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Genomic intervals that contain a cluster of similar genes are of extreme biological

interest, but difficult to sequence and analyze. One goal for interspecies com-

parisons of such intervals is to reconstruct a parsimonious series of duplications,

deletions, and speciation events (a putative evolutionary history) that could have

created the contemporary clusters from their last common ancestor. We describe a

new method for reconstructing such an evolutionary scenario for a given set of in-

tervals from present-day genomes, based on the statistical technique of Sequential

Importance Sampling. An implementation of the method is evaluated using (1)

artificial datasets generated by simulating the operations of duplication, deletion,

and speciation starting with featureless “ancestral” sequences, and (2) by compar-

ing the inferred evolutionary history of the amino-acid sequences for the CYP2

gene family from human chromosome 19, chimpanzee, orangutan, rhesus macaque,

and dog, as computed by a standard phylogenetic-tree reconstruction method.

1. Introduction

Repeated duplications within a cluster of similar genes provide a mech-

anism for rapid evolution, making those clusters particularly interesting.

However, reconstructing evolutionary scenarios that include the operations

of duplication and deletion has proven difficult; a number of partial solu-

tions have been proposed 1,2,3,4, but none provide an explict evolutionary
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reconstruction for multiple species under reasonably general conditions. A

recent report5 attempts to reconstruct an even more general set of op-

erations that includes fissions/fusions of chromosomes and translocations.

Under certain idealized conditions, it guarantees a most-parsimonius re-

construction, and efforts are on-going to build a practical reconstruction

pipeline based on that theory.

We recently proposed an algorithm for reconstructing a hypothetical

ancestral sequence and a parsimonious set of evolutionary events to ex-

plain an observed gene cluster in a given species6. Here we generalize our

single-species algorithm to simultaneously reconstruct an evolutionary his-

tory of orthologous gene clusters in multiple species, i.e., an ordered series

of duplication, deletion, and speciation events that reproduces the current

orthologous gene-cluster configurations from an ancestral progenitor. We

start by setting a lower bound for the percentage identity for both within-

species and between-species pairwise alignments. This defines a time bound

(such as 25 millions of years ago) after which the recent histories of multi-

species gene clusters can be reconstructed. Our belief is that attacking this

limited but critical problem of ancestral reconstruction and by employing a

fundamentally different approach based on statistical methods, we may be

able to compute reconstructions more economically and under more general

assumptions than when using purely combinatorial methods5.

2. Methods

Our approach takes multi-species DNA sequences of orthologous gene clus-

ters as input. The sequences are first processed by the following pipeline:

1) use blastz7 to construct all combinations of self-alignment and pairwise-

alignment dot-plots; 2) filter out weak alignments with percentage identity

less than a threshold, say 70%, that corresponds to an evolutionary separa-

tion greater than that between the most distant species pair under consid-

eration; 3) process the dot-plots such that all local alignments satisfy the

“transitive closure property”, i.e., given local alignments between regions

(A,B) and (B,C), there must be a local alignment between (A,C), where

the regions may located in different species; the transitive closure property

ensures the completeness of information; 4) chain together local alignments

of similar percentage identity broken by small insertions/deletions or post-

duplication insertion of interspersed repeats. For instance, Fig. 1 shows the

resulting self-alignment dot-plots for five species in the CYP2 cluster.

For such preprocessed data, we propose a new algorithm to reconstruct
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Human Chimpanzee Orangutan Rhesus Dog

Figure 1. Self-alignment dot-plots for orthologous CYP2 clusters of cytochrome P450

genes in human, chimpanzee, orangutan, rhesus, and dog.

the detailed evolutionary history of orthologous gene clusters in multiple

genomes. We consider tandem and non-tandem duplications, duplications

with inversions, deletions, and speciation events. We first describe our pre-

viously developed algorithms for single-species reconstruction, then gener-

alize the method to multiple species. For multi-species reconstruction, a

speciation event corresponds to coalescence between the two sibling species

backward in time. We demonstrate how to ensure coalescence in multi-

species history reconstruction.

2.1. A Basic Algorithm for Single-Species Reconstruction

Given a preprocessed gene cluster in a single species, there is a simple com-

binatorial algorithm6 that correctly reconstructs all duplication events. The

underlying assumption is that the gene clusters have been exclusively gener-

ated by segmental duplications, and the alignment boundaries produced by

past duplication events are not reused. The no-alignment-boundary-reuse

assumption is a stronger version of the commonly used no-breakpoint-reuse

assumption in genome rearrangement analysis, which is first established in

Nadeau and Taylor’s landmark paper 8. Although this assumption is still

in debate 9, from an inference point of view, it is needed for resolving

ambiguities in duplication reconstruction.

The basic algorithm reconstructs duplication events backward in time.

In each step, the algorithm finds a local alignment corresponding to a du-

plication event that satisfies the following criterion: when a duplication is

“unwound” by removing one matched DNA segment from the sequence,

the breakpoints of the corresponding event do not coincide with remaining

alignment boundaries. An example is shown in Fig. 2. If several align-

ments satisfy the above criterion, we randomly choose one and unwind it.

We further merge and extend remaining alignments after each step of re-

construction. The above procedure is repeated until all local alignments

in the dot-plot are resolved. The output is thus a reconstructed history
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Figure 2. A gene cluster configuration is shown in the middle dot-plot. Lightly and

darkly shaded segments are matched, corresponding to a duplication event. To recon-

struct the duplication event, we either remove the darkly shaded segment to obtain

the left dot-plot, or we remove the lightly shaded segment to obtain the right dot-plot.
According to the basic algorithm, the left dot-plot is a correct reconstruction, as break-

points of the reconstructed event do not coincide with existing alignment boundaries.

The right dot-plot is incorrect because there are two breakpoints coincide with existing

alignment boundaries.

consisting of a sequence of duplication events, which if unwound reduces

the gene cluster sequence to a duplication-free progenitor.

Despite its simplicity, we have proven that the basic algorithm always

has solutions, and all solutions are optimal6. In particular, there is at least

one local alignment at each step of the reconstruction that satisfies the cri-

terion. Depending on the alignments chosen in each step, different histories

can be reconstructed that generate the current gene cluster sequence from

some duplication-free progenitors. One of the reconstructions will corre-

spond to the real history, while all reconstructions will contain exactly the

same number of events, the same duplication sizes, yet different ancestral

sequence configurations.

2.2. An Alternative Probabilistic Solution

The exclusive duplication assumption and the no-alignment-boundary reuse

assumption are often violated in real analysis. Genomic deletions are likely

to occur, and alignment boundaries may be reused due to either misalign-

ments or rearrangement hotspots. When an alignment boundary has to

be reused during reconstruction, the algorithm can no longer guarantee a

correct history reconstruction or even estimate the true number of events.

In addition, there are often many equivalent history reconstructions for a

gene cluster, which differ by the event orders and thus produce very different

progenitor sequences. To accommodate deletion events and data compli-

cations, and to infer gene cluster evolution from a large pool of plausible
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histories, we developed a more practical probabilistic algorithm 6.

The approach is to treat evolutionary events as random, where align-

ment boundaries can be reused with small probabilities. We first specify

a target distribution for gene cluster histories, which defines the scope of

histories that we think plausible. For example, to make inference exclu-

sively from histories without alignment boundary reuse, the target distri-

bution should be uniform on all such histories and 0 otherwise. In prac-

tice, we define the target distribution as π( ~OT | X) ∝ e−5(T+r), where
~OT = (O1, O2, · · · , OT ) denotes a series of evolutionary events ordered

backward in time, with Oi describing the type, the location, and the size

of each evolutionary event, T denotes the total number of events occurred,

and X denotes the gene cluster data. The exponential formula is arbitrar-

ily chosen such that the number of events T and the number of alignment

boundary reuses r are linearly penalized in the log-likelihood scale. Param-

eter “−5” is chosen to allow suboptimal solutions. This target distribution

favors histories with fewer events and fewer alignment boundary reuses.

Directly sampling histories from the target distribution is computa-

tionally intractable. We therefore turn to sequential importance sampling

(SIS)10. Suppose that t most recent events have been reconstructed, the

SIS algorithm samples the next event Ot+1 backward in time from a trial

distribution gt(Ot+1 | ~Ot, X), where ~Ot denotes the t events. The SIS

algorithm sequentially samples events from a series of trial distributions

until all alignments in the dot-plot are resolved, which then produces a

history reconstruction ~OT . We repeat the SIS algorithm to obtain many

history reconstructions, and we calculate a weight for each reconstruction

as w = π( ~OT | X)/
∏T−1

t=0 gt(Ot+1| ~Ot, X). The weight is used to adjust for

the sampling bias. Given m reconstructions ~O
(1)
T1

, ~O
(2)
T2

, . . . , ~O
(m)
Tm

and their

weights w1, . . . , wm, we infer evolutionary parameters using a weighted av-

erage of function u( ~OT ) as E[u( ~OT )] ∼=
(

∑m

i=1 wiu( ~O
(i)
Ti

)
)

/ (
∑m

i=1 wi). Let-

ting u( ~OT ) = T , for example, allows us to estimate the number of events

that occurred in a gene cluster evolution. The basic algorithm in the pre-

vious section is a special case of the SIS approach, with gt(Ot+1 | ~Ot, X)

uniform on all events Ot+1 satisfying the the basic algorithm’s criterion and

0 otherwise. If the no-alignment-boundary-reuse assumption hold true, the

SIS algorithm will efficiently and precisely produce the same duplication

reconstructions as given by the basic algorithm. Additional details about

the SIS algorithm can be found in our previous paper6.
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Figure 3. Two-species history reconstruction for gene clusters evolved after 150 duplica-

tions and 1 speciation. From left to right: 1) joint dot-plot of self-alignments (lower-left

and upper-right quadrants) and inter-species pairwise alignments (upper-left and lower-

right); 2) joint dot-plot immediately after speciation; 3) joint dot-plot immediately before

speciation; 4) original duplication-free ancestor.

2.3. Extension to Multi-Species Reconstruction

Under certain conditions, it is easily shown that the basic algorithm for

single-species history reconstruction can be directly applied to solve the

multi-species history reconstruction problem. The conditions are similar to

those for a single species, except that we now assume gene clusters evolve

exclusively through segmental duplications in all species, and alignment

boundaries are neither reused within species nor across species. The key

idea is to treat speciation events as duplications that double the ancestral

genomes. We first concatenate the orthologous gene clusters of all species

together, then treat the joint sequence as a new gene cluster sequence for

an unknown species. As a result, the single-species basic algorithm can

be used to reconstruct the duplication history of the joint gene cluster. It

further follows that any reconstructed duplication histories for the joint

gene cluster is optimal. In practice, the SIS algorithm is used instead to

infer deletion events and handle data complications. Since we know exactly

how the multi-species sequences are concatenated, it is straightforward to

convert the solution back to a history reconstruction for multi-species gene

clusters. Our algorithm allows identification of speciation events as the

entire sequence of one species being removed in reconstruction. The total

number of events in a multi-species history reconstruction equals the num-

ber of duplications and deletions plus the number of speciation events. An

example of two-species history reconstruction is shown in Fig. 3.
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2.4. Coalescence between Species

If the no-alignment-boundary-reuse assumption is violated, the above

multi-species reconstruction algorithm can no longer guarantee correct his-

tory reconstructions. A more challenging yet critical issue is the coalescence

between species. A coalescence event is the inverse of a speciation event,

where two sibling species coalesce into their common ancestor. By concate-

nating gene clusters sequences together, we may reconstruct some histories

that are biologically impossible. For example, an event may be recon-

structed as duplicating DNA segments across species, or a speciation event

is reconstructed as multiple partial duplications. Those are just algorithm

artifacts and must be corrected in reconstruction. Intuitively, we should

impose a constraint to reconstruction stating that no alignments in pair-

wise (non-self) alignment dot-plots should be resolved unless it corresponds

to a double-genome speciation event.

We use ortholog information to resolve the coalescence problem. Here,

orthologs refer to DNA sequences between a pair of species that evolved

from a common ancestor by speciation. Using orthologs, we can learn the

occurrence time of an event relative to speciation. By the definition of or-

thologs between two species, it is obvious that no orthologous sequences

should be resolved before reconstructing the speciation event, but all non-

orthologous sequences should be resolved. If we restrict the algorithm to

only reconstruct events within non-orthologous regions between pairs of

species, eventually two alternative situations will occur: either all non-

orthologous sequences between two species are resolved and thus their se-

quences become identical, or no more duplication and deletion events can be

reconstructed to resolve the remaining non-orthologous sequences. When

either case happens, the two species should be coalesced.

Identifying orthologs in two species is a hard problem in the presence of

tandem gene clusters. In each step of reconstruction, we impute orthologous

sequences between pairs of species using the corresponding pairwise align-

ments. In particular, given a pairwise alignment dot-plot of two species,

we treat all forward pairwise alignments as matches and all reverse pair-

wise alignments and unmatched regions as gaps and mismatches. We then

calculate a rough global pairwise alignment between the two species using

this information, and we treat the DNA segments matched along the best

global alignment path as orthologs between the two species. We currently

do not consider segmental inversions, and thus reverse pairwise alignments

cannot form orthologs. Since gaps are mostly created by duplications and
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deletions, we only penalize mismatches but not gaps. The recursive scoring

function of dynamic programming is given by

S[xe
i , y

e
i ] = max

j
{S[xe

j , y
e
j ] + u(xe

i − xs
i ) − γ max(c(xe

j , x
s
i ), c(y

e
j , y

s
i ))}

Here, (xs
i , y

s
i ) and (xe

i , y
e
i ) denote the starting and ending positions of the

ith forward alignment, respectively, while c(a, b) measures the size of un-

matched segments within region [a, b), which are regarded as mismatches.

Also, u and γ are match and mismatch weights. The maximization is taken

over all alignments ending before the starting position of the ith alignment,

i.e., ∀{j : xe
j ≤ xs

i , y
e
j ≤ ys

i }. We recursively calculate the scores of all for-

ward pairwise alignments between two species, and we do this for all pairs

of species.

Having identified orthologous sequences between all pairwise gene clus-

ters, our algorithm will reconstruct duplication and deletion events ex-

clusively from non-orthologous regions in each species. For reconstruct-

ing duplications, only self-alignments are used, to prevent reconstructing

across-species events. If a self-alignment involves a non-trivial part of

non-orthologous regions (e.g. >200bp), we treat the alignment as non-

orthologous. This is because different species may have evolved at the

same functional regions independently, which will make ortholog identifica-

tion ambiguous. By iteratively imputing orthologs and reconstruct evolu-

tionary events, pairs of species will eventually have no more reconstructible

duplication and deletion events from their non-orthologous regions. We

then assume the two species to be identical and coalesce them. To coalesce

two species, we first calculate a consensus sequence for the two species us-

ing their pairwise alignments with other species in the dot-plot. We then

remove one species from the dot-plot and replace the other species with

the consensus sequence. Note that as evolutionary events are gradually

resolved using orthologs, identifying orthologs will in turn become easier.

In theory, a phylogenetic tree of multiple species is not required by our

algorithm, and an unrooted tree can be estimated a posteriori from the

data. In practice, if different species suggest contradicting events caused

by incorrect ortholog identification, genome mis-assembly, alignment errors,

or unknown evolutionary events, we should take advantage of known phylo-

genetic relationships to resolve such problems. A straightforward approach

is to iteratively reconstruct the history of two closest species in the tree in

a bottom-up approach.
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3. Results

We evaluated our algorithm using simulated gene-cluster data for n =

2, 3, 4 species. The assumed trees resemble that for human, chimpanzee,

orangutan, and rhesus, i.e., each additional species is an outgroup species

of the existing ones. Starting from a single ancestral sequence of 500 kbp, we

randomly simulated k duplication and deletion events, with frequency 98%

and 2%, respectively, until the first speciation. We then doubled the current

sequence in correspondence to a speciation event. Between every two ad-

jacent speciation events, we continued to simulate k events in each lineage,

and repeated the process until all n species appeared in the tree. Finally, we

simulated k additional events in each species. The duplication and deletion

events were generated according to distributions estimated from analysis

of 165 biomedically interesting human gene clusters6, totalling around 111

million bases. Between every adjacent pair of events in each lineage, we

further introduced 0.2% mutations to diversify the sequences. When sim-

ulating n = 4 species with k = 20, for example, the sequence percentage

identities between species are reduced by between 8% and 24%.

We used our algorithm, including data preprocessing, to estimate the

number of duplication, deletion, and speciation events for each dataset.

Given n = 2, 3, 4 species and k = 5, 10, 15, 20 events between adjacent spe-

ciations in each lineage, the true number of events for a gene cluster dataset

is kn(n + 1)/2 + n− 1. The results from 20 datasets under each setting are

shown in Fig. 4. Our algorithm achieved very high accuracy in estimating

the total number of events, with about 1% over-estimation. We further

checked the number of events that occurred in downstream species after

each speciation. Given m downstream species, the true number of down-

stream events is k(m(m+1)/2−1)+m−2, and our estimations are shown

along the lines in Fig. 4. Again, our results indicate accurate reconstruc-

tion of both coalescence times and the order of coalescence among multiple

species. In terms of computational efficiency, the current implementation

of the method can reconstruct a history of 100 events within 30 seconds on

a regular personal computer. Since we concatenate the genomes of multiple

species into a common dot-plot, the computation time for multiple species

is mainly determined by the size of the joint dot-plot.

We also evaluated our method using actual sequence data from

the CYP2 gene cluster, which is known to have undergone extensive

lineage-specific duplications11. The CYP2 genes in humans, chimpanzee,

orangutan, rhesus and dog were identified by using data downloaded from
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Figure 4. Reconstructed versus true number of events for simulated gene clusters. Given

n = 2, 3, 4 species and k = 5, 10, 15, 20 events between adjacent speciations, the total

number of events is kn(n + 1)/2 + n − 1, as shown on x-axis. The number of events

among m downstream species after each speciation is k(m(m + 1)/2 − 1) + m − 2. All

estimated numbers are shown along the lines.

the UCSC Genome Browser (http://genome.ucsc.edu) and by applying

the GeneWise15 program. The human cluster contains 8 genes including

2 pseudo-genes. We constructed a gene tree using an amino-acid-based

maximum-likelihood method, as shown in Fig. 5.

We built a second gene tree based on the evolutionary history recon-

structed for the CYP2 cluster by the method described in this paper,

The method inferred 85 events; 6 of the duplication events involved genes.

The two trees agreed perfectly. For instance, the maximum-likelihood tree

(Fig. 5) and our reconstruction agree that CYP2A6 and CYP2A7 split af-

ter the human-chimp divergence, though our method gives the additional

information that CYP2A7 was copied and reinserted in the genome to cre-

ate CYP2A6. The two approaches also agree that the common accestor of

CYP2A13, c6, and o5 split from the common ancestor of CYP2A7, c1, and

o1 after the human-rhesus split and before the human-orangutan split. This

example indicates how traditional phylogenetic reconstruction methods can

be used to validate our results, though our analysis is more informative

since it also treats non-coding DNA and infers the source and target of a

duplication event.

4. Discussion

Gene duplications are a primary mechanism of evolution12. Indeed, bi-

ologists have sought explanations for why so many duplicated genes are

retained for long periods of time13. Studies of recent gene duplications

have been greatly impeded by that lack of accurate sequence for gene clus-
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Figure 5. A maximum-likelihood Gene tree of the CYP2 gene cluster for 8 human genes,

8 chimpanzee genes (c1-c8), 6 orangutan genes (o1-o6), 6 rhesus genes (r1-r6) and 6 dog

genes (d1-d6). Bold lines indicate duplication events after speciation of dog.

ters; most genomes are being sequenced by the so-called “whole-genome

shotgun” approach, which has severe difficulties discriminating gene copies

that exceed, say, 95% identity14, corresponding roughly to duplication

events in the last 15 million years. Fortunately, gene clusters are begin-

ning to be sequenced in multiple primates by techniques that resolve recent

duplications16,17, and there will soon be ample data to evaluate methods

for reconstructing the evolutionary history of tandem gene clusters.

This current paper is motivated by the belief that the most serious de-

ficiency of current whole-genome alignments is inadequate handling of tan-

dem gene clusters. Assuming that a satisfactory approach can be developed

for aligning gene clusters, the solution can be “spliced into” whole-genome
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alignments computed by other means. However, work remains before the

method explored here can be considered totally reliable. For instance, in-

versions not associated with a duplication event currently cause problems

for our approach to identifying orthologs. Another hurdle is presented by

gene-conversion events18, which can present the appearance of an alignment

with zones of differing percent identity. We anticipate that promising ap-

proaches will be developed by several groups, and that before long biologist

will have free access to automatically generated alignments in gene clusters

of higher quality than what is currently available.
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