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Cancer cells derived from different stages of tumor progression may exhibit distinct biological 
properties, as exemplified by the paired lung cancer cell lines H1993 and H2073. While H1993 was derived 
from chemo-naive metastasized tumor, H2073 originated from the chemo-resistant primary tumor from the 
same patient and exhibits strikingly different drug response profile. To understand the underlying genetic and 
epigenetic bases for their biological properties, we investigated these cells using a wide range of large-scale 
methods including whole genome sequencing, RNA sequencing, SNP array, DNA methylation array, and de 
novo genome assembly. We conducted an integrative analysis of both cell lines to distinguish between 
potential driver and passenger alterations. Although many genes are mutated in these cell lines, the 
combination of DNA- and RNA-based variant information strongly implicates a small number of genes 
including TP53 and STK11 as likely drivers. Likewise, we found a diverse set of genes differentially 
expressed between these cell lines, but only a fraction can be attributed to changes in DNA copy number or 
methylation. This set included the ABC transporter ABCC4, implicated in drug resistance, and the metastasis 
associated MET oncogene. While the rich data content allowed us to reduce the space of hypotheses that 
could explain most of the observed biological properties, we also caution there is a lack of statistical power 
and inherent limitations in such single patient case studies. 

1.  Introduction 

Cancer arises as a result of genomic or epigenomic alterations that change a wide range of cellular 
processes, leading to uncontrolled tumor cell proliferation and other tumor-specific characteristics 
(1). Cytotoxic agents and targeted therapies have been developed to treat cancer patients. 
However, one major challenge during treatment is the potential development of drug resistance 
(2). Lung cancer, the leading cause of cancer-related death (3), is one of the most heterogeneous of 
cancer types in terms of underlying molecular characteristics and therapy response. It is 
biologically and clinically important to understand the underlying genetic lesions influencing 
cancer cell behaviors such as differential drug response. Recent advances in high-throughput 
sequencing allow the elucidation of genomewide patient-specific molecular profiles that reveal 
individual tumor drivers and form the basis for personalized treatments (4). However, most 



 
 

 

identified genetic variation is usually 
difficult to interpret, as the vast 
majority of alterations are passenger 
mutations. In addition, not all genomic 
features can be obtained by a single 
technology. Integrative approaches 
have the potential to capture the 
combination of patient-specific 
characteristics on various levels for a 
better understanding and targeting of 
the molecular basis of specific cancers 
– a rising field termed “panomics”. It is 
however not clear if comprehensive 
and deep analyses of a small number of 
patients, or single patients, might 
reveal new insights of the genetic basis 
of patient phenotype.  

In this study, we performed a wide 
spectrum of genomic analyses to study 
a lung cancer patient, who underwent 
chemotherapy but relapsed with tumor 
regrowth at the primary site. Two cell lines were derived from this patient: one from a lymph node 
metastasis isolated prior to chemotherapy, and the other from the lung tumor regrowth months 
after chemotherapy. Although derived from the same individual, these two cell lines have distinct 
drug response profiles. To understand the underlying genetic basis for their phenotypic 
differences, we performed whole genome sequencing, transcriptome sequencing, SNP array, DNA 
methylation array, and de novo whole genome assembly to thoroughly interrogate genetic and 
epigenetic events. We conducted an integrative analysis of both cell lines and constructed a model 
that might explain the development of the patient’s cancer and drug resistance after chemotherapy. 

2.  Sample Description, Drug Response and Screening Overview 

Cell line H1993 was derived from the lymph nodes of a 47 year old female Caucasian with history 
of smoking and diagnosed with non-small cell lung cancer in 1988 (Figure 1A). After treatment 
with cisplatin and etoposide, H2073 was derived from the resected lung tumor of the same patient. 
We performed drug response studies as previously described (5). As expected, H2073 shows 
resistance to etoposide (Figure 1B). Interestingly, the spectrum of drug resistance of H2073 cells 
encompasses a broader range of therapeutics including paclitaxel and vinorelbine (Figures 1C-D), 
which target mitotic division.  

Figure 1. Sample description and cytotoxic drug resistance of 
H2073  

A) Cell line H1993 was derived from a metastatic site in patient’s 
lymph nodes, while H2073 originated from the primary lung 
tumor after treatment with cisplatin and etoposide. BL1993 was 
derived from lymphoblastoid cells of the same patient, thus 
representing the matched normal blood sample. (B-D) In 
comparison to H1993, H2073 cells show higher viability upon 
treatment with etoposide, paclitaxel and vinorelbine. Error bars 
indicate standard deviation. 



 
 

 

To elucidate the development of the patient’s cancer and to understand the drug resistance 
after chemotherapy, we applied an integrated analysis of somatic exonic mutations, messenger 
RNA sequencing, DNA copy number, and promoter DNA methylation (Figure 2A).  

Whole genome sequencing (WGS) of both cell lines was conducted on two independent 
platforms: Complete Genomics (CG) and Illumina, to a minimum depth of 30x (Figure 2B). In 
addition, we constructed DNA libraries with variable insert sizes for both cell lines, performed 
Illumina-based paired-end sequencing, and used the resulting reads for de novo genome assembly, 
in order to identify genomic features missed by reference-based approaches. We also carried out 
Illumina WGS on DNA isolated from BL1993, a lymphoblastoid cell line from the same patient, 
representing the matched normal blood sample. 

 To identify genes differentially expressed between H1993 and H2073, we collected RNA-Seq 
data in 3 replicates. DNA methylation was measured by Illumina Infinium array, and copy number 
analysis with the Illumina OMNI 2.5M SNP array, processed by a modified version of the PICNIC 
algorithm, as previously described (6, 7). Results are summarized in Figure 2C. 

 

Figure 2. Integrative analysis of H1993 and H2037: a panomics approach 

A) We applied an integrative analysis of H1993 and H2073 based on whole genome sequencing, RNA sequencing, 
DNA methylation quantification and copy number investigation. B) The genome of each cell line was sequenced at 
minimum 30x coverage. C) The panomics approach allowed us to analyze the landscape of single nucleotide variants, 
indels, differential gene expression, copy number changes, and structural variations. The numbers of detected 
aberrations are shown for these two cell lines. 



 
 

 

3.  Mutation Landscapes and the Identification of Expressed Variants 

Somatic mutations were identified 
by comparing the variant calls in 
H1993 and H2073 with BL1993. 
We selected non-synonymous 
mutations with a minimum support 
of five reads and excluded known 
germline variants from a variety of 
sources (see Methods). Any 
variants listed in COSMIC 
database of somatic mutations in 
cancer (8) were retained. This 
resulted in 313 somatic non-
synonymous single-base 
substitutions in common between 
H1993 and H2073, of which 290 
were missense mutations, 21 
resulted in stop gain, and 2 resulted 
in stop loss. Consistent with the 
patient’s smoking history, we 
observed an enriched fraction of 
C:G > A:T transversions, the 
smoking-related mutation 
signature, in the tumor-specific 
variants (data not shown).  

Both cell lines harbor non-
synonymous mutations in genes 
known to be altered in lung cancer, 
including TP53, STK11, EPHB2, 
LRP1B, INHBA, ZNF458, and 
PRDM14 (Figure 3A). Other 
somatically mutated cancer genes, 
which are listed in the Cancer 
Gene Census (CGC) (9), include NOTCH2, BIRC3, PTCH1, ETV1, ROS1, SDHD and NCOA2. To 
prioritize these putative drivers, we used RNA-Seq to eliminate genes with little or no expression 
(RPKM<0.5). This expression based filtering reduced the number of common mutations from 313 
to 106 (96 missense, 10 stop gain), eliminating a large fraction of candidate genes at the risk of 
possibly discarding low expressed drivers (Figure 3B). 

We further hypothesized that the mutant alleles for driver mutations should be selected for, 
leading to higher mutant allele frequencies for driver genes. We then assessed mutant allele 
frequencies in DNA and RNA data and grouped the mutations into three frequency classes (Figure 

Figure 3. Genomic landscapes and pathway alterations of H1993 
and H2073  

A) Multiple cancer related genes were somatically mutated in both cell 
lines (upper panel) or differentially expressed between the cell lines 
(lower panel). B) Integrating gene expression and focusing on instances 
of high mutant allele frequency enabled us to substantially reduce the set 
of candidate drivers. Known cancer related genes are highlighted. Genes 
with low expression (<0.5 RPKM) in both cell lines are shown in blue, 
while genes with low expression in one cell line are shown in green.  
Triangles indicate cell line-specific mutations, while circles correspond 
to common mutations. 



 
 

 

3B): high (>0.9, class 1), medium (0.3 to 0.9, class 2), and low/inconsistent (class 3). Mutations at 
loci with a total DNA or RNA read coverage < 10 were also assigned to class 3. Class 1 comprised 
only 10 genes, 8 of which had stop gain or missense mutations that were predicted to be 
deleterious (10) based on Polyphen2 (11) and SIFT (12) calculations. In this reduced set of 
candidate drivers were tumor protein 53 (TP53) and serine/threonine kinase 11 (STK11, also 
known as LKB1), the two most significantly mutated tumor suppressors in lung cancer (13). Both 
mutations were observed in regions with loss of heterozygosity. The homozygous TP53 missense 
mutation C242W was also observed in other cancer types including breast (14) and stomach (15) 
cancer, while the homozygous stop gain mutation on position 199 within the kinase domain of 
STK11 has been previously reported in other lung cancer samples (16). Thus, integrating WGS 
and RNA-Seq data on the two cell lines allowed us to reduce a set of non-synonymous mutations 
to two likely drivers of oncogenesis in this patient. 

While 106 non-synonymous mutations in expressed genes were common to both cell lines, 20 
and 22 were specific to H1993 and H2073, respectively. These included Cancer Gene Census 
genes SETD2 (class 2) in H2073, and BRCA1 (class 2) in H1993. Inactivation of BRCA1 is 
associated with tumor aggressiveness and invasion (17), consistent with the metastatic state of 
H1993. None of the cell line specific mutations was assigned to class 1. Overall, the limited 
difference between H1993 and H2073 mutation profiles indicates that unique point mutations are 
unlikely to explain the phenotypical variations between them. 

Among 138 somatic coding indels detected in either cell line, 7 affected Cancer Gene Census 
genes.  All of these were cell line-specific, with frame-shifting indels observed in genes SF3B1, 
BMPR1A, and GPHN in H1993, and in genes JUN, MLL3, NR4A3 in H2073. We also observed an 
in-frame insertion in gene MLL2 in H2073. It is unclear what role, if any, these mutations may 
play in the observed phenotypic differences between the two cell lines. While histone 
methyltransferases MLL2 and MLL3 have been linked to TP53-mediated DNA damage response 
pathway (18, 19), our cell lines exhibited lack of a functional copy of TP53, rendering any 
additional mutations to this pathway inconsequential. 

4.  Differentially Expressed Genes and the Relationship with DNA Changes 

Our RNA-Seq analysis identified 2,523 differentially expressed genes between H1993 and H2073 
(Figure 4A), of which 1,668 (67%) were over-expressed in H2073. Classical markers for 
epithelial/mesenchymal status, including CDH1, CDH2, VIM and FN1, were not consistently 
differentially expressed between the two cell lines, suggesting that the observed differences 
between the primary and the metastatic cell line were not due to epithelial-to-mesenchymal 
transition. 

The large number of differentially expressed genes also suggests that most of these expression 
changes are downstream effects of the causal events. We hypothesized that the primary expression 
differences should have certain degree of genetic or epigenetic basis. We therefore focused on 
differentially expressed genes that can be directly attributed to changes in copy number or DNA 
methylation state. We found that 39 out of 1,668 (2.3%) genes overexpressed in H2073 are in 
regions amplified in H2073 relative to H1993 (ploidy adjusted CN fold change >=2). Ploidy 
adjustment was carried out because H1993 is mostly tetraploid, while H2073 has average ploidy 



 
 

 

between 2 and 3, consistent with cytogenetic results (data not shown). Similarly, we observed that 
46 out of 885 (5.4%) genes overexpressed in H1993 are in genomic regions amplified in H1993 
relative to H2073 (Figure 4B). 

Overall, regions amplified in H1993 and H2073 contained 100 and 114 expressed genes, 
respectively, out of which 46 (46%) and 39 (34%) were overexpressed according to our cutoffs, 
exhibiting higher rate of overexpression events than non-amplified regions (Figure 4C, Fisher 
exact test p-value <7x10-9 for both cell lines). In total, we identified seven amplified regions in 
either cell line longer than 1 Mb, six of which (three in each cell line) accounted for 82 out of 85 
differentially expressed genes with underlying CN changes. One of the H2073 amplicons included 
transporter gene ABCC4, previously implicated in drug resistance and showing 3-fold 
overexpression in H2073. The 
region on chromosome 7, highly 
amplified (>10 copies) in H1993, 
contained oncogene MET (Figure 
5A), which is known to be 
involved in tumor cell invasion 
and metastasis (20). We found 
MET to be 7-fold overexpressed 
in H1993, consistent with the 
metastatic character of H1993. 
The dependence of H1993 on 
MET is confirmed by its low 
viability in the presence of MET 
inhibitors (Figure 4D). Another 
highly amplified genomic region 
was located on chromosome 11 
and contained the oncogene ATM 
(4-fold overexpression in H1933), 
which was also reported to 
promote metastasis (21).  

 Comparing the two cell lines 
further, we found that 427 genes 
expressed in at least one cell line 
showed differentially methylated 
regions (DMRs) within 2kb of 
their transcription start site (TSS). 
Out of 1,668 genes overexpressed 
in H2073, 166 (9.9%) contained 
DMRs (Figure 4B). In 146 cases 
(82%), the extent of methylation 
was higher in H1993, consistent 
with down-regulation of 

Figure 4. Differential gene expression analysis between H1993 and 
H2073  

A) Volcano plot illustrating fold changes and false discovery rates for all 
human genes as calculated by differential gene expression analysis. B) 
Percentage of overexpressed genes with significant copy number gain or 
DNA hypomethylation. C) The sets of expressed genes with copy number 
amplification or promoter DNA hypomethylation were enriched for 
overexpressed genes. D) Treating both cell lines with an EGFR inhibitor 
Cetuximab reveals lower viability of H2073 in comparison to H1993. 
Treating the two cell lines with a MET inhibitor Criozotinib reveals lower 
viability in H1993.  Error bars indicate standard deviation. 



 
 

 

expression by hypermethylation. In comparison, 61 out of 885 (6.9%) genes overexpressed in 
H1993 contained DMRs within 2kb of TSS, with 43 (70%) exhibiting higher methylation in 
H2073. In total, hypomethylated DMRs were associated with 68 and 325 genes in H1993 and 
H2073, respectively, out of which 43 (63.2%) and 146 (44.9%) showed overexpression, exhibiting 
higher rate of overexpression events than hypermethylated or non-differentially methylated 
regions (Figure 4C, Fisher exact test p-values < 2x10-32 for both cell lines). Several of the genes 
with overexpression and promoter DNA hypomethylation in H2073 have been implicated in 
apoptosis evasion and drug resistance, including PLAU (Figure 5B), SNCG, BNIP3, GSTP1, 
ETS1, and MSLN. Interestingly, we found the binding partners PLAU and PLAUR to be 
overexpressed in H2073, suggesting co-regulation of their expression. Binding of PLAU to 
PLAUR can activate the ERK pathway and contribute to cancer development (22). 

Genes overexpressed and hypomethylated in H1993 included the metastasis effectors RAB25, 
TSPAN8, and CPE, as well as CLDN1, whose up-regulation has been associated with cisplatin 
sensitivity (23), consistent with cisplatin 
resistance in H2073. Overall, 10.8% of 
genes overexpressed in H2073 and 
10.3% of genes overexpressed in H1993 
are associated with either differential 
DNA methylation or copy number re-
arrangements. Thus, the integration of 
these two additional data types allowed 
us to substantially reduce the number of 
candidate drivers, while possibly 
omitting driver genes activated via 
alternative mechanisms.  

Guided by our discovery of the 
amplification of transporter gene ABCC4 
in the drug-resistant cell line H2073, we 
tested for differential expression of other 
transporter genes. While one transporter 
gene, ABCB10, showed overexpression 
in H1993, several others were 
overexpressed in H2073 and are known 
to play a role in drug resistance. We 
found that the multi-drug resistance 
transporter MDR1/ABCB1 was expressed 
in H2073 but almost absent from H1993. 
Both ABCC4 and ABCC1, also implicated in drug resistance, were also at least 3-fold 
overexpressed in H2073 (24, 25). Furthermore we found 9-fold higher expression of FGFR4 in 
H2073. A recent study reported that inhibition of FGFR reverses ABCB1-mediated drug resistance 
in cancer (26). Overall, these results suggest an efflux-based drug resistance mechanism developed 

Figure 5. Overexpression of MET in H1993 is associated 
with copy number gain (A), while overexpression of PLAU 
in H2073 is associated with decreased promoter methylation 
(B).   

The panels show gene structure (top, individual transcript 
isoforms), expression normalized by sequencing depth (H1993: 
second from the top, H2073: third from the top), difference in 
DNA methylation (second from bottom, dashed lines 
correspond to differences of 0.5,0, and -0.5), and raw copy 
number (bottom, green line: H1993, yellow line : H2073, 
dashed black like: CN=2 (baseline)). 



 
 

 

by H2073, which involves ABCC4, ABCB1, and possibly other transporter proteins that were not 
over-expressed in H2073 based on our 
cutoffs.  

Integrating information on changes in 
DNA copy number and methylation 
allowed us to reduce a large set of 
differentially expressed genes 10-fold to 
candidate drivers with clear underlying 
mechanism of differential expression.  
Close examination of these candidate 
drivers revealed a number of genes 
overexpressed in H1993 and known to be 
involved in metastasis.  This allowed us to 
construct a drug resistance model for 
H2073. However, this reductionist 
approach has its limitations, as not all 
meaningful differential expression can be 
attributed to a change in either DNA copy 
number or methylation. As an example, the 
expression of the well-known cancer gene 
EGFR is 8-fold higher in H2073 than in 
H1993, and the dependence of H2073 on 
EGFR for survival and proliferation is 
strongly suggested by its higher sensitivity 
to EGFR inhibitors (Figure 4D). However, 
the observed overexpression of EGFR was not associated with either a copy number change or 
differential promoter DNA methylation in this study. It is likely that other types of genetic or 
epigenetic alterations, such as histone mark changes, are responsible for the observed EGFR 
expression change but are not captured by our existing assays. 

5.  Structural Variation Analysis 

Based on WGS by the Complete Genomics platform, we observed 164 large deletions (50bp-
100kb), 219 inversions, and 123 translocations in H1993, supported by at least 5 reads (Figure 6A-
B). H2073 showed substantially more structural variants, with 237 large deletions, 13680 
inversions, and 1186 translocations. This significant increase in the number of structural variants, 
in particular short inversions (Figure 6C), might be due to the stress imposed on the cell by the 
chemotherapy (27). This is consistent with the fact that H1993 was derived from tumor cells prior 
to chemo-treatment, while H2073 was derived afterward and therefore is chemo-resistant. 

6.  De Novo Genome Assembly Reveals Additional Variant Information 

To discover genomic alterations that might be missed by standard WGS analysis, we performed de 
novo assembly of H1993 and H2073 genomes, based on paired-end Illumina sequences. The insert 

Figure 6. Structural variations in H1993 and H2073 

A) Illustration of genomic alterations in H1993 and H2073 
using Circos plots. Candidate interchromosomal structural 
variations identified by the Complete Genomics Platform are 
shown as red lines. Copy number changes detected by 
Illumina SNP arrays are illustrated as bar plots. Loss of 
heterozygosity regions are shown in green. B) Structural 
variations, in particular smaller inversions (C), were more 
frequent in the cell line derived after chemotherapy (H2073) 



 
 

 

size ranged from 200bp to 40kb, in order to aid longer range DNA assembly. The resulting 
assembled sequences span 2.96 (H1993) and 2.89 (H2073) Gb, including 2.29 and 2.48 Gb of 
fully resolved (non-gapped) sequence. The N50 values were 1.9 Mb and 1.26 Mb, respectively, 
reflecting a large portion of the sequence in scaffolds of substantial (>1Mb) size. 

We aligned the assembled sequences to the reference genome to identify insertions or 
deletions, which may have been missed by resequencing-based approaches. We identified 2 
insertions and 3 deletions that were exclusively detected by the assembly approach and that 
affected exons (Table 1). These indels ranged in size from 51 to 123 bp, indicating the utility of 
the assembly approach in detecting medium size indels, that are not short enough to be detected by 
most resequencing-based indel callers, but are not long enough to be detected by the copy number 
or structural variation analyses. We note that the observed frame-shifting deletion in TSPAN8 in 
H2073 may have contributed to its lower expression in that cell line, alongside the 
hypermethylation component, described above. 

7.  Conclusions 

The expansion of high-throughput assays for analyzing cellular states has provided new 
opportunities for integrative analyses.  Here we used several genome-scale analyses of 2 cancer 
cell lines to ask whether we could better explain their observed biological similarities and 
differences. Perhaps the most significant challenge in interpreting genomic data is to pinpoint the 
most relevant genomic changes from a large collection of data points, and the panomics approach 
by definition epitomizes this problem. While it might be practically impossible to achieve 
statistical significance for such panomics approaches, we believe that prior knowledge and logical 
combination of different data could dramatically reduce the search space and propose biologically 
meaningful models. 

In this study, while variant analysis revealed more than 300 non-synonymous mutations, 
combining this analysis with expression data  reduced the number of candidate drivers 3-fold. 
Integrating allele frequencies on both DNA and RNA levels further reduced the focal set to 8 
homozygously mutated genes, including likely drivers TP53 and STK11. Similarly, while 
expression analysis alone revealed thousands of differentially expressed genes between the two 
cell lines, only a small fraction of such genes were associated with the underlying genetic and 
epigenetic changes. Among these small number of genes, MET was present in a highly amplified 
region and showed 7-fold overexpression in H1993, and ABCC4 was amplified and overexpressed 
in the drug resistant cell line H2073. Although we could not exclude other genomic changes that 

Table 1.  Assembly-specific exonic indels. 

Indel Type Coordinate Length (bp) Affected gene Cell line 
Deletion Chr1:7,889,973-7,890.026 54 PER3 Both 
Deletion Chr2:27,324,254-27,324,304 51 CGREF1 H2073 
Insertion Chr12:71,523,133-71,523,134 109 TSPAN8 H2073 
Deletion Chr14:104,645,583-104,645,705 123 KIF26A H2073 
Insertion Chr20:62,196,017-62,196,018 57 PRIC285 H2073 

 



 
 

 

might also explain the phenotypic differences between these two cell lines, our integrated analyses 
readily produced a working model that is consistent with our knowledge of the samples.  

It is worth noting that although H1993 and H2073 have been independently cultured ex vivo 
for decades, they show remarkable similarity and display largely overlapping point mutations.  
This shows that any new mutations acquired during the cell culturing steps are at the minimum if 
they exist. This finding boosts the validity of these cell lines as stable model systems for cancer 
studies. From the technology point of view, our de novo assembly of both cell lines revealed a 
number of additional insertions and deletions, missed by the reference-based assembly. Only 5 of 
these altered protein coding regions, indicating that reference-based assembly captures most of the 
actionable variants.   

It should also be noted that this study is exploratory by nature. With such small sample size, 
the statistical power is nonexistent, so it is currently impossible to draw any causal relationships 
with any confidence. This approach should be viewed as a hypothesis generating method. 
Alternatively, this approach can be viewed as a “hypothesis-supporting method”. Our current 
knowledge of lung cancer and drug resistance has led us to propose genes like EGFR, MET, and 
ABCC4 as functionally relevant culprits in these cell lines, but an improved knowledge in the field 
might implicate a different set of genes. It is therefore necessary to view the panomics data with a 
grain of salt, as the interpretation of these data can be influenced by the current biological 
knowledge. Nevertheless, the maturation of this field will enhance our ability to better analyze 
panomics data, as no single assay can provide a full picture of the cell state or to point in the 
direction of possible therapeutic actions. 

8.  Materials and Methods 

8.1.  Whole Genome Sequencing and Variant Calling 

Whole genome sequencing (WGS) of H1993 and H2073 was performed by Complete Genomics, 
as described (7).  Independently, WGS of H1993, H2073, and BL1993 was performed by Illumina 
sequencing (100bp paired-end reads), using libraries with insert sizes of 200, 500, 2000, 5000, 
10000, 20000, and 40000 bp.  Reads where aligned to reference human genome (hg19) using 
BWA (28). Single nucleotide variants (SNV) and indels were called by the Complete Genomics 
WGS processing pipeline.  Several variant callers were applied to Illumina WGS data.  We used 
SOAPsnp (29) to identify germline SNVs in all 3 cell lines, and VarScan (30) to identify cell line-
specific SNVs in every possible 2-cell line comparison.  Only variants supported by 5 or more 
reads and separated by 10 or more base pairs from the nearest variant were retained. Somatic 
mutations were identified by requiring that no variant-supporting reads be detected in BL1993 
WGS. Unless the variant was listed in COSMIC database of cancer mutations, we further required 
that it was covered by 10 or more reads in BL1993, and not present in dbSNP (v.132) (31) or 
among variants from 1000 Genomes Project (32), 6515 normal exomes published by NHLBI (33), 
or 69 normal genomes sequenced by Complete Genomics and made available to the public (34). 
We used Dindel (35) to identify germline indels and GATK (36) to identify cell line-specific 
indels.  Indels were declared somatic if no compatible indel was detected in BL1993 by Dindel, 
and if the indel was not part of a set of known normal indels obtained from 1000 Genomes Project 



 
 

 

and 69 publicly available Complete Genomics sequenced normal genomes.  Structural variants 
were obtained from the Complete Genomics pipeline. 

8.2.  Copy Number Analysis 

H1993 and H2073 cell lines were assayed with Illumina OMNI 2.5M SNP array and processed 
with a modified version of PICNIC (7). When calculating copy number fold change between the 
two cell lines, adjustment was made for average cell line ploidy. This was calculated as the 
average copy number per base pair, and was 3.9 for H1993 and 2.4 for H2073. 

8.3.  Messenger RNA Sequencing 

Three temporally separate, standard RNA-seq library preparations and subsequent sequencing data 
were collected for each of the two cell lines. One of the libraries for each cell line was sequenced 
on an Illumina GAII, while the remaining libraries were sequenced on an Illumina HiSeq machine. 
The resulting RNA-seq data was filtered for read quality, ribosomal RNA contamination, and then 
aligned to the human reference genome (NCBI Build 37) using the GSNAP alignment tool (37). 
Alignments were permitted a maximum of 3 mismatches per 75 base pair sequence and used the 
following GSNAP parameters: “-M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1 --pairmax-rna=200000”. 
These steps, and the downstream processing of the resulting alignments to obtain read counts and 
RPKMs per gene (over coding exons of RefSeq gene models) per replicate are implemented in the 
Bioconductor package, HTSeqGenie (v 3.10.0) (38). 

We compared the gene expression profiles of the two cell lines using the gene count data 
described above, and the Bioconductor package edgeR (39). Each of the three temporally separate 
RNA-seq libraries per cell line was used as biological replicates for dispersion estimates within 
edgeR. Genewise exact tests for differential gene expression were performed, and resulting 
summary statistics reported. We used the cutoffs of FDR<0.001, fold change > 2, and RPKM 
>=0.5 (in cell line with overexpression) to declare differential expression. 

8.4.  DNA Methylation Analysis 

DNA methylation was measured by Illumina Infinium Human Methylation 450K BeadChips and 
preprocessed using the Bioconductor lumi package (40). Methylation status was measured in beta-
values ranging from 0 (unmethylated) to 1 (methylated). A probe was considered to show 
significant methylation change, if the difference between H1993 and H2073 beta-values was 
larger than 0.5. Nearby (less than 2kb) differentially methylated probes were merged into 
differentially methylated regions (DMR). Final differential methylation calls were based on DMRs 
near gene transcription starting site (TSS) (2kb upstream of TSS or overlapping with the first exon 
of the gene) with a minimum of two supporting probes. 

8.5.  Data Access 

The results of Complete Genomics WGS and copy number SNP array assays have been previously 
published (7).  The remaining data will be made available to the public and the repository location 
and accession information can be obtained from the authors. 
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