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Motivation: For different tumour types, extended knowledge about the molecular
mechanisms involved in tumorigenesis is lacking. Looking for copy number varia-
tions (CNV) by Comparative Genomic Hybridization (CGH) can help however to
determine key elements in this tumorigenesis. As genome-wide array CGH gives
the opportunity to evaluate CNV at high resolution, this leads to huge amount of
data, necessitating adequate mathematical methods to carefully select and inter-
pret these data.
Results: Two groups of patients differing in cancer subtype were defined in two
publicly available array CGH data sets as well as in our own data set on ovarian
cancer. Chromosomal regions characterizing each group of patients were gathered
using recurrent hidden Markov Models (HMM). The differential regions were re-
duced to a subset of features for classification by integrating different univariate
feature selection methods. Weighted Least Squares Support Vector Machines (LS-
SVM), a supervised classification method which takes unbalancedness of data sets
into account, resulted in leave-one-out or 10-fold cross-validation accuracies rang-
ing from 88 to 95.5%.
Conclusion: The combination of recurrent HMMs for the detection of copy num-
ber alterations with LS-SVM classifiers offers a novel methodological approach for
classification based on copy number alterations. Additionally, this approach limits
the chromosomal regions that are necessary to classify patients according to cancer
subtype.
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1. Introduction

In cancers, many gains and losses of chromosomes and chromosomal seg-
ments have been described. These aberrations defined as regions of in-
creased or decreased DNA copy number can be detected at high resolution
using an array comparative genomic hybridization (CGH) technology. This
technique measures variations in DNA copy number within the entire ge-
nome of a disease sample compared to a normal sample1. This makes array
CGH ideally suitable for a genome-wide identification and localization of
genetic alterations involved in human diseases. An overview of algorithms
for array CGH data analysis is given by Lai et al.2 Segmentation approaches
divide each single-sample signal into regions of constant copy number, called
segments. Subsequent classification labels the segments as gain or loss. A
popular method combining both tasks is the hidden Markov Model (HMM)
with states defined as loss, neutral, one-gain, and multiple-gain. Recently,
this traditional procedure has been extended to a recurrent HMM in which
a class of samples instead of an individual sample is modeled by sharing
information on copy number variations across multiple samples3. Here, we
present a method to identify copy number alterations with the recurrent
HMM which goes beyond the exploratory phase by using these alterations
as features in a supervised classification setting and by validating these
features biologically.

For classification, we started from the class of kernel methods which
is powerful for pattern analysis4. Their rapid uptake in bioinformatics
is due to their reliability, accuracy, and computational efficiency5. More
specifically, we made use of the weighted Least Squares Support Vector
Machine (LS-SVM), taking the unbalancedness of data sets into account6–7.

We applied our method on two publicly available data sets of lung cancer
and oral squamous cell carcinoma, and subsequently on our data set of
ovarian cancer. The knowledge of different copy number variations between
specific groups of patients may help to better understand tumorigenesis of
these cancers. When applied to larger study groups, this method could
result in a better comprehension of the different clinical behaviour of both
groups, probably necessitating different treatment strategies.

The outline of this article is as follows. In section 2, we describe the
data sets, the applied methods for segmentation, feature selection, and
classification, the workflow of our proposed methodology, as well as the
functional annotation analysis for biological validation. We describe our
results on the different data sets in Section 3 and conclude in Section 4.
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2. Materials and Methods

2.1. Data Sets

In the study of Snijders et al.8 a genome-wide analysis of copy number aber-
rations was carried out in 89 patients with oral squamous cell carcinoma,
using the HumArray2.0 genome scanning array with 2464 clones from the
University of California San Francisco. Missing copy number values were
imputed unsupervisedly using the k-nearest neighbours method with k set
to 159. The final data set contained 2056 unique clones. Patients were
subdivided according to TP53 mutation with 59 of them being wildtype
and 16 having a mutation for the TP53 gene. The mutation status was
unknown for the remaining 14 patients.

Garnis and colleagues10 measured genome copy number profiles for 28
commonly used non-small cell lung carcinoma (NSCLC) cell lines across
the whole genome using the submegabase resolution tiling array, consisting
of 32433 BAC clones. 29781 unique clones remained after preprocessing.
Twenty-two of the cell lines belonged to one of the 2 main subgroups of
NSCLC: adenocarcinoma (13) and squamous cell carcinoma (9).

Our data were collected from patients treated for ovarian cancer at the
University Hospital of Leuven, Belgium. Eight patients had a sporadic
tumour without a positive family history for breast and/or ovarian cancer,
while five patients were carrier of a mutation in the tumour suppressor gene
BRCA1, involved in DNA damage repair and transcriptional regulation11.
Array comparative genomic hybridization was performed using a 1Mb array
CGH platform, version CGH-SANGER 3K 7, containing 3593 clones and
developed by the Flanders Institute for Biotechnology (VIB), Department
of Microarray Facility, Leuven, Belgium.

2.2. Array Comparative Genomic Hybridization

Array comparative genomic hybridization (array CGH) is a high-
throughput technique for measuring DNA copy number variations (CNV)
within the entire genome of a disease sample relative to a normal sample1.
In an array CGH experiment, total genomic DNA from tumour and normal
reference cell populations are isolated and subsequently labeled with diffe-
rent fluorescent dyes before being hybridized to several thousands of probes
on a glass slide. This allows calculating the log ratios of the fluorescence
intensities of the tumour to that of the normal reference DNA. Because
the reference cell population is normal, an increase or decrease in the log
intensity ratio indicates a DNA copy number variation in the genome of the
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tumour cells such that negative log ratios correspond to deletions (losses),
positive log ratios to gains or amplifications and zero log ratios to neutral
regions in which no change occurred.

2.3. Recurrent HMM

As was stated in the introduction, we will use a recurrent hidden Markov
Model (HMM) proposed by Shah et al.3 for the identification of extended
chromosomal regions of altered copy numbers, labeled as gain or loss. The
goal of this model is to construct features that distinguish two groups of
patients and subsequently to use them in a classifier (see Section 2.4). Due
to sensitivity of traditional HMMs to outliers being measurement noise,
mislabeling, and copy number polymorphisms within the normal human
population, a robust HMM was proposed by Shah et al.12 and extended to
a multiple sample version in which array CGH experiments from a cohort of
individuals are used to borrow statistical strength across samples instead of
modeling each sample individually3. This reduces the influence of various
sources of noise on the detection of recurrent copy number alterations and
makes even copy number alterations in a small number of adjacent clones
reliable when shared across many samples.

In this study, a recurrent HMM is constructed on a chromosomal basis
for each group of patients separately, resulting in regions with the probabi-
lities of genetic alterations across these patients. A clone was labeled as gain
or loss when its probability of occurring was more than 70%. An important
parameter of the recurrent HMM that needs to be set is the recurrent
variable ε. This variable represents the probability with which samples
will get reflected in the recurrent CNV profile - accounting for sample-
specific random effects - and is inversely proportional to the sparseness of
the profile. As a trade-off between sparseness and false positive rate, ε was
set to 0.8, although ε=0.7 is already sufficient for small data sets with less
heterogeneity within each group of samples (i.e. our data set with 8 and 5
samples, respectively). A differential region was defined as a chromosomal
region which is gained/lost in one group while not being gained/lost in the
other group.

2.4. Kernel Methods and Weighted Least Squares Support

Vector Machines

The differential regions that result from the recurrent HMM are used as
features in a classifier for which we chose kernel methods. These methods
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are a group of algorithms that do not depend on the nature of the data by
representing data entities through a set of pairwise comparisons called the
kernel matrix13. This matrix can be geometrically expressed as a transfor-
mation of each data point x to a high dimensional feature space with the
mapping function Φ(x). An explicit representation of Φ(x) is not needed
when defining a kernel function k(xk, xl) as the inner product 〈Φ(xk), Φ(xl)〉
of two data points xk and xl.

A kernel algorithm for supervised classification which can tackle high di-
mensional data and contains regularization, is the Support Vector Machine
(SVM) developed by Vapnik14 and others. Given a training set {xk, yk}N

k=1

of N samples with feature vectors xk ∈ Rn and output labels yk ∈ {−1, +1},
the SVM forms a linear discriminant boundary y(x) = sign[wT Φ(x) + b] in
the feature space with maximum distance between samples of the two consi-
dered classes. This corresponds to a non-linear discriminant function in the
original input space. A modified version of SVM, the Least Squares Sup-
port Vector Machine (LS-SVM), was developed by Suykens et al.6. On high
dimensional data sets, this modified version is much faster for classification
because a linear system instead of a quadratic programming problem needs
to be solved.

In many two-class problems, data sets are skewed in favour of one class
such that the contribution of false negative and false positive errors to the
performance assessment criterion are not balanced. We therefore used a
weighted LS-SVM in which a different weight ζk is given to positive and
negative samples in order to account for the unbalancedness in the data
set7. The constrained optimization problem for the weighted LS-SVM has
the following form:

min
w,b,e

JP (w, e) =
1
2
wT w + γ

1
2

N∑

k=1

ζke2
k

with

ζk =

{
N

2NP
if yk = +1

N
2NN

if yk = −1

and NP and NN representing the number of positive and negative samples,
respectively. Variables ek represent the error variables, tolerating misclas-
sifications in case of overlapping distributions, and γ the regularization
parameter which allows tackling the problem of overfitting.
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2.5. Feature Selection

Because it has been shown by Lai and colleagues15 that univariate gene se-
lection methods lead to good and stable performances across many cancer
types and yield in many cases consistently better results than multivari-
ate approaches, we used the method DEDS (Differential Expression via
Distance Synthesis)16. This technique is based on the integration of diffe-
rent test statistics via a distance synthesis scheme because features highly
ranked simultaneously by multiple measures are more likely to be diffe-
rential expressed than features highly ranked by a single measure. The
statistical tests combined are ordinary fold changes, ordinary t-statistics,
SAM-statistics and moderated t-statistics (i.e. B-statistics17). DEDS is
available as a BioConductor package in R.

2.6. Proposed Methodology

For the data set of Snijders, a 10-fold cross-validation (CV) strategy was
applied, while a leave-one-out (LOO) cross-validation strategy was chosen
for the other, rather small data sets. The 4 different steps that have to
be accomplished in each CV iteration are shown in Figure 1. After leaving
out m samples (i.e. N/10 for 10-fold CV; 1 for LOO), a recurrent HMM
(see Sect. 2.3) is constructed for both groups in step 1 to determine the
chromosomal regions with genetic alterations that characterize each group.
Combining these regions results in the chromosomal regions that are dif-
ferential between the remaining N-m samples from both groups. Because
multiple clones can be located within each differential region, the clones
need to be combined. This is done per sample in the second step by taking
the median of the log ratios of the clones in each region. Afterwards, a stan-
dardization is performed per sample (i.e. meanshifting to 0 and autoscaling
to 1) because the raw log ratios cannot be compared in absolute values be-
tween the samples. In step 3, DEDS determines which preprocessed log
ratios, called features, best discriminate the N-m samples (see Sect. 2.5).
The number of included features is iteratively increased according to the
obtained feature ranking without including more features than the number
of samples on which the optimal number of features is determined18. This
subset of features forms the input for classification in the last step (see
Sect. 2.4). For all possible combinations of γ and number of features, an
LS-SVM is built on the training set and validated on the m left out samples.
This is repeated until each sample has been left out once. The parameter
combination is chosen corresponding to the highest AUC (area under the
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Figure 1. The methodology, applied in a 10-fold or LOO CV setting, consists of 4 steps:
step 1 - recurrent HMMs applied on both groups of samples, resulting in differential re-
gions; step 2 - conversion of clones to differential regions, and normalization (performed
for each sample separately); step 3 - feature selection using DEDS; step 4 - LS-SVM
training on 2-dimensional grid for regularization parameter γ and number of features,
and validation on m left out samples (G1 = group 1; G2 = group 2; CR = Chromoso-
mal Region; DR = Differential Region; NORM = Normalization; DEDS = Differential
Expression via Distance Synthesis; NF = Number of Features)

ROC curve). When multiple such combinations, the combination with the
lowest balanced error rate and an as high as possible sum of sensitivity
and specificity is considered as optimal. For the LS-SVM, a linear kernel
function k(xk, xl) = xT

k xl was chosen. A kernel function that accounts for
the correlation between neighbouring clones19 did not lead to a better per-
formance because the HMM already takes the properties of CGH data into
account.

2.7. Functional Annotation Analysis

To validate the selected chromosomal regions, gene set enrichment was per-
formed as an indication for agreement with “known” biology. Curated gene
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sets as defined in the Molecular Signatures Database (MSigDB) (i.e. sets of
co-regulated genes from online pathway databases, publications in PubMed
and knowledge of domain experts) were used20. Using the HUGO gene
nomenclature21, genes within the differential chromosomal regions were di-
vided into 9 gene signatures, depending on the group (G1 versus G2 versus
both) and CNV type (gain versus loss versus both). For each signature, the
overlap was calculated between all gene sets and the signature as well as
5000 equally-sized signatures containing genes randomly selected from the
genome. The corrected method of North et al.22 was used to calculate the
empirical p-value for each gene set as (r + 1)/(n + 1) with n the number
of random signatures (i.e. 5000) and r the number of them with an equal
or higher overlap with the gene set than obtained with the actual signa-
ture. Only gene sets with r smaller than 10 (p-value < 0.002) were further
investigated.

3. Results

We applied our method on two publicly available array CGH data sets, as
well as on our own data set of ovarian cancer for the prediction of cancer
subtype.

The data set of Snijders was used to distinguish patients being wildtype
for the TP53 gene from those having a mutation for TP53. 55 of the
59 wildtype patients and 11 of the 16 TP53-mutated patients could be
classified correctly based on 10 differential regions, none of them containing
TP53 located on chromosome 17 (see Table 1). The wildtype group was
characterized by 3 gained regions on chromosome arms 2p, 11q, and 18q,
and 1 lost region on 12p. The mutated group was distinguishable with
1 gained region on 10p and 5 lost regions on chromosome arms 8p, 11q,
and 18q. Five of these regions were selected in 8 to 10 of the 10 CV
iterations while the remaining 5 regions appeared in 1 to 5 CV iterations.
Loss of chromosome arms 8p, 11q, and 18q in TP53-mutated samples was
mentioned in the original manuscript as well.

When applying our methodology on the data set of Garnis to distinguish
adenocarcinomas from squamous cell carcinomas, 21 out of the 22 cell lines
could be classified correctly based on 8 regions on chromosome arms 1q,
2p, 3q, 5p, 7q, 11p, 13q, and 20p, all lost in adenocarcinoma (see Table
1). Five regions were selected in all LOO iterations, the regions on 7q
and 11p in 19 and 15 LOO iterations, respectively while the lowest ranked
region according to DEDS appeared in 9 of the 22 LOO iterations. The
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Table 1. Performances of the three considered data sets

Data set Nb regions Accuracyµ Sensitivity Specificity AUCµ

Snijders8 10 88 (66/75) 93.2 (55/59) 68.8 (11/16) 0.840
Garnis10 8 95.5 (21/22) 92.3 (12/13) 100 (9/9) 0.983
own data 11 92.3 (12/13) 100 (5/5) 87.5 (7/8) 0.875

µRepresents 10-fold CV performance (Snijders) or LOO performance (own data, Garnis)

chromosome arms 2p and 13q were also found by Garnis and colleagues to
be frequently deleted in adenocarcinoma while being amplified in the cell
lines of the squamous cell carcinomas.

Eight sporadic and five BRCA1 mutated ovarian cancer patients were
included and profiled using array CGH technology. When applying the
proposed methodology on this data set, CNVs in 11 chromosomal regions
were sufficient to correctly classify 12 out of 13 samples (see Table 1). Five
regions on chromosome arms 3p, 4p, 6p, 12q, and Xp were gained and 3
regions on 10p, 13q, and 19q were lost in BRCA1 mutated samples. The
sporadic ovarian cancer patients were characterized by loss of 3 regions on
4p and 16. The top 5 of features with the lowest p-value according to DEDS
appeared in 8 to 11 of the 13 LOO iterations while the lower ranked regions
were selected in 4 to 7 LOO iterations.

Because we hypothesize that genes in the chromosomal regions partici-
pate in processes that distinguish subtypes of cancer, a gene set enrichment-
based approach was followed (see Sect. 2.7). This analysis highlighted en-
riched gene sets containing genes that may act as an oncogene or tumour
suppressor gene or for which is shown that they repress tumour suppressor
genes. The gene LAMA3 (alpha-3 subunit of laminin 5) was proposed by
Snijders and colleagues as one of the candidate driver genes in the deve-
lopment of oral squamous cell carcinoma and appears to be important for
classification of TP53 status as well. It may play an active role in cell
adhesion, migration, and proliferation of the carcinoma cells23. Further-
more, the protein cortactin, contributing to tumour progression and metas-
tasis formation24, was gained in the wildtype samples, while the TP53-
mutated samples were characterized by loss of the Smad transcription fac-
tors Smad2, Smad4, and Smad7. Members of the TGFβ/Smad signaling
pathway are potent tumour suppressor genes25 and the inactivation of Smad
factors is correlated with loss of responsiveness to TGFβ-mediated signal
transduction26.

Important genes lost in the adenocarcinoma cell lines were CUTL1
which activates a transcriptional program regulating genes involved in cell
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motility, invasion, and extracellular matrix composition27, and FGF-10, a
key regulator of lung branching morphogenesis28. In our data set the genes
BAF57 (important in transcriptional repression of tumour suppressor genes
among which BRCA129) and HOXA5 (suggested to act as a tumour sup-
pressor gene in breast cells30) seemed to be correlated with hereditary ova-
rian cancer, whereas loss of the v-myb oncogene seemed more characteristic
for the sporadic group.

4. Conclusion

In this manuscript, a new methodology is proposed in which copy num-
ber variations resulting from array CGH are transformed into features for
classification purpose. This general method which is independent of can-
cer site allows identifying a small set of class-specific aberrations that can
distinguish patients, and biologically validating them. It can also result in
clinically relevant models based on a limited set of features. As increasing
amounts of array CGH data become available, there is a need for algorithms
to identify recurrent gains and losses based on statistically sound methods
and to use them for classification. A large number of approaches for the
analysis of array CGH data have already been proposed recently, ranging
from mixture models and HMMs to wavelets and genetic algorithms2. How-
ever, most cancer studies that gather array CGH data only apply methods
for exploratory analysis. Often a fixed threshold is used for defining gains
and losses, making these studies less robust against systematic changes in
the baseline copy number measurements between samples31. A HMM on
the contrary is a probabilistic method that can handle the uncertainty in the
data in a formal way compared to deterministic algorithms. This makes the
HMM more robust against outliers such as measurement noise and wrong
recordings of locations of clones. Moreover, we used a special variant of
HMM able to capture recurrent copy number alterations by coupling the
HMMs of individual samples. This makes weak copy number alterations
but shared across many samples reliable features. In our setup we used this
property by first modeling the copy number variations in each group of pa-
tients separately. Subsequently, the alterations that were different between
these two groups were used as features in an LS-SVM for classification. In
our opinion this is one step further compared to many other studies that
only perform an exploratory analysis.

A comparison of the regions found in each of the CV or LOO iterations
showed a limited variability in the selected regions. This strengthens our
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confidence that the chromosomal regions found with our methodology are
robust. Regions lacking genes with an annotated HUGO symbol seem un-
interesting at first sight. However, recent research findings on 1% of the
genome indicated that 93% of the bases are transcribed, increasing the im-
portance of non-protein-coding RNA32. For each data set the remaining
regions were validated biologically using a gene set enrichment-based ap-
proach. Keep in mind that, because the number of features is minimized,
one can expect that biological validation using pathways may fail because
not all genes belonging to a certain pathway may be needed in a classifica-
tion setting.

It was not self-evident to find appropriate data sets because current
studies utilize array CGH, not for classification purpose but for characte-
rizing a specific set of patients. Clinical or histopathological variables that
can be used to define two classifiable subgroups of patients are lacking in
most of these studies. We applied our method on two extra data sets for the
prediction of disease specific survival and distant recurrence, even though
the main purpose of the original manuscripts was not survival33–34 (results
not shown). Although previous studies on CGH have shown evidence for
an association of amplification with poor prognosis35–36, we were not able
to classify the patients in these two data sets properly according to survival
using array CGH data. Further research is required on the appropriateness
of array CGH data in survival-related studies.

The proposed method performed well in distinguishing adenocarcinoma
from squamous cell carcinoma. This can partly be caused by the use of
cell lines instead of clinical specimens, although a number of studies have
characterized clinical cases of NSCLC with comparable CNV profiles as
found by Garnis et al. in cell lines10. This good performance may also be
due to the use of a high resolution tiling array. The use of such arrays yields
potential for utilizing CNV profiles in classification for which a method has
been presented here.
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