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Modeling and analyzing protein-protein interaction (PPI) networks is an important
problem in systems biology. Many random graph models were proposed to capture
specific network properties or mimic the way real PPI networks might have evolved.
In this paper we introduce a new generative model for PPI networks which is based
on geometric random graphs and uses the whole connectivity information of the
real PPI networks to learn their structure. Using only the high confidence part
of yeast S. cerevisiae PPI network for training our new model, we successfully
reproduce structural properties of other lower-confidence yeast, as well as of human
PPI networks coming from different data sources. Thus, our new approach allows
us to utilize high quality parts of currently available PPI data to create accurate
models for PPI networks of different species.

1. Introduction

The majority of cellular functions are not carried out by single proteins,

but by proteins acting together. Due to the recent advances in the exper-

imental biological techniques such as yeast-2-hybrid11, tandem affinity12

purification and other high-throughput methods, there is a huge amount

of protein-protein interaction (PPI) data publicly available. This amount
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of data requires new mathematical and computational approaches to be

developed in order to model and analyze the complex networks that they

form. An accurate model of PPI networks will allow better estimating

all types of network statistics as well as generating synthetic networks of

species for which protein-protein interactions have not been experimentally

determined. This could help understand cellular processes and lead future

biological experiments. Therefore, analyzing and modeling PPI networks

has become a vibrant research area.

A PPI network is a graph with nodes (vertices) corresponding to pro-

teins and edges (links) corresponding to interactions between the proteins.

Many random graph models were proposed to model PPI networks. Some of

the commonly used models are: Erdös-Rényi random graphs1, Erdös-Rényi

random graphs with the same degree distribution as in data, scale-free

graphs2, geometric random graphs4,3 and stickiness-index-based models5.

These models were designed to capture specific network properties such as

the degree distribution, the clustering coefficient, the average diameter etc.,

or to model the way these networks might have evolved (e.g., preferential

attachment6, or gene duplication and mutation7,15 models); usually, they

do not exploit the entire connectivity information from the real PPI net-

works to learn the model’s topological structure. We adopt an alternative

approach and exploit the entire connectivity information of a real world

PPI network to learn its structure. Thus, we do not force the model to

reproduce some specific network properties, such as the degree distribu-

tion, the clustering coefficient, the diameter and such. Instead, since our

new model learns its structure from the real data, most of these network

properties are captured automatically.

2. Methods

Several studies have shown that geometric random graphs represent a good

model for PPI networks3,14,9. A geometric random graph is a graph G =

(V, E), where V is a set of nodes distributed uniformly at random in some

metric space and for any pair of nodes x, y ∈ V , there is an edge (x, y) ∈ E

if and only if the distance between nodes x and y, d(x, y), in the metric

space is less than or equal to some fixed parameter ǫ according to a chosen

metric. Our new model is based on geometric random graphs. In our

model, henceforth called trained geometric modela, we do not distribute

aThe Matlab code implementing the model is available upon request.
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nodes in a metric space uniformly at random. Instead, we use available real

world PPI data of high quality to learn the distribution of the points in a

metric space. Having learned this distribution (plearned), we generate model

networks of arbitrary size by distributing points in the space according to

the distribution plearned and connecting two nodes by an edge if they are

close enough in space.

Hence, the crucial aspect of this model is the probabilistic distribution

plearned, which we use to generate model networks. To learn this distri-

bution, we need to have the metric space and an example distribution of

points in it that corresponds to real PPI data. Currently, it is hard even

to hypothesize about the nature or dimensionality of space in which PPI

networks reside. Thus, as a proof of concept, we choose 3-dimensional Eu-

clidean unit cube as our metric space and the Euclidean metric. However,

all of the techniques described below could be easily applied to any number

of dimensions. Since real PPI networks contain only the connectivity infor-

mation between the nodes, we need a technique that takes this information

and embeds the network nodes into a metric space so that the topological

structure of the network is preserved when viewed as a geometric graph

constructed from the embedded nodes. That is, the spatial proximity of

the nodes will correspond to the PPI network connectivity information as

in a geometric random graph. For this purpose, we use the embedding

algorithm introduced by Higham et al.9.

Next, we model the distribution of the points in the space as a Mix-

ture of Gaussians and learn the required parameters using Expectation-

Maximization algorithm (EM)10. Mixture of Gaussians allows properties

of complex distributions to be captured, and it allows easy sampling via

the ancestral sampling technique10. The details are presented below.

2.1. Embedding Algorithm

The embedding algorithm introduced by D. Higham, M. Rašajski and N.

Pržulj9 is based on the ideas from Multi-Dimensional Scaling (MDS)19. It

takes as an input a PPI network represented as an undirected unweighted

simple graph G = (V, E), and a dimensionality m of the Euclidean unit

cube to be used for embedding. The algorithm outputs coordinates of

each node in the space under the premise that the network connectivity

information corresponds to Euclidean proximity, as in geometric random

graphs. Conceptually, this algorithm consists of the following steps:

• ∀ pairs of nodes i, j ∈ V , calculate the shortest path distances be-

Pacific Symposium on Biocomputing 14:39-50  (2009)



September 16, 2008 20:49 Proceedings Trim Size: 9in x 6in Kuchaiev

tween them, dG(i, j). Then choose a cutoff value K and define the

matrix of pairwise distances using the formula: d(i, j) =
√

dG(i, j)

iff dG(i, j) ≤ K otherwise d(i, j) = Kmax, for some Kmax.

• Construct matrix A using double-centering process:
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• It can be shown that A has a Schur decomposition and there-

fore, the resulting embedding into the m-dimensional space is then

specified by the eigenvectors of A, corresponding to the m largest

eigenvalues. That is, for each protein i, it’s coordinates in the m-

dimensional Euclidean space are then equal to the i-th coordinates

of the eigenvectors v1, ..., vm of the matrix A. (m ≤ n)

2.2. Learning Network Structure

To learn the distribution plearned we need to have a learning set Xlearning

of 3-dimensional coordinates of n nodes in the Euclidean unit cube. These

coordinates are the output of the embedding algorithm described in section

2.1 applied to the PPI network data that we wish to use for learning. To

model the density plearned of the distribution of points in the space, we use

a Mixture of Gaussians model10:

plearned(x) =
d

∑

k=1

πkN(x, µk, σ2

k)

It is a linear combination of multi-dimensional (in our case 3 dimen-

sional) Gaussian distributions. Coefficients πk, k = 1, ..., d, represent a

marginal distribution p(z) (
∑d

k=1
πk = 1 and ∀k : πk ∈ [0, 1]) over a la-

tent d-dimensional binary variable z, which has “1-of-d” representation (a

particular coordinate zk is equal to 1 while the rest are equal to 0). This

hidden variable indicates what mixture component explains a particular

data point x; that is p(x|zk = 1) = N(x, µk, σ2

k). The parameters to be

learned from the data are: πk, µk and σ2

k for k = 1, ..., d. The number

of mixtures d, is a parameter which we do not learn, but choose manually

to control the complexity of the model. We use Expectation-Maximization

(EM) algorithm to learn the parameters of the Gaussian Mixture model10.

As in many machine learning problems, more complex models will al-

ways explain the learning data better then more simple ones, but too com-

plex models might result in over-fitting and, as a result, will perform badly
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in the modeling stage. Thus, we need to choose d big enough to fit the

learning data well and small enough to avoid over fitting and other possible

issues, such as singularities in the covariance matrices σ2

k.

For these purposes we use Bayesian Information Criterion (BIC). Dur-

ing our experiments, we found that for our particular case, standard BIC

does not penalize the model for its complexity strongly enough; therefore,

we increase the penalty for having more parameters two times and use

the formula: BIC = log(p(X |θ)) − MlogN . Here, X is our learning set,

log(p(X |θ)) is a log-likelihood function, θ is the parameters we learn (µ, σ2

and π), M is number of free parameters in the model (size of θ), and N is a

size of the learning set. By choosing different numbers of mixtures for our

model (choosing different values of d) we vary the number of free parameters

M of the model, which in our case equals M = m2+m+(d−1)∗(m+m2+1),

where m is the dimensionality of the space we used for the embedding (m=3

in all our experiments). According to this criterion, we need to choose the

model which has the highest value of BIC10.

2.3. Generating Model Networks

After the model has learned the density function plearned(x), it could be

used for generating model networks of arbitrary size. Suppose that we want

to generate a network Net = (V, E) with |V | = n and |E| = m. We use

an ancestral sampling technique to sample from distribution plearned(x) =

p(x|z) ∗ p(z), where marginal distribution p(z) is given by the coefficients

πk, the conditional distribution of x given z is p(x|z) = N(x, µk, σ2

k) and

to sample n nodes from plearned(x) we repeat the following two consecutive

steps n times: 1) sample the value of z from (π1, ..., πk), 2) sample 3-

dimensional coordinates of point xi from p(x|zk = 1) = N(x, µk, σ2

k).

After this sampling procedure, we have n points distributed in 3-

dimensional Euclidean unit cube according to the density plearned(x). Next,

we adjust the value of parameter ǫ to obtain m pairs of nodes with distances

between them not greater then ǫ. Then, we connect these m pairs of the

nodes by edges and obtain a model network of the required size.

2.4. Network Comparisons

We compare the following global network properties of our model and the

PPI data networks: the degree distribution, the average clustering coeffi-

cient and the diameter. However, these properties themselves do not tell

us much about the structure of a network. For example, it is trivial to
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construct two networks with the same degree distribution but with vastly

different local structure. The same is also true for the clustering coefficient

and the average diameter. An additional issue with using these network

properties for evaluating the performance of network models is the noise

and incompleteness present in PPI networks. For example, if we take two

networks with the same structure, by removing edges from them we will

decrease the degrees of the nodes, the clustering coefficients and the average

diameters of both networks and therefore, while some structure between the

two networks might have remained similar, all three of the above properties

might differ substantially.

To tackle these issues we use the Graphlet Degree Distribution (GDD)

Agreement measure14,13 introduced by Pržulj14 to provide a detailed evalu-

ation of structural similarities of large networks. We give a few definitions

to explain this similarity measure. A graphlet is a small induced subgraph

of a network3. There are 30 possible non-isomorphic graphlets on 2, 3, 4

and 5 nodes. To calculate GDD agreement between two networks, we need

to calculate for each node in the network how many times it touches each

of the 30 graphlets. From a topological point of view, it is relevant to dis-

tinguish between automorphism orbits of each graphlet. For example, in

a 3-node path, the “end-nodes” are identical from the topological point of

view (i.e., can be mapped to each other by an automorphism, an isomor-

phism of a graph with itself – see14 for details), whereas the “middle node”

is different; therefore, a 3-node path has two different automorphism orbits.

There are 73 automorphism orbits for the 30 graphlets on 2 to 5 nodes. A

Graphlet Degree Distribution (GDD) is a 73-component distribution of the

automorphism orbits in a network. Its jth component, dj(k), is the sample

distribution of the number of nodes in the network touching a particular

graphlet (at automorphism orbit j) k times. Graphlet degree distribution

has the degree distribution as its 1st component, which corresponds to the

only automorphism orbit of a 2-node path (edge). The GDD Agreement is

a similarity measure between graphlet degree distributions of two networks.

It is a number between 0 and 1, meaning that two networks have similar

GDDs if their GDD agreement is close to 1, and otherwise, their GDDs are

different. It is important to note that graphlet degree distribution measures

the local structure of a network, because it is based on small local neigh-

borhoods of the nodes. It is especially a very strong measure of structural

similarities of small-world networks (those with small diameters), since in

these networks, 5-node graphlets reach all parts of the network. Since PPI

networks have small diameters, GDD is good for measuring their structure.
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We use GraphCrunch software package13 to calculate GDD agreement

and other network properties that evaluate the fit of model networks to the

data.

3. Application

3.1. Datasets and Learning

We apply the above described approach to model PPI networks of yeast and

human. These two particular species have been chosen because compared

to other eukaryotic species, they have the most complete and accurate PPI

network data available. For our learning set (henceforth Slearning), we

use the largest connected component of the high confidence yeast network

described in the study by Collins et al16. This part of the yeast S. cerevisiae

PPI network is believed to be of quality comparable to the data produced

by small-scale experiments. It has 1, 004 nodes and 8, 323 edges.

Table 1 presents real-world PPI networks that we modeled using our

trained geometric model. All these networks contain only physical interac-

tions between proteins. Using the notation from Table 1, note that Slearning

⊂ YCH ⊂ YCOL; that is, YCH is a high confidence part of the YCOL and

Slearning is the largest connected component of the YCH PPI network.

Table 1. Real-world PPI networks used to evaluate the performance of the trained
geometric model.

Network Nodes Edges Origin

YCH 1622 9074 high confidence yeast PPI network from Collins et al.16

YCOL 2390 16127 yeast PPI network from Collins et al.16

YBG 4716 32747 yeast PPI network from BIOGRID17

HBG 7930 23543 human PPI network from BIOGRID17

HRAD 9141 42456 human PPI network from Radivojac et al.18

We embed Slearning into a 3-dimensional cube using the embedding

algorithm described above. After that, we have 3-dimensional coordinates

of the 1, 004 nodes of Slearning PPI network; we present these coordinates

in Xlearning , a 3× 1004 matrix, and use Xlearning to learn the distribution

plearned(x). We got the highest value of the BIC for 7 mixture components

in the model and therefore we put d = 7 in the distribution plearned(x).
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3.2. Analysis

One of the most important network properties is the degree distribution.

We compare the degree distributions of two networks using Pearson corre-

lation coefficient. This coefficient ranges from −1 to 1: if it is close to 1

or −1, then there is a perfect linear correlation between two distributions

(where nodes are ordered according to their degrees), and if it is close to

0, then there is no linear correlation. We measure this, not the difference

such as sum of squared errors, because the latter is strongly affected by

the amount of noise in PPI network data, while the correlation between

distributions should be preserved even when some edges are missing (false

negatives) or are mistakingly present (false positives). Figure 1 presents

values of Pearson correlation coefficients of degree distributions between

real PPI and model networks.

Table 2. Models used to model PPI networks.

Network Model

ER Erdös-Rényi random graph model1

ER DD ER model with the same degree distribution as in data

GEO Geometric random graph model3

SF Scale-free Barabasi-Albert preferential attachment model2

STICKY Stickiness-index-based model5

TGEO The new trained geometric model

Note that by construction, ER DD model networks have exactly the

same degree distribution as real PPI networks and therefore, their Pearson

correlation coefficients with the PPI networks always equal to 1. It has

been observed that PPI networks have power-law degree distributions8,

which gave rise to popularity of scale-free network models. However, as

we can see in Figure 1, SF network model badly captures the degree dis-

tribution of the PPI network data compared to our new model, which has

learned and captured the degree distribution from the part of real-world

PPI network very well. As we can see in Figure 1, the new model signif-

icantly outperforms any other model in all cases. Note that we use only

high quality part of yeast PPI network for learning, but this allowed us to

generate model networks of high quality also for human PPI networks.

As illustrated in Figures 2 and 3, the trained geometric (TGEO) model is

better fitting in all cases, except one, than the standard geometric random

graph model (GEO). For BIOGRID17 and Radivojac et al. data sets18,
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Figure 1. Pearson correlation coefficients of degree distributions between real PPI and
model networks. Horizontal axis corresponds to the real PPI networks described in Table
1 and different labels correspond to different model networks described in Table 2.

Figure 2. Differences in clustering coefficients of data and model networks. Horizontal
axis corresponds to the real PPI networks described in Table 1 and different labels
corresponds to different model networks described in Table 2.

GEO and TGEO models perform worse then other models. As described

in section 2.4, this is likely caused by incompleteness and noise in the data.

By incompleteness we do not mean the number of nodes (proteins) in the

network, but presence or absence of real interactions among given nodes.

Obviously, real yeast PPI network has some fixed diameter and clustering

coefficient, which we can not measure now due to high noise levels in the

data. Yeast networks coming from different sources (such as Collins et al.16
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Figure 3. Differences in diameters of data and model networks. Horizontal axis corre-
sponds to the real PPI networks described in Table 1 and different labels correspond to
different model networks described in Table 2.

and BIOGRID17) have substantially different clustering coefficients and

diameters (YCOL has the clustering coefficient of 0.44 and the diameter of

4.81, whereas YBG has the clustering coefficient of 0.19 and the diameter of

3.71). Thus, these two characteristics at the moment can not tell us much

about the real structure of a PPI network.

Although global network properties are important, they might not cap-

ture the local structure of networks and are are also very sensitive to high

levels of noise. Therefore, we are more interested in a more structurally

constraining measure of network similarity, the GDD agreement14. Fig-

ure 4 presents GDD agreements between real PPI and model networks. It

shows that our new trained geometric model (TGEO) fits all but one PPI

network better than other models; the exception is yeast PPI network taken

from BIOGRID17, for which TGEO performs almost the same as STICKY

model, but it captures the degree distribution much better then STICKY

model (see Figure 1). Surprisingly, learning network structure from yeast

PPI data gives better modeling insights into modeling human PPI net-

works than do other network models. This suggests that PPI networks of

even such distant organisms as yeast and human exhibit similarities in their

structures.

4. Discussion and Conclusions

Many network models have previously been introduced attempting to cap-

ture specific sets of PPI network properties, or to mimic the way in which
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Figure 4. GDD-agreement between the data and model networks. Horizontal axis cor-
responds to the real PPI networks described in Table 1 and different labels correspond
to different model networks described in Table 2.

these networks might have evolved. However, it is difficult to say to what

extent network properties really describe network structure. Therefore,

network models should use all of the available real network information,

i.e., the entire network connectivity information, not only some of the net-

work properties, to learn the structure of PPI networks. Using our new

network embedding algorithm9 and our previous observations that geomet-

ric random graphs provide a good model for PPI networks3,14,9, we have

reduced the problem of constructing a well-fitting model for PPI networks

to a standard machine learning problem of density estimation. Our new

trained geometric model uses parts of PPI networks of high quality to learn

the network structure and uses this learned knowledge to generate model

networks with arbitrary numbers of nodes and edges. Our experiments

show that even if we use a learning PPI network from a simple eukaryotic

organism (i.e., yeast) and then use our model trained in this way to model

a PPI network of another higher eukaryotic organism (i.e., human), we get

a substantial improvement in the fit of our new network model to PPI net-

works over all other currently commonly used random graph models. This

suggest that PPI networks of even such distant species as yeast and human

exhibit similar structural properties.

Currently, noise is one of the biggest challenges in analyzing and model-

ing PPI networks. We intentionally used only high confidence data from the

study by Collins et al.16 to learn real structural properties of PPI networks
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and thus to avoid learning the properties of the noise in PPI networks. Once

the data of such quality becomes available for human and other species, it

should be used to train species-specific models.

Our new network modeling approach can be applied not only to model

PPI networks, but also to model other real-world networks. Since the dis-

tribution of points in a metric space is crucial for properties of geometric

graphs, by learning this distribution from real-world networks we can gen-

erate model networks with different structural properties and in that way

model networks arising in different applications.
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