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Some drugs affect secretion of secreted proteins (e.g. cytokines) released from tar-
get cells, but it remains unclear whether these proteins act in an autocrine manner
and directly effect the cells on which the drugs act. In this study, we propose a com-
putational method for testing a biological hypothesis: there exist autocrine signal-
ing pathways that are dynamically regulated by drug response transcriptome net-

works and control them simultaneously. If such pathways are identified, they could
be useful for revealing drug mode-of-action and identifying novel drug targets. By
the node-set separation method proposed, dynamic structural changes can be em-
bedded in transcriptome networks that enable us to find master-regulator genes or
critical paths at each observed time. We then combine the protein-protein interac-
tion network with the estimated dynamic transcriptome network to discover drug-
affected autocrine pathways if they exist. The statistical significance (p-values) of
the pathways are evaluated by the meta-analysis technique. The dynamics of the
interactions between the transcriptome networks and the signaling pathways will
be shown in this framework. We illustrate our strategy by an application using
anti-hyperlipidemia drug, Fenofibrate. From over one million protein-protein in-
teraction pathways, we extracted significant 23 autocrine-like pathways with the
Bonferroni correction, including VEGF−NRP1−GIPC1−PRKCA−PPARα, that
is one of the most significant ones and contains PPARα, a target of Fenofibrate.
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1. Introduction

Understanding mode-of-action of drugs has received considerable attention

in pharmacogenomics. Drug-response pathways at a transcriptome level

are successfully predicted by cutting-edge computational techniques.1, 2 On

the other hand, some drugs affect the pathways at protein level. For exam-

ple, drugs affect secretion of secreted proteins (e.g. cytokines and growth

factors) which are released from target cells. There is a possibility that

these proteins have effects on target cells through drug-effected autocrine

pathways. From the drug development viewpoint, these pathways could be

useful for revealing drug mechanism of action, potentiation of drug effects

and avoidance of side effects.

To validate the existence of such drug-affected autocrine pathways, we

propose a novel computational method for finding signaling pathways that

have the potential to regulate transcriptome networks. The method com-

bines transcriptome networks estimated as drug-response pathways from

mRNA expression data with proteome networks represented by protein-

protein interactions to extract such pathways. First, we estimate a dynamic

transcriptome network from drug-response time-course microarray data

by dynamic Bayesian networks with nonparametric regression.5 For this,

we propose the node-set separation method that enables us to find sub-

networks significantly activated at observed time points, master-regulator

genes and critical paths in the drug-response pathways. We then com-

bine protein-protein interaction (PPI) network with the estimated dynamic

transcriptome network. The candidate signaling pathways that connect a

ligand or a receptor to the key genes in the transcriptome network are

extracted and evaluated based on statistical hypothesis testing at each ob-

served time. Based on the computed p-values, the candidate drug-affected

autocrine pathways are selected by multiplicity corrected significance level.

Comparing with the existing computational methods to find mode-of-

action of drugs, the novelty of the proposed method is to consider the dy-

namical interactions between transcriptome and proteome networks. The

methods that consider the mode-of-action of drugs only in transcriptome

networks cannot be used for our purpose. Moreover, dynamic structural

changes of transcriptome networks obtained by the proposed node-set sep-

aration method is a key for our purpose, but it cannot be obtained by

ordinary dynamic Bayesian networks. For computational autocrine path-

way identification, correlation of microarray data between known ligand-

receptor pairs was used in cancer cells.6 The proposed method can be
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considered as an extension of this research direction to extract dynamics of

autocrine pathways from drug-response data. We would like to emphasize

again that the existence of drug-affected autocrine pathways is a hypothesis

and their existence has not been demonstrated. Therefore, to our knowl-

edge, this is the first genome-wide investigation to test this hypothesis.

We illustrate the whole process of the proposed method by an appli-

cation using anti-hyperlipidemia drug Fenofibrate, which is known as an

agonist of PPARα. The drug effect of Fenofibrate is not only lipid lower-

ing, but also anti-inflammatory in vascular cells.3, 4 The molecular mech-

anism of lipid lowering by Fenofibrate is well known. The mechanism de-

pends on ligand dependent transcription-activity in which PPARα binds

to a specific DNA element termed the PPAR response element (PPRE) of

beta-oxidation enzymes and proteins implicated in the reverse cholesterol

transport pathways. However, the molecular mechanism mediating trans-

repression of the anti-inflammatory effects of Fenofibrate which may include

post-transcriptional modification of PPARα has not been established.3, 4

Our method extracted candidate autocrine pathways including PPARα

with highly statistical significance. These pathways may be involved in

the trans-repression properties of PPARα. We also extracted 23 candidate

drug-affected autocrine pathways from over one million protein-protein in-

teraction pathways. Therefore, we observed candidate drug-affected au-

tocrine pathways that support the hypothesis.

2. Methods

2.1. Dynamic Transcriptome Network

Figure 1 represents the overview of the proposed method. Based on drug

response time-course microarray data, we estimate a dynamic transcrip-

tome network by the dynamic Bayesian network (DBN) model with non-

parametric regression.5 However, ordinary dynamic Bayesian networks can

estimate a network from time-course data, while at each observed time,

different sub-networks have high activity and transmit information of ex-

ternal signals to other sub-networks. Therefore, we need to extend dynamic

Bayesian networks to capture this feature.

The key idea of our DBN estimation, called node-set separation method,

is to define the active gene set for each time point. That is, a gene in an

active gene set is determined as a differentially expressed gene comparing

with the controls. Let At = {gi : pv(gi, t) ≤ θt} be the active gene set at

time t for t = 1, . . . , T , where gi represents the ith gene, pv(gi, t) is the
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Figure 1. Overview of the proposed method.

p-value of gi at time t, and θt is the threshold for time t that could be

determined by using false discovery rate for example. In our case, the p-

value of each gene is computed by comparing triplet expression values of the

gene at a time with control four replicate expression values, i.e., expression

data of non-treated cells. We then define the node set Nt = At−1 ∪ At for

t = 1, ..., T , where A0 is the empty set.

The definition of the node set has the basis on the Markov process
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of the dynamic Bayesian networks, i.e., the DBN assumes the first or-

der Markov process among time-course data; this yields the decomposition

Pr(X1, ..., XT ) =
∏T

t=1 Pr(Xt|Xt−1), where Xt is the expression data

vector at time t and X0 is the empty set. The transcriptome network at

time t, we denote Gt, is estimated for the node set Nt by the DBN and

nonparametric regression with whole expression data X1, ..., XT .5 Finally

the dynamic transcriptome network is obtained by G = G1 ∪ · · · ∪GT . The

advantage of this estimation procedure, i.e., using node set Nt separately,

by comparing with other algorithms that use N = A1 ∪ · · · ∪ AT as the

node set is not only finding dynamics of transcriptome networks, but also

possibility to reduce false positive edges in the network, because we can

reduce the size of the gene set for each observed time efficiently; this can

increase the accuracy of the structure learning.

2.2. Signaling Pathway Extraction

2.2.1. PPI Paths for Candidate of Signaling Pathways

First, we define master-regulator genes in each node set Nt, based on the

estimated Gt for t = 1, ..., T . In this paper, the hub genes in Nt are defined

as the top 5% genes; the genes in Nt are ranked according to the numbers of

their direct child-genes in Gt. We denote the set of hub genes of Nt as Ht.

We also focus on the direct parents of the hub genes and represent the set

of parent genes of the hub genes in Ht as Pt. Since the hub genes and their

direct parents could control the transcription levels of many genes in Nt,

we thus define the set of master-regulator genes at time t by Mt = Ht∪Pt.

We then focus on the PPI network for exploring candidates of signaling

pathways affecting master-regulator genes. On the PPI network, for gi ∈

Mt, we search receptors and ligands, denoted by rj , that connect gi by l

or less edges, i.e., gi connects with rj by l− 2 or less intermediate proteins.

We denote the kth PPI path for the genes in Mt ending at gi ∈ Mt as

stk = rj – p1 – p2 – · · · – gi where p1 and p2 represent the intermediate

proteins in the PPI network.

2.2.2. P-Values for PPI Paths by Meta-Analysis

Let [pi] represent the gene for the ith protein in the PPI network, i.e., if

pi is a protein translated from the i′th gene, we have [pi] = gi′ . We also

define [rj ] in the same way. We assess the significance of stk using the

p-values, pv([p′], t) for p′ ∈ stk\{gi}, by statistical meta-analysis.7 That

Pacific Symposium on Biocomputing 14:251-263 (2009)



September 22, 2008 15:53 Proceedings Trim Size: 9in x 6in tamada

is, we regard the p-value of each genes in stk as an evidence whether the

PPI pathway stk is activated or not. We use the statistical meta-analysis

method for integrating p-values of genes in stk into the p-value of stk.

The integrated p-value for stk will be computed under the null hypothe-

sis: all p-values pv([p′], t) are not significant, and the alternative hypothesis:

at least one or more p-values pv([p′], t) are significant. That is, if the null

hypothesis is not rejected, stk seems to be not functional; otherwise if we

observe the small p-value, stk is activated and is functional. For the meta-

analysis, we use Fisher’s inversion method to integrate p-values. We remove

the p-value of gi for the meta-analysis, because gi was selected as a signifi-

cant genes in Nt. Therefore, it is obvious that stk is decided as significant

if gi is included in the meta-analysis calculation, and is meaningless.

Since the node set Nt is constructed by the active gene sets of time

t and t − 1, there are two ways to assess the significance of stk by using

either p-value at time t or t − 1. In the real data analysis, we test both

cases and assess the significance of each PPI path. We determine stk is

significant if and only if either pv(stk, t) < ξt or pv(stk, t− 1) < ξt−1 holds,

where pv(stk, t) is the integrated p-value of the PPI path stk with p-values

at time t and ξt is the threshold determined by considering multiplicity of

the testings. In the real data analysis, we use 1% significant level with the

Bonferroni correction. Obviously, other methods for controlling multiplicity

of testing, such as family-wise error rate, false discovery rate and so on,

can be used for reducing false negatives. The reason why we choose the

Bonferroni method is that since we use the results of statistical tests for

mRNA expression data for finding the significance of protein levels, some

changes of protein levels are not measured normally. Therefore, we choose

the most strict correction method to achieve a conservative method.

Finally, we should indicate that if high-throughput protein expression

data such as time course protein array data are available, we can replace

the results of statistical testings for mRNA transcriptional data by the

results from protein expression data. Our method can be applied directly

to high-throughtput protein expression data immediately.

3. Discovering Fenofibrate-Affected Pathways

In order to demonstrate the capability of the proposed approach, we

analyzed gene expression data of human umbilical vein endothelial cells

(HUVECs) treated with the anti-hyperlipidemia drug, Fenofibrate. Fenofi-

brate is an agonist of the peroxisome proliferator-activated receptor α
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(PPARα), which is known as a transcription factor that induces genes re-

lated to the lipid metabolism. Also, recent studies revealed that Fenofibrate

has anti-inflammatory effects.3, 4 Indeed, PPARα activators positively reg-

ulate the secretion of secreted proteins.8 Therefore, we think a PPARα ac-

tivator is an optimal target (example) to evaluate our approach presented.

This application aims at identifying Fenofibrate-affected autocrine path-

ways related to its anti-inflammatory effects, and at elucidation of unknown

modes-of-action.

3.1. Data Set

3.1.1. HUVEC Gene Expression Data and Transcriptome Networks

We used CodeLinkTM Human UniSet I 20K arrays for measuring drug-

response time course and knockdown expression data. For the time course

data, we observed 6 time points including the control, 2, 4, 6, 8 and 18

hours after treated with 25 µM Fenofibrate in 3 or 4 replicates. For the

knockdown gene expression data we knocked down 400 transcripts, which

are mainly transcription factors, by siRNAs. We excluded probes which

have less than 90% G flags for all 400 arrays from the knockdown expression

data. Missing values were imputed by LSimput.9

We selected genes whose SAM10 (Significance Analysis of Microarrays)

q value ≤ 5% and fold change ≥ 1.5 at time t for At where t = 1, . . . , 5

corresponding to 2hr, 4hr, 6hr, 8hr and 18hr, respectively. If a gene has

more than one probe in the microarrays, we selected the one that has the

smallest average of SAM p values for all the time points. This is required

for the later steps to match each probe in the microarrays to a protein in

the PPI network. Finally, the numbers of genes in At are 14, 5, 144, 129

and 370, respectively. The numbers of genes in Nt are 14, 19, 144, 200, and

454, respectively. The total number of unique genes in the network is 527.

The online supplement30 gives the complete list of these genes.

The transcriptome networks Gt (t = 1, . . . , 5) were estimated with

the prior networks which were estimated from knockdown gene expression

data to incorporate transcriptome level changes which can be observed

by knocking-down genes by siRNAs.11 The reliability of the edges in the

estimated networks is calculated by the bootstrap method1 with 1 000 iter-

ations. Edges whose bootstrap probability is less than threshold 0.05 were

removed from the final transcriptome networks.
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Table 1. Summary of the dynamic transcriptome networks and the extracted
pathways on the PPI network (l = 4). “|Ht|” is the number of hub genes,
“|Mt|” the number of hubs and their parents in Gt, and “# stk” the number
of all possible pathways. Columns “eval t − 1” and “eval t” are the numbers
of pathways that are statistically significant if evaluated by pv(stk, t − 1) and
pv(stk, t) respectively.

Gt nodes edges |Ht| |Mt| # stk eval t − 1 eval t

1 (2hr) 14 59 1 9 590 644 − 125

2 (2hr/4hr) 19 91 1 2 28 384 23 271

3 (4hr/6hr) 144 625 7 31 1 016 831 673 1 870

4 (6hr/8hr) 200 874 10 42 1 861 999 1 744 587

5 (8hr/18hr) 454 1 982 22 51 1 194 215 436 150

3.1.2. Protein-Protein Interaction Data

We used the integrated PPI data set publicly available in Genome Net-

work Platform24 (GNP) (released on May 27 2008). GNP collected

the PPI data from the public PPI databases of BIND25 (released on

Jun. 25 2006), BioGRID26 (ver. 2.0.37), HPRD27 (rel. 7), IntAct28 (re-

leased on Jan. 25 2008), and MINT29 (released on Dec. 21 2007). In ad-

dition to the literature based data, it also contains their own experimental

data by yeast two hybrid experiments. In total, GNP PPI data consists

of 49 950 non redundant PPIs for 10 103 unique Entrez Gene IDs. By re-

moving proteins which does not have the corresponding probes in the time

course data, the final PPI network contains 42 570 edges for 9 016 proteins.

We extracted 308 receptor and 149 ligand (in total 457) proteins from the

PPI network, which are used as starting nodes rj of the pathway extraction.

3.2. Results

Table 1 summarizes the number of nodes (|Nt|), edges, hubs (|Ht|), and

hubs and their parents (|Mt|) in the dynamic transcriptome network Gt.

Here hub genes are defined as top 5 % genes ranked according to the number

of direct child-genes in Gt. These hub and their parent genes were used

as target nodes of the pathway extraction in the later step. The hub

genes include cell growth related genes (SESN2), inflammatory response

transcription factors (CEBPB, ANKRD1, PPARα), as well as many genes

of unknown function. The complete lists of hub genes and their parents are

available on the online supplement.30

Next we checked the number of possible pathways to determine the ap-

propriate l (maximum distance). Table 2 shows the number of all possible
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Figure 2. Extracted autocrine ligand pathways for G3 (left), G4 (center), and G5

(right). The top two nodes VEGF and PDGFA are ligand genes in the network. Nodes
and edges in the bottom are the transcriptome network. The middle part contains the
proteins and the extracted significant PPI pathways. The large version of this figure is
available on the online supplement.30

Table 2. The number of
possible pathways s5k and
the final significant path-
ways with pv(s5k , 5) < ξt

with respect to the maxi-
mum distance l.

l all final

1 13 3

2 651 3

3 27 373 43

4 1 194 215 150

5 51 078 582 806

Table 3. The numbers of all the ALPs from ligands in
Gt′ to Mt. Column “total” represents the number of all

possible pathways (l = 4). Columns “eval t− 1” and “eval
t” are the numbers of ALPs that are statistically significant
if evaluated by pv(stk, t − 1) and pv(stk, t) respectively.

G
t′

ligands Mt total eval t − 1 eval t

2 (2hr/4hr) 3 (4hr/6hr) 437 35 126

2 (2hr/4hr) 4 (6hr/8hr) 894 160 27

3 (4hr/6hr) 4 (6hr/8hr) 1 448 177 28

2 (2hr/4hr) 5 (8hr/18hr) 533 30 27

3 (4hr/6hr) 5 (8hr/18hr) 873 23 23

4 (6hr/8hr) 5 (8hr/18hr) 873 23 23

pathways from ligands or receptors to M5 (the hubs and their parents in

8hr/18hr transcriptome network G5) evaluated by p-values of 18hr Fenofi-

brate time course gene expression data (pv(s5k, 5)). According to this table,

we decided to use l = 4 since it seems to be the most realistic and appro-

priate for the later analysis.

The number of the extracted pathways are shown in Table 1. For ex-

ample, there are 1 194 215 possible pathways within distace l = 4 from

receptors or ligands to hub and their parents in G5. Out of these huge

number of pathways, there are only 150 statistically significant pathways if

their p-values were evaluated by the gene expression data observed at time

t = 5 (18hr). The complete list of the significant pathways are avaiable on

the online supplement.30

In order to confirm that the method can capture known pathways related

to Fenofibrate, we focused on PPI paths related to PPARα, since PPARα

is a target of Fenofibrate. In the dynamic transcriptome network analysis,
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Figure 3. The top four autocrine pathways and their p-values, which are connected to
G5 (8hr/18hr transcriptome network) hub and their parent genes. Some parts of tran-
scriptome networks and the significant pathways at the previous times are also presented
to illustrate dynamical changes extracted by the proposed method.

PPARα is included in the node sets N4 and N5, i.e., PPARα was over-

expressed at 8 and 18 hours. In both times, PPARα was selected as a

hub gene, in G4 PPARα has 21 children and 31 in G5. Since we would

like to investigate drug-affected autocrine pathways, we first limited the

candidate PPI paths by autocrine ligand pathways (ALPs) that connect

ligands included in earlier time transcriptome networks, i.e., active ligands

in earlier times, to hub genes and their parent genes.

By the Bonferroni correction with 1% significance level, only 23 path-

ways from ligands in G3 or G4 to M5 evaluated by 8hr expression data

remained as significant ALPs (Table 3). Among them, we found that

the pathway including PPARα as a hub gene of the gene network has

high statistical significance (the fourth highest significance). This ALP

is VEGF−NRP1−GIPC1−PRKCA−PPARα. PRKCA, protein kinase C

alpha, is located on the upstream of PPARα. PRKCA is one of the mem-

bers of serine- and threonine-specific protein kinases and is related to phos-

pholyration of many genes including PPARα. Protein kinase C inhibitor

inactivates the phosphorylation of PPARα and induces the trans-repression

activity of PPARα in hepatocytes.14, 15 Our method was able to extract

this known relationship, which is related to PPARα’s trans-repression, with

high statistical significance. VEGF, vascular endothelial growth factor A,

is also included in this pathway. VEGF is a member of the PDGF/VEGF
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growth factor family and is the predominant regulator of angiogeneis. It

has been reported that Fenofibrate induces VEGF mRNA and prevents cell

apoptotic cell death in human retinal endothelial cells (HRECs).9 VEGF is

also significantly up regulated in our microarray experiment. From this, our

method suggests that the trans-repression property of Fenofibrate might be

caused by PRKCA mediated thorough VEGF signaling.

We also found out that CEBPB (CCAAT/enhancer binding pro-

tein beta) is the ending node of the ALP and a hub gene of

the gene network with the highest significance level. This ALP is

VEGF−NRP1−FGFR1−CREBBP−CEBPB. CEBPB is a transcription

factor which can bind as a homodimer or heterodimiers with the related

proteins to certain DNA regulatory regions. CEBPB is important in the

regulation of genes involved in immune and inflammatory responses and has

been shown to bind to the IL-1 response element in the IL-6 gene, as well as

to regulatory regions of several acute-phase and cytokine genes. Fenofibrate

decreases CRP (C-reactive Protein) and fibrinogen which are risk factors of

vascular disorders, through CEBPB.16, 17 Our method extracted the ALP

including CEBPB that is a key gene for anti-inflammatory action and sug-

gests that this ALP might also mediate the anti-inflammatory effects of

Fenofibrate.

DDIT3 (DNA-damage-inducible transcript 3), which is a transcription

factor of C/EBP family, is the ending node of the third highest ALP. This

gene is involved in atherogenes induced by oxLDL (oxidized LDL)18 and

increases promoter activity of MCP-1.19 PPARα increases uptake of oxLDL

in bovine aortic endothelial cells (BAEC)20 and induces atherogenesis in

response to oxidized phospholipids, constituents of oxLDL, through the up-

regulation of MCP-1 and IL-8 in human aortic endothelial cells (HAEC).21

From these facts and our results, DDIT3 may partly play a role in oxLDL-

induced atherogenesis through PPARα.

4. Discussion

In this paper, based on the assumption of the existence of drug-affected

autocrine pathways, we presented a novel computational method capable

of finding them. The results suggest that the autocrine pathways exist and

have an important role in the regulation of transcriptome level networks

affected by drugs. Previously, identification of autocrine signaling loops

in cancer cells by microarray data was proposed,6 but only co-expression

of known ligand-receptor pairs was considered. The method proposed in
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this paper can be viewed as an extension of their work by adding PPI net-

works and dynamics of transcriptome network that are essential to extract

drug-affected autocrine pathways. Moreover, unlike the transcriptome level

analyses,1, 2, 6 the proposed method can capture proteomic and metabolomic

level signaling pathways by exploiting the PPI networks and drug-response

gene expression data. By combining the dynamic transcriptome network

estimated by the node-set separation method and the meta-analysis tech-

nique, the method can extract statistically significant pathways from a huge

number of possible candidates. Compared to the existing methods for ana-

lyzing signaling pathways,22 the proposed method can extract genome-wide

dynamical changes of the signaling pathways that are statistically signifi-

cant. Although the proposed method currently uses only gene expression

data, it can be easily applied to the genome-wide proteomic time course

data when they are available.

In the real data analysis, we applied the method to transcription ex-

pression data in Fenofibrate treated HUVECs. Our proposed method ex-

tracted statistically significant pathways from over a million of the pos-

sible PPI pathways. Among them, the pathway from VEGF to PPARα

through PRKCA has high statistical significance. PRKCA regulates the

trans-repression activity of PPAR by the phosphorylation of PPARα. Thus,

we speculate that this pathway might involve the transrepression effects of

Fenofibrate. Other pathways (e.g. VEGF to CEBPB) which might be re-

lated to the drug effect of Fenofibrate are also extracted by this method.

The method proposed in this study has potential advantages for drug dis-

covery and development. First, our approach can outline drug mode of

action not only at the level of mRNA regulatory relationships, but also

protein-protein interactions. Pathways extracted in this study can not be

detected by using gene networks based only on transcriptome data. Sec-

ondly, potentiation of existing drugs has recently been recognized as an

important area of anti-tumor research.23 We think our approach will be

able to detect candidate targets in silico. For example, NRP1 (Neuropilin-

1) is a co-receptor for VEGF and is present in both the pathways from

VEGF to PPARα and from VEGF to CEBPB. Small molecules targeting

NRP1 have the potential for potentiation of the anti-inflammatory effects

of Fenofibrate.
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