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Segmental duplications are abundant in the human genome, but their evolutionary

history is not well-understood. The mystery surrounding them is due in part to

their complex organization; many segmental duplications are mosaic patterns of

smaller repeated segments, or duplicons. A two-step model of duplication has been

proposed to explain these mosaic patterns. In this model, duplicons are copied and

aggregated into primary duplication blocks that subsequently seed secondary du-

plications. Here, we formalize the problem of computing a duplication scenario

that is consistent with the two-step model. We first describe a dynamic program-

ming algorithm to compute the duplication distance between two strings. We then

use this distance as the cost function in an integer linear program to obtain the

most parsimonious duplication scenario. We apply our method to derive putative

ancestral relationships between segmental duplications in the human genome.

1. Introduction

Mammalian genomes consist of many repetitive sequences. Many of these
are insertions of (retro)transposons and are present in many copies, but
longer segmental duplications, or low-copy repeats, are also common. Cur-
rent estimates suggest that approximately 5% of the human genome consists
of segmental duplications > 1 kb in length with ≥ 90% sequence identity be-
tween copies1. Moreover, the pattern of segmental duplications in primate
genomes is unusual: many of these duplications are interchromosomal1 and
are recent alterations in the human genome, occurring after the separa-
tion of the Old World monkey and great ape lineages. It is estimated that
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segmental duplications account for a significant fraction of the differences
between humans and primate genomes, and it has been shown that some
human segmental duplications contain novel gene families and genes under
strong positive selection. In addition, segmental duplications are impli-
cated in disease-causing rearrangements2 and copy-number polymorphisms
in human populations1. Thus, reconstructing the evolutionary history of
segmental duplications is essential for understanding primate evolution and
for ancestral genome reconstruction3.

Despite the prominence of segmental duplications, both their evolution-
ary history and the mechanisms by which large segments of the genome are
duplicated and transposed to other genomic loci are poorly understood.
Studies of the human genome sequence revealed the surprising fact that
many segmental duplications are complex mosaics of smaller duplicated
pieces4. A two-step model of segmental duplication (reviewed in1) has
been proposed to explain these mosaic patterns, but the convoluted nature
of overlapping, interleaved duplicated material in the genome make segmen-
tal duplications refractory to traditional sequence analysis. Recently, Jiang
El Ab.5 examined the ancestral relationships between human segmental du-
plications, and identified “clades” of segmental duplications that share an
abundance of repeated subsequences. However, their approach ignored the
order and orientation of these repeated subsequences within the segmental
duplications, and thus did not explicitly explain the mosaic organization of
segmental duplications. While algorithms have been developed for various
aspects of duplication analysis – such as the evolution of gene clusters6,7,8,
the analysis of whole-genome duplications13,14, and the computation of re-
versal distance9,10,11 and reconciliation of gene trees and species trees12 in
the presence of orthologous and paralogous genes – none of these methods
are directly applicable to the analysis of the organization of segmental du-
plications. The problems of determining the evolutionary history of human
segmental duplications and of validating the two-step model have not yet
received a rigorous algorithmic treatment.

In this paper, we consider the problem of constructing a duplication
scenario that is consistent with the two-step model of duplication, and that
minimizes the total number of duplication operations. We formulate this
problem as an integer linear program that is equivalent to the facility lo-
cation problem, a classic problem in operations research. This formulation
requires a measure of the minimum number of duplications to build a target
string from a source string. We generalize the duplication distance algo-
rithm introduced in 15 to compute the distance when both the source and
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target strings contain repeated characters, a requirement for applications
to real genomic data. We apply our methods to the duplication blocks
derived in 5 and discover a two-step duplication scenario in which 13 seed
duplication blocks are first constructed and then duplicated to create 416
secondary duplication blocks.

2. Methods

Informally, given an ancestral genome that is devoid of duplications and a
present-day genome rife with duplicated material, the problem is to com-
pute a sequence of duplication events by which the ancestral genome is
transformed into the present-day genome. In particular, we are interested
in computing the simplest or most-parsimonious sequence of duplication
events that accomplishes this transformation. In the next section, we de-
scribe a model of evolution that is consistent with the two-step model of
duplication. Then in Section 2.2, we formulate the problem of computing
the most-parsimonious duplication scenario as an integer linear program.
Finally, in Section 2.3 we describe an algorithm to compute the duplica-
tion distance between a pair of signed strings, a distance used to define the
cost function in the integer linear program. This algorithm generalizes the
algorithm presented in15, and an implementation is available upon request.

2.1. Problem Formulation

As described above, the segments of the present-day genome that contain
duplicated material, hereafter duplication blocks, contain complex mosaic
patterns of smaller segments, hereafter duplicons, that appear in multi-
plicity across the genome. We model both the ancestral and present-day
genomes as signed strings of duplicons. We assume the present-day genome,
which has incurred segmental duplications, is a superstring of the ances-
tral genome, and the duplication blocks are substrings of the present-day
genome. See Figure 1.

In the two-step model of duplication, duplicons are copied from their
ancestral loci and aggregated into larger, contiguous segments or seed du-
plication blocks during the first duplication phase. In the second phase,
substrings of both the seed blocks and the ancestral genome are copied and
then reinserted into the genome at disparate locations, creating secondary
duplication blocks. We say that a seed duplication block seeds a secondary
duplication block in the second phase if substrings of the seed block are
used in the construction of the secondary block. See Figure 2a. Note that
a seed block may seed multiple secondary duplication blocks but some seed
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Figure 1. The present-day genome is a superstring of the ancestral genome. The du-

plicated material comprises duplication blocks which are maximal contiguous substrings

of the present-day genome that were not part of the ancestral genome.

blocks may not seed any secondary blocks.
We make four simplifying assumptions about the two-step model of

duplication:

(1) The ancestral genome contains exactly one copy of every duplicon.
(2) No other type of rearrangement operations – such as inversions of

deletions – occur.
(3) The seed blocks are a subset of the duplication blocks observed in

the present-day genome.
(4) Each secondary duplication block is seeded by exactly one seed du-

plication block.

Under these assumptions, we can summarize a two-step duplication sce-
nario in a two-step duplication tree.

Definition 2.1. Given ancestral and present-day genomes, a two-step du-
plication tree is a tree of height three where the root is the ancestral genome
and the descendants are the duplication blocks. Nodes at depth one (i.e.
the children of the root) are the seed blocks created in the first phase of
duplication, while nodes at depth two (i.e. children of seed blocks) are the
secondary duplication blocks constructed from substrings of one seed block
and of the ancestral genome. See Figure 2b.

For a given pair of ancestral and present-day genomes, a most-parsimonious
two-step duplication tree is that which defines a partition of the duplication
blocks into seed duplication blocks and secondary duplication blocks and
defines the ancestral relationships between seed and secondary blocks such
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Figure 2. (a) The two-step model of duplication. Solid arrows indicate duplicons copied

during the first phase of duplication. Dashed arrows indicate duplicons copied during

the second phase of duplication. (b) The corresponding two-step duplication tree.

that the total number of duplication events needed to construct first the
seed blocks and then the secondary blocks is minimum.

We define a duplication event as one duplicate operation:

Definition 2.2. A duplicate operation, δs,t,p(X), copies a substring
xs . . . xt of a source string X and pastes it into another string Z at position
p. Specifically, if X = x1 . . . xm and Z = z1 . . . zn, then Z ◦ δs,t,p(X) =
z1 . . . zp−1xs . . . xtzp . . . zn.

In15, we introduced a distance measure from a source string to a target
string, called duplication distance.

Definition 2.3. The duplication distance from a source string X to a target
string Y , denoted DX(Y ), is the number of duplicate operations in the
simplest (i.e. shortest) sequence of duplicate operations that transforms an
initially empty string into the target Y by repeatedly inserting substrings
of X.

The total duplication distance for a two-step duplication tree is the sum
of the number of duplicate operations needed to build all the duplication
blocks. We express the number of duplicate operations needed to build a
seed block Bi from the ancestral genome G as DG(Bi). Secondary duplica-
tion blocks are built from substrings of both its parent seed block and the
ancestral genome. Thus, we express the number of duplicate operations
needed to build a secondary block Bj from its parent seed block Bi and G
as DBi◦G(Bj), where Bi ◦ G denotes the concatenationa of the strings Bi

aWe insert a “dummy character” between Bi and G in the concatenate to avoid copying
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and G.
We now state our problem.

Problem: Computing a Most-Parsimonious Two-Step Duplication Tree.
Input: The ancestral genome G and a set duplication blocks B1, . . . , BN

from the present-day genome.
Output: The two-step duplication tree (Definition 2.1) with minimum total
duplication distance.

2.2. Computing the Two-Step Duplication Tree

In this section, we show how to formulate the problem of constructing a
most-parsimonious two-step duplication tree as an integer linear program
(ILP).

A two-step duplication tree for a given ancestral genome and a set of du-
plication blocks is defined by a labeling of each of the N duplication blocks
as either seed blocks or as secondary blocks. In addition to this labeling,
we must also define for each secondary block which seed duplication block
seeded it, i.e. which seed block is its parent in the tree.

A most-parsimonious two-step duplication tree is a solution of the fol-
lowing integer linear program.

min
U,V

 N∑
i=1

(ui ×DG(Bi)) +
N∑

i=1

N∑
j=1

(
vij ×DBj◦G(Bi)

) (1)

such that ∑
j

vij = 1 for all i (2)

vij − uj ≥ 0 for all i, j (3)

ui ∈ {0, 1} and vij ∈ {0, 1} (4)

The binary variables U = [u1, . . . , uN ] and binary matrix V = [vij ]
N
i,j=1 de-

scribe the topology of the duplication tree. The binary variable ui indicates
whether a duplication block Bi is labeled as a seed block and thus defines
an edge in the tree from the root G to Bi. The binary variable vij indicates
that secondary duplication block Bi is seeded by seed block Bj and thus
block Bi is a child of Bj in the tree.

We note that this program is equivalent to a special case of the facility
location problem, a classic NP-hard combinatorial optimization problem.

substrings across the boundary.
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The input to the facility location problem is a set of customers and a set of
potential facility sites. For each site, there is a cost associated with opening
a facility, and for each site-customer pair, there is a cost associated with
supplying that customer from a facility at that site. The objective is to
minimize the total cost of opening facilities and supplying customers such
that every customer is supplied by exactly one open facility. In the context
of the two-step duplication tree, each duplication block is both a customer
to be supplied and the site of a potential facility. Opening a facility at site
Bi corresponds to classifying Bi as a seed duplication block. Supplying
customer Bj from facility Bi corresponds to classifying Bj as a secondary
block that is constructed from substrings of seed block Bi and the ancestral
genome G.

2.3. Duplication Distance Algorithm

In this section, we present a dynamic programming algorithm for computing
duplication distance from signed source string X to signed target string Y .
This algorithm generalizes the O(|Y |4) algorithm introduced in15 for the
special case where the source string X is non-ambiguous meaning that
it contains at most one instance of each character. Here, we present an
algorithm whose complexity is O(|Y |3|X|) for the general case where both
X and Y are ambiguous. We assume that all the characters that appear in
the target string also appear at least once in the source string.

Intuitively, if signed strings X and Y are “close” in duplication distance,
they share common subsequences and thus there is duplication scenario that
builds Y by repeated insertions of substrings of X (see Definitions 2.2 and
2.3).

We define some notation. Given a signed string Y = y1y2 . . . yn, let
Ys,t = ysys+1 . . . yt be the substring ranging between indices s and t, inclu-
sive, for 1 ≤ s ≤ t ≤ n. Given strings X and Y , let IX,Y (i) = {j|xj = yi}.
Finally, let d(Ys,t) = DX(Ys,t) be the number of duplicate operations re-
quired to build the substring Ys,t.

First, note that we can compute the duplication distance for disjoint
substrings of the target Y independently, allowing us to recursively divide
the target string into subproblems. Suppose we wish to compute the du-
plication distance for a substring Ys,t of Y . There are two possible cases to
consider: (i) ys was duplicated by itself as a substring of X of length one, or
(ii) ys was copied into Y as part of a larger substring of X. In the first case,
we proceed recursively on Ys+1,t. In the second case, we note that because
X may be ambiguous, we must consider the possibility that the substring
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of X that was copied to produce the character at index s in Y might have
started at any of the indices in IX,Y (s). If a substring of X beginning at
index i and having length greater than one is duplicated and inserted into
Y , the character xi+1 must appear in Y at some index j ∈ IYs+1,t,X(i + 1).
Note, that although xi was copied into Y at index s, it need not be the
case that xi+1 appear at index s + 1 in Y because subsequent duplicate
operations may have inserted substrings into Y in between the characters
xi and xi+1.

This observation leads to the following theorem.

Theorem 2.1. Given a string Ys,t and indices s ≤ t, d(Ys,t) satisfies the
following recurrence.

d(Ys,t) =

{
1 if s = t (base case),

mini∈IX,Y (s) di(Ys,t) otherwise,
(5)

where

di(Ys,t) = min {as,t, bs,t},
as,t = 1 + d(Ys+1,t),

bs,t = min
j∈IYs+1,t,X(i+1)

(d(Ys+1,j−1) + di+1(Yj,t)) .

Intuitively, di(Ys,t) represents the number of duplicate operations
needed to build Ys,t given that the character ys resulted from the copy-
ing of a substring of X beginning at index i. The value of di(Ys,t) can be
expressed as the minimum of two values corresponding to the two possible
cases described above. And the value d(Ys,t) can then be computed by
considering all possible indices i such that ys is the same character as xi.

The running time of the recurrence is bounded by the time to compute
di(Ys,t) for all possible values of i, s and t. For each substring Ys,t, we
compute di(Ys,t) for each index i ∈ IX,Y (s). This is bounded by O(|X|)
for all values of i, s and t. Because there are O(|Y |2) substrings Ys,t, we
compute di(Ys,t) a total of O(|Y |2|X|) times. Finally, since the time to
compute di(Ys,t) for fixed i, s, and t is bounded by |IYs+1,t,X(s + 1)| ∈
O(|Y |), the total running time is O(|Y |3|X|).

Note that it is straightforward to extend our algorithm to allow dupli-
cate reversal operations on signed strings, i.e. duplicate operations in which
the copied substring of X is inverted before being inserted into Y . We can
accomplish by by defining d(Ys,t) as the minimum of d(Ys,t) and d(−Ys,t)
for all values of s and t, where −Ys,t denotes the reversal of Ys,t.
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3. Results

We implemented our two-step duplication tree method to analyze the an-
cestry of segmental duplications in the human genome. We used data from5

who identified 4,692 ancestral duplicons that appeared in complex mosaic
arrangements within 437 duplication blocks in the human reference genome
(hg17, May 2004). We enumerated the duplicons according to their an-
cestral location in the genome and aligned each duplication block to all
duplicons using Nucmer16 thereby representing each duplication block as a
signed string in the alphabet of integers between −4692 and +4692. This
process yielded a total of 429 duplication blocks, as 8 blocks could not be
aligned to duplicons. We defined the ancestral genome G to be the string
of duplicons in the order of their ancestral loci, i.e. +1 + 2 · · ·+ 4692. We
inserted dummy characters between successive duplicons whose ancestral
loci were greater than 10kb apart.

For each ordered pair of duplication blocks Bi, Bj , we computed the
distance DBi◦G(Bj) using the algorithm presented in Section 2.3. We also
computed, for every duplication block Bi, the distance DG(Bi) from G to
that block. Using these distances, we solved the ILP defined in (1) using
CPLEX. Given the solution to the ILP, we labeled all blocks Bi such that
the binary variables ui = 1 as seed blocks. We labeled the remaining blocks
as secondary blocks. For any pair of blocks Bi, Bj , if the binary variable
vij = 1, we designated secondary block Bi to be a child of seed block Bj .
The corresponding two-step duplication tree is shown in Figure 3.

This tree has 13 seed blocks, with one block (chr11:49122753-50286686)
having 301 children. This duplication block is long, consisting of 2922 an-
cestral duplicons, but is not the longest in physical distance. Interestingly,
this block is located near the centromere of chromosome 11, consistent with
the hypothesis that duplicon seeding occurs in pericentromeric regions1.
However, the large number of children of this block is likely an artifact
that results from our restriction that secondary blocks are descended from
exactly one seed block. A more parsimonious duplication scenario might
have been that this block was itself formed by duplication from several
other seed blocks.

4. Discussion and Future Directions

We formulated the problem of computing the most-parsimonious duplica-
tion scenario consistent with the two-step model, and showed how to solve
this problem as an integer linear program that is equivalent to the facil-
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Figure 3. Most-parsimonious two-step duplication tree. The large node is the root and

represents the ancestral genome. The thirteen children of the root are seed blocks that

were constructed during the first step of duplication and are represented as medium-

sized circles. Children of seed blocks were constructed during the second step and

are represented as small squares. Starting with the seed block with the most chil-

dren and proceeding clock-wise around the root, the seed blocks are: chr11:49122753-

50286686, chr9:87954745-87985307, chr22:19790229-20121932, chr9:38462158-38620390,

chr7:127698302-127893857, chr9:42280547-42512326, chr17:31799963-31889184,

chr10:30678896-30730597, chr17:18219669-18692134, chr9:94148626-94280597,

chr7:74410377-74802698, chr16:88650921-88822254, and chr17:34433993-34453309.

ity location problem. To our knowledge, this work is the first attempt to
construct the ancestry of segmental duplications using parsimony methods.
Our two-step duplication tree provides a set of putative seed blocks that
are useful for further studies of the history of segmental duplications in the
human genome.

Jiang et al.5 used a different approach to analyze the ancestral relation-
ships of segmental duplications. They represented each duplication block
as a binary vector indicating the presence or absence of each duplicon and
performed hierarchical clustering on these binary vectors. This analysis
ignores the order and orientation of duplicons within a duplication block.
We compared our 13 seed groups of duplication blocks (consisting of a
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seed block and its children) to the 24 “clades” of closely-related duplica-
tion blocks reported in Jiang et al. We found that some of our groups
were enriched for blocks from a single clade. For example, two of the four
members of seed group chr17:34433993-34453309 are shared with the 21
members of Clade M1 defined in5, (p = 0.017 by hypergeometric test).
However, in many instances the clusters produced by the two methods dif-
fered. To investigate further, we searched for instances where duplicon
content and duplication distance diverged. For example, duplication block
B1 = chr7:74410377-74802698 is a seed block and is the parent of secondary
block B2 = chr16:5067675-5156097 in our analysis (Figure 3). In fact, the
duplication distance DB1◦G(B2) = 113 is significantly lower than the av-
erage duplication distance to B2 over all duplication blocks. However, the
duplicon content of these two duplication blocks is sufficiently different so
that the analysis in5 placed them into different clades: chr7-2 and M1, re-
spectively. This occurred because although these two duplication blocks did
not share a large percentage of their duplicons, surprisingly they did share
a few long, conserved subsequences of duplicons that appeared in the same
order in both duplication blocks. The presence of conserved subsequences
of duplicons suggests that deriving evolutionary relationships from duplicon
content alone might be misleading in some cases. Conversely, we also found
examples of duplication blocks that, while very similar in duplicon content,
were “far” in terms of duplication distance indicating that the duplicons
were not organized into the same order in both blocks. Duplication blocks
B3 = chr11:3365455-3580141 and B4 = chr16:5229432-5285786 were both
placed into clade M1 by5, but were children of seed blocks chr11:49122753-
50286686 and chr7:127698302-127893857, respectively, in our analysis.

Our method relied on several simplifying assumptions. These included:
(1) duplicate operations were the only genome rearrangement events that
occurred in constructing segmental duplications; (2) seed blocks that were
constructed in the first phase of duplication still exist in an unaltered state
in the present-day genome; (3) each secondary duplication block was de-
scended from exactly one seed block. A more comprehensive analysis of
segmental duplications will require the removal of some or all of these re-
strictions. In addition, we assumed that the work of identifying and delimit-
ing the ancestral duplicons was already completed (e.g. by5). Incorporating
duplication models into the annotation of duplication blocks themselves is
an interesting avenue for future study. Finally, a similar two-step model in-
volving extrachromosomal intermediates17 has been proposed18 to explain
the extensive duplications of genomic segments in cancer genomes that
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also display a complex architecture19. It would be interesting to extend
our methods to infer the sequence of duplications that occur in a cancer
genome.
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