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We present a new multiscale method that combines all-atom molecular dy-
namics with coarse-grained sampling, towards the aim of bridging two levels of

physiology: the atomic scale of protein side chains and small molecules, and the

huge scale of macromolecular complexes like the ribosome. Our approach uses
all-atom simulations of peptide (or other ligand) fragments to calculate local

3D spatial potentials of mean force (PMF). The individual fragment PMFs are

then used as a potential for a coarse-grained chain representation of the entire
molecule. Conformational space and sequence space are sampled efficiently us-

ing generalized ensemble Monte Carlo. Here, we apply this method to the study
of nascent polypeptides inside the cavity of the ribosome exit tunnel. We show

how the method can be used to explore the accessible conformational and se-

quence space of nascent polypeptide chains near the ribosome peptidyl transfer
center (PTC), with the eventual aim of understanding the basis of specificity

for co-translational regulation. The method has many potential applications

to predicting binding specificity and design, and is sufficiently general to allow
even greater separation of scales in future work.

Keywords: multi-scale modeling, molecular dynamics, ribosome exit tunnel,

generalized ensemble, translation, PMF, coarse-grain, Monte Carlo.

1. Introduction

It is often the case that we wish to predictively simulate the molecular inter-
action of something small (a peptide or other ligand) with something very
large (a macromolecular complex). Molecular dynamics (MD) simulations
that capture chemical atomic detail are crucial to this goal. For instance,
the effect of individual water molecules near a surface may be critical to
ligand affinity, yet the computational cost of simulating large systems in
atomic detail can be a practical impossibility. New multiscale methods are
essential to bridging the atomic scale with the much larger scale of macro-
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molecular complexes.
One example of such a system is the ribosomal exit tunnel. The ribosome

is a complex catalyst for the synthesis of new proteins. As nascent polypep-
tide chains are synthesized at the ribosome peptidyl transferase site (PTC),
they emerge from the ribosome only after traversing a long tunnel.1,2

The ribosome exit tunnel is believed to act as a discriminating gate for
protein sequences. Some peptide sequences have been shown to regulate
their own translation process by directly interacting with components of
the exit tunnel as they are being translate although the specific details of
this molecular mechanism is unclear. For example, stalling of the SecM3–5

and tnaC6,7 peptides requires critical residues in the nascent peptide: a ter-
minal Pro near the PTC site and a Trp near the constriction site, between
ribosomal proteins L4 and L22 which protrude into the cavity at the tunnels
narrowest point. Macrolide antibiotics are also known to bind near the con-
striction site, arresting translation, and inducing conformational changes in
L22 observed in crystal structures.8

What is the molecular mechanism for peptide recognition in these
stalling events? All-atom computer simulation is key to understanding this.
There have been previous efforts to simulate the ribosome9 in atomic de-
tail, yet this remains a challenge for all-atom molecular dynamics, due to
its enormous size. Furthermore, studying sequence specificity requires mul-
tiple simulations to compare different sequences, and accurate free energy
calculations incur even more computational cost.

Here, we present a multiscale simulation approach we call the Multi-
Scale Fragment Potential (MSFP) method, that aims to overcome some of
these challenges. In MSFP, the ligand of interest is divided into fragments
(a peptide into amino acids, for instance). First, all-atom molecular dy-
namics simulation is used to calculate the affinity of each fragment along
the binding surface or other molecular environment as a 3D spatial poten-
tial of mean force (PMF). The fragment potentials are then used to locally
bias conformational sampling in a coarse-grained model of the full ligand
(a polypeptide chain, for example), allowing for efficient sampling of con-
formations and fragment sequences (different orderings and combinations
of fragments). If desired, this process can be repeated iteratively, using pre-
dicted sequences and conformations from the coarse-grained sampling to
seed further all-atom simulations.

In this report, we present a proof-of-principle study, using a reduced
alphabet of single amino acid side chain analog PMFs constructed from
large-scale MD simulations of single amino acid probes sampling the entire
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cavity of the ribosomal exit tunnel. In principle, the MSFP method is not
limited to any particular molecular system. Here we use PMF maps of the
ribosomal exit tunnel as a realistic example.

For the coarse-grained sampling, we use an efficient generalized ensem-
ble Monte Carlo technique, which we describe in the Methods section. We
demonstrate, for short polypeptide chains, how MSFP can obtain accurate
estimates of free energy differences between sequences and conformational
states, and with and without the inuence of the ribosomal exit tunnel PMFs.
We discuss the differences between MSFP and existing multiscale methods,
the approximations assumed in the method, and future directions of this
work.

2. Methods

2.1. Theory

Here we rigorously define the approximations in the multiscale fragment
approach. As we will see, there is a natural decomposition to the approx-
imation that corresponds to the additive terms in the coarse-grained po-
tential used in the MSFP method. This theoretical treatment is useful for
substantiating the the method, and is a useful starting point for making
accurate approximations.

2.1.1. The fragment approximation

Consider the Hamiltonian H(x) for a molecular system described by co-
ordinates x = {p, s, e}, where p represents a set of protein coordinates, s
represents a set of solvent coordinates, and e represents a set of ‘environ-
ment’ coordinates, for example, the atoms of a protein receptor or other
molecular surface (Figure 1).

H(x) = Upp(p) + Ups(p, s) + Upe(p, e) + Uss(s) + Uee(e) + Use(s, e)

Here, Upp is the potential from the protein self-interactions, Ups is the
potential due to all protein-solvent interactions, Upe is due to all protein-
environment interactions, and so on. (Here, we are considering the ligand
to be a polypeptide, but the treatment is general.)

Consider the partition function for this system at inverse temperature
β = 1/kBT when we integrate out the solvent and environment coordinates
to achieve a description of Z(p), the partition function as function of the
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Fig. 1. A molecular system is decomposed into protein, solvent, and environment co-

ordinates.

protein coordinates alone.

Z(p) =
∫
ds

∫
de exp(−βH(p, s, e)) (1)

For the time-being, we will consider the case where the environment
coordinates are fixed with respect to the protein and solvent. In this case,
Uee is constant and can be ignored, while Upp and Upe depend only on the
protein coordinates, and Use depends only on the solvent coordinates. This
yields

Z(p) = Zp(p)Zs(p) (2)

where

Zp(p) = exp(−β[Upp(p) + Upe(p)]) (3)

Zs(p) =
∫
ds exp(−β[Ups(p, s) + Uss(s) + Use(s)]) (4)

Here, Zp(p) is the Boltzmann factor due to protein self-interactions and
the environment, and Zs(p) can be thought of as a solvation free energy
term. Zs(p) contributes an extra “weight” to each conformation p due to
interactions with the solvent.

Next, we introduce the fragment approximation. Suppose we have esti-
mates for the partition functions Z(pi) = Zp(pi)Zs(pi) over a set of disjoint
fragments {p1,p2, ...,pn} = p. If we assume that each fragment is indepen-
dent, then the partition function for the entire protein can be approximated
as

Z(p) ≈
∏

i

Z(pi)
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To correct this approximation for the true Z(p), we would have to multiply
by a correction factor

C(p) =
Z(p)∏
i Z(pi)

This correction factor represents the cooperativity of fragments as a func-
tion of the protein position p. Any non-additivity in the free energies is
accounted for by Fcoop(p) = −β−1 logC(p). Note that we can separate the
protein non-additivity of fragments and the solvent non-additivity:

C(p) = Cp(p)Cs(p) =
Zp(p)∏
i Zp(pi)

· Zs(p)∏
i Zs(pi)

If the protein-protein interactions are represented by an additive pairwise
potential (as with most all-atom forcefields), then we can further reduce
the cooperativity correction factor to the following form:

C(p) = exp[−β
∑
i6=j

Upp(pi,pj)]
Zs(p)∏
i Zs(pi)

A similar approach, with the environment coordinates not fixed, leads
to a similar expression, but with Zs(p) substituted with Zse(p) =∫ ∫

ds exp(−β[Ups(p, s)+Uss(s)])de exp(−β[Upe(p, e)+Use(s, e)+Uee(e)])
Now we can interpret the terms in the correction factor to have some in-

tuitive meaning. The Boltzmann factor term on the left accounts for purely
inter-residue interactions, mostly protein chain connectivity. The term on
the right accounts for cooperativity (between fragments) due to solvent ef-
fects (hydrophobicity, charge screening, etc., and any mutual interaction of
the solvent with the environment such as surface tension, molecular shape,
etc.).

These two effects are exactly what we must add to the fragment poten-
tials in order to construct an accurate coarse-grained model. In this paper,
we use a simple dihedral potential with chain connectivity (described below)
as a first approximation to a more detailed correction.

It is worth noting some useful features of the theory above. One is that it
provides a framework for making successive many-body (2-, 3- and 4-body,
say) corrections to the MSFP method, to systematically make corrections
to a coarse-grained potential to improve the approximations. One way to
do this is to simulate larger fragments (i.e. groups of smaller fragments)
to quantify many-body interactions, at the cost of much more simulation.
This kind of iterative approach is also a useful way to quantify the accuracy
of any given coarse-grained approximation.
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2.2. MD simulation of amino acid analogs in the ribosomal

exit tunnel

The MD simulation protocol is described as in.10 The model is built from
a cut-out of the Haloarcula marismortui X-ray structure (pdb 1S7211), in-
cluding the ribosome tunnel and nearby areas, explicit water and ions (Fig-
ure 3A). The inner surface of the ribosome tunnel was probed with small
molecule analogs to amino acid sidechains. All-atom molecular simulations
using the AMBER forcefield were performed with probe molecules exhaus-
tively umbrella-sampled at a series of restrained grid points, which were
then analyzed using WHAM,12,13 yielding comprehensive maps of the 3D
potential of mean force (PMF) for the single amino acid sidechain analogs
throughout the ribosomal exit tunnel. The resolution of these maps is 1Å, in
the center-of-mass coordinate of the sidechain. It is important to note that
while these 3D PMF maps are constructed from small molecule sampling,
they are designed to capture the interactions of solely the single amino acid
side chain with the chemical environment of the tunnel, including the effect
of the solvent.

2.3. Coarse-grained MC sampling of protein chain

A Monte Carlo scheme was used to broadly sample conformational and
sequence space under the influence of a coarse-grained potential. In this
scheme, the peptide chain object is an all-atom structure, but with fixed
bond lengths, which is convenient for transporting conformations from the
coarse-grained phase back into all-atom simulations (Figure 3B). The form
of the potential is

U = Usteric + Utrans +
N∑

n=1

Udih(xn, s(n)) + PMF (xn, s(n))

where x1, x2, .....xn are the coordinates, and s(n) the amino acid, of each
residue for chain index n. Usteric is a steric repulsion term calculated over
all atoms in the structure as

∑
i6=j Θ(rij − r0)(σij/rij)6, where rij is the

distance between atoms i and j, Θ is the Heaviside step function, and σij

are standard atomic radii. r0 is set to 1.2Å. Utrans is a harmonic potential
that allows translations about an anchor point, which we tether to the
backbone carbon of the last residue in the chain (nearest to the PTC). The
PMF potential is a function of the side chain centroid, and is evaluated
by linear interpolation from the grid of stored values. There is one PMF
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grid for each residue type: ALA, ASP, ILE, LYS, TRP. Udih is a backbone
dihedral potential compiled from the top500 database.14 Note that in this
model, there is no interaction of the chain with itself, except for simple
sterics, respecting the distribution of dihedral angles.

Allowed move sets for the coarse-grained chain include: (i) chain growth
or deletion by one residue, at the N-terminal end of the chain (ii) backbone
dihedral (φ,ψ) rotations, (iii) random perturbations to side chain χ angles,
(iv) mutation of a residues to a new amino acid, (v) translation of the entire
chain.

The nascent peptide anchor location has been defined based on the crys-
tal structure of a pre-translocational intermediate of Haloarcula marismor-
tui (pdb 1KQS15) which includes the tRNA analog A76. We structurally
aligned the pre-translocational intermediate to the ribosome structure on
which we based our model (pdb 1S7211), and find little variation in the area
of the PTC site, with especially the A and P loops structurally unchanged.
It is believed that the polypeptide is attached close to atom 3OH of the
tRNA analog A76.15 We use the location of this atom as an anchor point
for the growing polypeptide chain in our MSFP simulation.

2.4. Flat-histogram generalized ensemble sampling

For enhanced efficiency, we sample from what can be called a generalized
ensemble.16,17 Instead of a single potential, we sample from an ensemble of
potentials, Uk, each with index k representing a binned macrostate of the
chain that we wish to sample over. For this study, we have chosen states
k ≡ (s,N), each representing a chain of length N where the N th residue is
amino acid s.

Consider a generalized ensemble of Hamiltonians

Hk(x) = βUk(x) + gk

where β = 1/kBT , kB is the Boltzmann constant, T is temperature, and
we have perturbed each Hamiltonian Hk(x) by a weighting term gk. The
generalized partition function for the entire ensemble is

Z =
∑

k

∑
x

exp(−Hk(x)) =
∑

k

Zk exp(−gk)

where Zk is the unperturbed partition function for the ensemble indexed by
k. To achieve uniform sampling across states k, we use the flat-histogram
method of Wang and Landau18 to iteratively converge upon weights gk =
logZk +C, for some arbitrary constant C. Once converged, the free energy
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of state k is obtained as −kBT · gk. In this algorithm, the number of times
a state k is visited is stored as histogram counts Wk. Initially, all the gk are
equal. Each time a state k is visited, gk is incremented by a small amount
δ, and the histogram count Wk is increased by one. If the histogram is
sufficiently flat (when all Wk ≥ γ〈Wk〉), δ is scaled to δ ← αδ, where
0 < α < 1, and 0 < γ < 1.

3. Results

3.1. Validation of the sampling algorithm

We simulated the sequence (Ala)5, using a sterics-only (no external PMF)
coarse-grained potential, to validate the performace of the sampling. Here,
the sequence stays fixed, but the chain is allowed to grow or shrink by
one monomer at a time. The spring constant for the C-terminus tether
was set as to produce fluctuations smaller than 0.1Å in the the anchored
atom position. The flat-histogram method ensures that that the simulation
converges to a random walk in chain length.

In Wang-Landau histogram method, there is a trade-off in the initial
choice of the weight increment δ. For accuracy, δ should be kept small, to
achieve good resolution in the resulting histograms, as the free energy esti-
mates are influenced more heavily by the sampling early in the simulation.
However, as δ becomes small, the rate of convergence slows. By trial and
error with the ALA5 sequence, we found that δ = 0.001, γ = 0.95, and
α = 0.9, with weights updated every 100 MC steps, achieved a good bal-
ance and accuracy and speed. The free energies reach convergence within a
few hours of real-time computation on a single processor of an 3 GHz Intel
Xeon MacPro.

Because the only terms in the potential are dihedral preference and ster-
ics, the only determinant of the free energies in this case is the accessible
conformational volume, which should be roughly equal. After about 2 mil-
lion MC steps, the computed free energies as a function of chain length
converge to within < 0.1kBT from each other (Figure 2). These remain-
ing free energy differences are due to both the accuracy resolution of the
technique, and the slight differences in excluded volume for different chain
lengths.

Pacific Symposium on Biocomputing 14:340-352 (2009)



September 17, 2008 12:26 WSPC - Proceedings Trim Size: 9in x 6in voelz˙revised

Fig. 2. Chain-growth sampling of Ala5 shows convergence of generalized ensemble sam-

pling to within 0.1kBT the predicted values . The free energies are plotted with a refer-
ence state so that the lowest free energy is set to zero.

3.2. Sampling conformational and sequence space of

peptide pentamers

Generalized-ensemble Monte Carlo using MSFP was performed across all
sequences from the 5-letter alphabet of residues (A,D,I,K,W) and chain
lengths ranging from 1 to 5 monomers, in both the absence and the presence
of the computed PMF potential. The macrostates k = (N, s) were used for
the Wang-Landau flat-histogram algorithm. The MC parameters were those
derived from our previous validation simulations above.

Pentamer sampling in the absence of the PMF (with dihedrals and
sterics), produced an equilibrated trajectory, but with fluctuations in the
weights slow to converge due to the number of possible macrostates. As
expected, free energies were determined by the accessible conformational
volume of each residue. But because the weight updating increment is not
decreased until a sufficiently flat sampling histogram has been achieved, the
rate-limiting step for weight convergence is the sampling transition rates to
unfavorable states. In this case, mutations to the bulky tryptophan residue
had the lowest acceptances.

Pentamer sampling in the presence of the PMFs showed similar con-
vergence behavior, but also showed strong specificity for particular peptide
sequences and conformations during the coarse-grained trajectories that
were simulated. Most notably, the sequence ADDAA sampled a conforma-
tional basin that was enthalpically favored by about 30 kcal/mol (Figure 4).
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With more sampling, and complete analysis will allow us to determine the
entropic components of this binding affinity that our model predicts. For
sequences predicted to have high affinity such as these, we can transport
conformations back into detailed all-atom MD simulations of the ribosome,
to test the predictions of MSFP. The role of water and/or entropic stabi-
lization of peptides confined within larger macromolecules is important to
many fundamental biological processes, and is an area of active research.

Some of the convergence issues we observe with the Wang-Landau algo-
rithm can be ameliorated by augmenting the weight-updating procedure,19

or using more sophisticated generalized ensemble methods.16,20,21 Refer-
ence states for fragment PMFs may need to be validated and adjusted for
optimal convergence.

4. Discussion

Many approaches have been developed for multiscale simulation,22,23 as
well as coarse-grained models for proteins.24 The main goal of much of
this work has been to develop accurate models that require fewer degrees
of freedom, in order to speed up molecular simulations with minimal loss
of accuracy in inter-particle interaction. Many of these methods rely on
atomically detailed reference simulations. The Multiscale Coarse-Graining
Method (MS-CG)25,26 is an approach for generating a consistent27,28 coarse-
grained approximation to a many-body potential by using a force-matching
technique from reference simulations. Inverse Monte Carlo approaches have
also been used to optimize potentials for coarse-grained models using dis-
tributions calculated from atomistic reference simulations29,30

Two kinds of information are used to build a coarse-grained potential
using the MSFP method: a potential of mean force derived from atomically
detailed fragment simulations, and a potential that accounts for fragment
cooperativity, mainly due to chain connectivity (although other cooperative
effects are important). While large-scale fragment simulations are compu-
tationally feasible by a variety of methods,10,31 detailed simulation of a
ligand’s self-interaction within its proper context (in this case, a nascent
polypeptide in the unique environment of the ribosomal exit tunnel) can
be prohibitively expensive. With the MSFP approach as presented here,
we have instead modeled the polypeptide as a simple dihedral model with
excluded volume to capture chain connectivity and sequence dependent tor-
sional propensities. The statistical mechanical framework we present sug-
gests a straightforward way to iteratively improve this simple chain poten-
tial to arbitrary accuracy, by using multi-body correction factors calculated
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from atomically detailed simulations.
In this paper, we have shown how the MSFP method can efficiently sam-

ple conformational and sequence space for polypeptides in a coarse-grained
potential. Using generalized ensemble Monte Carlo sampling, we can obtain
accurate estimates of free energy differences between chain macrostates. For
this test problem, we have shown that some sequences are much more pre-
ferred than others, suggesting that MSFP could be a generally useful tool
for ligand and/or peptide design that overcomes some of the traditional
limitations of all-atom simulation.
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A B

Fig. 3. (A) The cutout of the ribosome used for molecular simulation. In green is the

accessible volume of the exit tunnel. (B) A close-up view of a conformation sampled by
the coarse-grained chain potential using MSFP.
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Fig. 4. An energy trace of MSFP sampling of nascent chains in the ribosomal exit
tunnel. Generalized ensemble Monte Carlo sampling was performed across all sequences

from the alphabet (A,D,I,K,W) and across all chain lengths up to 5-mers, in the presence

of MD-derived PMFs for each residue type. A low-energy conformation for the sequence
ADDAA was found to be exceptionally stable.
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