue and protein entities that occurred in a set of 78 PubMed
articles.j Tissues were to be assigned to MeSHk IDs and proteins to RefSeq IDs.
We selected only human proteins for this experiment, because although species
is a major source of ambiguity in biological entities [7], we wanted to focus on
investigating how matching techniques affect curation speed in this work.

Figure 1. A screenshot of the curation tool.

Curation was carried out using an in-house curation tool (as shown in Figure
1). When loaded, the tool displays a full-length article and highlights a number

jThe articles were taken from an extended version of the dataset described in Section 4.1, in which
tissues and proteins were already manually marked up and normalised. The normalisations were con-
cealed from the curator and only used after the experiment to assess the quality of the curation.
kSee http://www.nlm.nih.gov/mesh/MBrowser.html.
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of randomly selected protein and tissue entities Only unique entity mentions in
each article were highlighted. To make sure that the numbers of entities were
distributed evenly in the articles, a maximum of 20 tissues and 20 proteins were
highlighted in each article.l

We integrated three matching techniques into the curation tool to assist cura-
tion: (1) SoftTFIDF, the best performing string-similarity-based matching method
in our previous experiment; (2) rule-based matching;m and (3) exact matching.
The 78 articles were randomly divided into three sets, each of which used a dif-
ferent matching technique, and then the articles were randomly presented to the
curator. When an article was loaded into the tool, the normalisations guessed by
one of the matchers were also added. When the curator clicked on a highlighted
entity mention, a dialogue window would pop up, showing its pre-loaded normali-
sations, along with a brief description of each ID in order to help the curator select
the right ID. The descriptions were extracted from RefSeq and MeSH, consisting
of synonyms corresponding to the ID.

The curation tool also provided a search facility. When a matcher misses the
correct IDs, the curator can manually query RefSeq and MeSH lexicons. The
search facility was rather basic and carried out ‘exact’ and ‘starts with’ searches.
For example, if a matcher failed to suggest a correct normalisation for protein
mention “α-DG” and if the curator happened to know that “DG” was an acronym
for “dystroglycan”, then she could query the RefSeq lexicon using the term
“alpha-dystroglycan”. We logged the time spent on manual searches, in order
to analyse the usefulness of the matching techniques and how they can be further
improved. As with the experiments carried out on the Gold Standard dataset, we
followed a ‘bag’ approach, which means that, for each mention, a list of identi-
fiers, instead of a single one, was shown to the curator.n

5.2. Results and Discussion

Tables 2 and 3o show the average curation time that the curator spent on normal-
ising a tissue or a protein with respect to the matching techniques. There are two

lBecause articles contain different numbers of entities, the total numbers of protein and tissue entities
in this experiment are different. See Table 2 and 3 for exact figures.
mWe used the same system as described in Section 3 for protein normalisation. For tissue normalisa-
tion, a rudimentary system was used that first carries out a case-insensitive (CI) match, followed by a
CI match after adding and removing an s from the tissue mention, and finally adding the MeSH ID for
the Cell Line if the mention ends in cells.
nThis is in-line with our evaluation on the gold-standard dataset where a metric of top n accuracy was
used.
oThe standard deviations were high due to the fact that some entities are more difficult to normalise
than others.
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types of normalisation events: 1) a matcher successfully suggested a normalisa-
tion and the curator accepted it; and 2) a matcher failed to return a hit, and the
curator had to perform manual searches to normalise the entity in question.

Table 2. Time spent on normalising tissues with three matching techniques.

including manual searches excluding manual searches

Matcher # of entities time(ms) StdDev # of entities time(ms) StdDev
Exact 283 7,078 8,757 127 2,198 2,268
Rule-based 326 6,639 8,607 172 2,158 1,133
SoftTFIDF 292 6,044 7,596 208 2,869 2,463

Table 3. Time spent on normalising proteins with three matching techniques.

including manual searches excluding manual searches

Matcher # of entities time(ms) StdDev # of entities time(ms) StdDev
Exact 196 6,972 8,859 147 3,714 4,479
Rule-based 129 8,615 12,809 110 6,744 11,030
SoftTFIDF 108 11,218 17,334 88 7,381 9,071

The columns titled “excluding manual searches” and “including manual
searches” reflect the two types of events. By examining averaged curation time
cost on each, we can see how the matchers helped. For example, from the “ex-
cluding manual searches” column in Table 2, we observe that the curator required
more time (i.e., 2,869 ms.) to find and accept the correct ID from the candidates
suggested by SoftTFIDF, whereas the time in the “including manual searches”
column shows that overall using SoftTFIDF was faster than the other two match-
ers. This is because in the majority of cases (208 out of 292), the correct ID was
in the list returned by SoftTFIDF, which allowed the curator to avoid performing
manual searches and thus saved time. In other words, the curator had to perform
time-consuming manual searches more often when assisted by the exact and the
rule-based matchers.

Overall, on tissue entities, the curator was faster with help from the SoftTFIDF
matcher, whereas on proteins the exact matcher worked better.p To explain this,
we should clarify that the major elements that can affect curation speed are: 1) the

pWe performed significance tests on both the protein and tissue data using R. Given that the data
is not normally distributed as indicated by the Kolomorov-Smirnov normality test, we used the non-
parametric Kruskal-Wallis test which indicates that the differences are significant with p = .02 for
both data sets.
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Table 4. Average bagsizes of tissue and protein entities.

Type Matcher Cnt (bagsize>=0) Avg. bagsize Cnt (bagsize=0) Percentage

Tissue
Exact 283 0.43 160 56.5%

Rule-based 326 0.66 111 34.0%
SoftTFIDF 292 5.38 7 2.4%

Protein
Exact 196 0.90 51 26.02%

Rule-based 129 5.12 14 10.85%
SoftTFIDF 108 13.97 9 8.50%

performance of the matcher, 2) time cost in eyeballing the IDs suggested, and 3)
the time spent on manual searches when the matcher failed.

Therefore, although we evaluated the matchers on a Gold Standard dataset and
concluded that the rule-based matcher should work best on normalising protein
entities (see Section 4), this does not guarantee that the rule-based matcher will
lead to an improvement in curation speed.

The second factor is due to the sizes of the bags. The SoftTFIDF matcher
returns smaller sets of IDs for tissues but bigger ones for proteins. Table 4 shows
the average bagsizes and the percentage when bagsize is zero, in which case the
matcher failed to find any ID. One reason that SoftTFIDF did not help on proteins
might be the average bagsize is too big at 13.97, and the curator had to spend time
reading the descriptions of all IDs.

As for the third factor, on tissues, 56.5% of the time the exact matcher failed
to find any ID and the curator had to perform a manual search; by contrast, the
SoftTFIDF matcher almost always returned a list of IDs (97.6%), so very few
manual searches were needed.

As mentioned, the articles to curate were presented to the curator in random or-
der, so that the potential influence to performance of normalisation resulting from
training curve and fatigue should distribute evenly among the matching techniques
and therefore not bias the results. On the other hand, due to limitation in time and
resources, we only had one curator to carry out the curation experiment, which
may cause the results to be subjective. In the near future, we plan to carry out
larger scale curation experiments.

6. Conclusions and Future Work

This paper reports an investigation into the matching algorithms that are key com-
ponents in TN systems. We found that a rule-based system that performed better
in terms of precision and recall, as measured on a Gold Standard dataset, was not
the most useful system in improving curation speed, when normalising protein
and tissue entities in a setup analogous to a real-world curation scenario. This re-

Pacific Symposium on Biocomputing 13:628-639(2008)



September 17, 2007 20:31 Proceedings Trim Size: 9in x 6in tn-comparison

REFERENCES 11

sult highlights concerns that text mining tools achieving better results as measured
by traditional metrics might not necessarily be more successful in enhancing cu-
rators’ efficiency. Therefore, at least for the task of TN, it is critical to measure
the usability of text mining tools extrinsically in actual curation exercises. We
have learnt that, besides the performance of the matching systems, many other
factors are also important. For example, the balance between precision and recall
(i.e., presenting more IDs with higher chances to include the correct one, or less
IDs where the answer is more likely to be missed), and the backup tool (e.g., the
manual search facility in the curation tool) used when the assisting system fails,
can both have significant effects on usability. Furthermore, in real-world cura-
tion tasks that often involve more than one entity type, approaches with better
portability (e.g., string-similarity-based ones) may be preferred. Our results also
indicated that it might be a good idea to address different types of entities with
different matching techniques.

One direction for future work is to conduct more curation experiments so that
the variability between curators can be smoothed (e.g., some curators may pre-
fer seeing more accurate NLP output whereas others may prefer higher recall).
Meanwhile, we plan to improve the matching systems by integrating ontology
processors and species disambiguators [7].
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