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Simultaneously reverse engineering a collection of condition-specific gene networks from gene ex-
pression microarray data to uncover dynamic mechanisms is a key challenge in systems biology.
However, existing methods for this task are very sensitive to variations in the size of the microarray
samples across different biological conditions (which we term sample size heterogeneity in network
reconstruction), and can potentially produce misleading results that can lead to incorrect biological
interpretation. In this work, we develop a more robust framework that addresses this novel problem.
Just like microarray measurements across conditions must undergo proper normalization on their
magnitudes before entering subsequent analysis, we argue that networks across conditions also need
to be ”normalized” on their density when they are constructed, and we provide an algorithm that
allows such normalization to be facilitated while estimating the networks. We show the quantitative
advantages of our approach on synthetic and real data. Our analysis of a hematopoietic stem cell
dataset reveals interesting results, some of which are confirmed by previously validated results.
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1. Introduction

Capturing and understanding the differential usage (i.e. rewiring) of cellular pathways and reg-
ulatory structures as a result of various biological processes and responses to external stimuli
is an important problem in systems biology. Some examples include embryonic development,
cell cycle, differentiation, and carcinogenesis. One promising technique to help uncover com-
plex gene interactions governing these processes is to use computational methods to reverse
engineer gene networks from microarray data. The macro-topology of the recovered network
as well as the individual interactions among the genes can then be analyzed to shed more light
into the underlying regulatory mechanisms.

To model the evolving nature of these phenomena, it often does not suffice to reconstruct
one static snapshot of the underlying regulatory structure since this cannot uncover dynamic
functional roles played by various genes in different cellular stages or at different times. Con-
sider an example of the human hematopoietic system shown in Figure 1. Hematopoietic stem
cells (located at the root) differentiate into more specialized cells along the lineages, eventually
becoming red blood cells, platelets, or white blood cells. It would be inappropriate to pool
together various samples to reconstruct a single network representing a common regulatory
structure for different cell states, e.g., red and white blood cells, since they have distinct mor-
phologies and play completely different roles in biological systems, and thus their respective
regulatory structures must also be considerably different. Instead it is more suitable to re-
construct a collection of networks, one for each cell state. Different functional roles of various
genes across the different cell states can then be analyzed.



However, the problem of simultaneously recovering a collection of networks over different
cell states poses unique challenges that do not appear in the static recovery case. The key
challenge we face in this work is that different cell states have different numbers of microarray
samples, which we term sample size heterogeneity in network reconstruction. This phenomenon
is quite common in biological datasets due to a variety of reasons such as samples having to
be discarded if the quality of the microarrays is poor, or constrains on acquisition of certain
biomedical samples.

Even though sample size heterogeneity can pose considerable challenges for many existing
network reconstruction methods in different ways, in this work we choose to focus on ad-
dressing its effect on a class of state-of-the-art methods that are based on sparse, regularized
regression.1–3 These methods are designed for the high dimensional setting common in biology,
where the number of genes can be substantially larger than the number of samples, and allow
us to uncover more sophisticated dependencies than can be obtained by measuring simpler
quantities such as correlation or mutual information. Building upon the regularized regression
based network learning paradigm, several methods4–6 have recently proposed leveraging simi-
larities of multiple networks corresponding to biological conditions considered to be related for
more accurate multi-network joint estimation, under evolving network scenarios. This strategy
is very valuable in the scenario we consider in this work, where the number of samples for
each cell state is small (e.g., as few as 4 per cell state, clearly statistically insignificant for
inferring a network alone), and thus information sharing between related cell states is crucial
and can increase the effective sample size and consequently the power of network learning.
Such methods have helped reveal the dynamic interactions in embryonic development4 as well
as cancer progression and reversion.6

Despite being statistically powerful, network learning approaches based on regularized
regression can suffer from sample size heterogeneity, which can substantially bias the density
of the networks recovered. In particular, with existing sparse regression methods, cell states
with more samples will tend to have considerably denser networks than those with fewer
samples, a phenomena depicted in Figure 1. Intuitively, this is because the algorithm is more
confident about estimating networks with more samples and thus these networks are denser.

The resultant artificial difference may be acceptable in certain applications (e.g. features for
a downstream classifier). However, in many cases, we are interested in a comparative analysis
of the networks, both in terms of macro-topology (e.g. density, centrality) or micro-topology
(e.g. neighborhoods of individual genes). In this scenario, sample size heterogeneity can lead to
misleading biological conclusions, since it will be unclear which differences among the networks
are manifestations of the actual changes in regulatory mechanisms across different cell states
and which are the artifacts due to sample size heterogeneity.

One simple approach to handle sample size heterogeneity is to make each cell state have
the same number of samples by discarding excess samples in some states. The downside of
this approach is the waste of the precious data in the small-sample-size scenarios common in
biological studies. For example, in the hematopoietic stem cell dataset we consider, using this
strategy would lead to a reduction of the total sample size by approximately 40 percent.

Another approach is to post-process the networks to be more calibrated, e.g. normalizing



all the edge weights across the cell states and then applying some threshold. However, this
may produce adverse effects. Namely, since edges can only be deleted, and not added during
post-processing, the original networks learned using sparse regression have to be denser than
desired, and then further sparsified via post-processing. The resulting edge set from this pro-
cedure would then be suboptimal compared to the edge set constructed by just learning a
sparser network with the regularized regression.

1.1. Our Contribution
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Fig. 1. Illustration of a hematopoietic stem cell ge-
nealogy and how more samples bias existing reconstruc-
tion methods to give artificially denser networks. a

In this work, we identify a novel problem
of sample size heterogeneity, which to our
knowledge has not been systematically an-
alyzed or addressed before. Although it can
affect many classes of network estimation
algorithms, we focus on a class of sparse
regression methods for dynamic network
reconstruction, and propose a solution to
address the challenge in this paradigm. In
particular, we propose a novel regulariza-
tion technique to ensure the resulting net-
works are balanced and thus more easily
comparable. We refer to our approach as
ROMGL (RObust Multi-network Graphical
Lasso).

The important novelty we emphasize
here is that our network calibration is
not introduced as a post-processing of the
inferred networks, but an integral part
within the network inference procedure, in
the form of a new and calibrated network

estimator, and therefore more effective and statistically justifiable.
The rest of the work is outlined as follows. We first present the general framework of recon-

structing gene networks via sparse regression methods and concretely illustrate the problem
that sample size heterogeneity poses. We then present our robust method. Lastly, we evaluate
our approach on synthetic data as well as on a human hematopoietic stem cell dataset.

2. Background: Recovering Gene Networks via Gaussian Graphical Models

Consider the problem of modeling a set of gene regulatory networks, denoted by Z (where |Z| =
Z), each corresponding to a different cell state z ∈ Z with Sz i.i.d. microarray measurements
of all genes in cell state z. Z could represent a set of networks over time or over a genealogy.
Let G(z) = (V, E(z)) represent a network in cell state z, where V denotes the set of p genes
(fixed for all z), and E(z) denotes the set of edges over vertices. An edge (u, v) ∈ E(z) can

a
http://www.siteman.wustl.edu/CancerDetails.aspx?id=661&xml=CDR257990.xml



represent a relationship (e.g., influence or interaction) between genes u and v in cell state z.
Let X(s,z) = (X

(s,z)
1 , . . . , X

(s,z)
p )′, where s ∈ {1, . . . , Sz}, be a vector of gene expression values

that are real valued and standardized, such that each dimension has mean 0 and variance 1.
A gene network can be represented by a probabilistic graphical model.7,8 While there are

many other ways to represent gene networks, the advantage of using graphical models is that
the graph structure encodes conditional independence relations among the genes, and is thus
able to model more nuanced relationships than simple statistical quantities such as correlation
or mutual information. In this work, we assume that X(z) follows a multivariate Gaussian
distribution with mean 0 and covariance matrix Σ(z), so that the conditional independence
relationships among the genes can be encoded as a Gaussian graphical model (GGM).9 It is
well known that for GGMs, edges in the graph correspond to non-zero elements in the inverse
covariance matrix (known as the precision matrix), which we denote by Ω(z) := (ω

(z)
uv )u,v∈[p].

Thus, estimating the graph structure is equivalent to selecting the non-zero elements of the
precision matrix.

As commonly done, instead of directly estimating the precision matrix elements ω(z)
uv , we

estimate the partial correlation coefficients ρ(z), which are proportional to the precision matrix
elements: ρ(z)

uv = − ω
(z)
uv√

ω
(z)
uuω

(z)
vv

. Thus, ρ(z)
uv is zero if and only if ω(z)

uv is zero. Thus the network

resultant from the non-zero ρ(z)
uv is equivalent to that from the nonzero ω(z)

uv . Furthermore, the
partial correlation is intuitive in the sense that a high positive value of ρ(z)

uv indicates that the
genes u and v are strongly positively correlated (conditioned on the other genes), while a low
negative value indicates the genes are strongly negatively correlated (conditioned on the other
genes), and ρ

(z)
uv = 0 for all (u, v) 6∈ E(z). As a result, we simply consider estimating the partial

correlation coefficients and designate these as the edge values in G(z): E(z) = {ρ(z)
uv : |ρ(z)

uv | > 0}.

2.1. Neighborhood Selection

Estimating ρuv is challenging because biological data is often high dimensional (tens of thou-
sands of genes) while the number of samples is small (in the tens). One approach is neighbor-
hood selection2 based on `1-norm regularized regression, which has strong theoretical guaran-
tees and also works well in practice. We first discuss it in the context of estimating a collection
of networks independently, which is also the foundation of existing approaches on time-varying
network estimation that leverage information among similar states.4–6

Here the neighborhood of each gene u is estimated independently and the neighborhoods
are then combined to form a network. In every neighbor estimation step, gene u is treated
as a response variable, all the other genes are the covariates, and the regression weights
are proportional to the partial correlation coefficients between the other genes and u. More
formally, let X\u indicate the p − 1 vector of the values of all genes except u. Similarly,
β\u := {βuv : v ∈ V \ u}. It is a well known result , that the partial correlation coefficients can

be related to the following regression model10 : X(z)
u =

∑
v 6=uX

(z)
v β

(z)
uv + ε

(z)
u , u ∈ [p], where

ε
(z)
u is uncorrelated with X(z)

\u if and only if β(z)
uv = −ω

(z)
uv

ω
(z)
uu

= ρ
(z)
uv

√
ω

(z)
vv

ω
(z)
uu

. Some algebra gives that

ρ
(z)
uv = sign(β

(z)
uv )

√
β

(z)
uv β

(z)
vu . The above equations basically indicate that we can solve for the

regression coefficients using a linear regression, where the response variable corresponds to



Xu and the covariates correspond to X\u. The corresponding partial correlation coefficients
can be recovered via the algebraic relations. An `1 penalty is applied to encourage a sparse
solution, as in the lasso.1 We can estimate the neighborhood of gene u for all cell states z ∈ Z
using this strategy, as depicted in Eq. 1.

β̂
(1)
\u , ..., β̂

(Z)
\u = argmin

β
(1)

\u ,...,β
(Z)

\u

∑
z∈Z
Lu(X(z),β

(z)
\u ) + λ

∑
z∈Z
‖β(z)

\u ‖1 (1)

where Lu(X(z),β
(z)
\u ) :=

∑Sz

s=1

(
x

(s,z)
u −

∑
v 6=u β

(z)
uv x

(s,z)
v

)2
. Note that the optimization problem

decouples into Z separate problems. This procedure is repeated to estimate the neighborhood
of every gene u ∈ V. It has been shown that under certain conditions, one can obtain an
estimator of the edge set E that is sparsistent,2,11 i.e. the correct network structure can be
attained as a function of the number of genes, samples, and topology of the network.

2.2. Neighborhood Selection and Sample Size Heterogeneity

However, applying the same λ to all z ∈ Z such as in Eq. 1 can be problematic under sample
size heterogeneity. Consider two cell states z1 and z2 and assume that Sz1 > Sz2 . This implies
that Lu(X(z1),β

(z1)
\u = 0) will generally be larger than Lu(X(z2),β

(z2)
\u = 0). Applying the same λ

to both of them will then tend to lead to a more sparse solution for z2 than z1. This is because
networks with different sample sizes should be learned with different amounts of regularization.

At first glance, it seems simple scaling/normalization (such as dividing Lu(X(z),β
(z)
\u )

by Sz) would be sufficient. Asymptotic theory12 dictates that in addition to dividing each
Lu(X(z),β

(z)
\u ) by Sz, λ should be divided by

√
Sz as shown in Eq 2:

β̂
(1)
\u , ..., β̂

(Z)
\u = argmin

β
(1)

\u ,...,β
(Z)

\u

(∑
z∈Z

1

Sz
Lu(X(z),β

(z)
\u ) +

∑
z∈Z

λ√
Sz
‖β(z)

\u ‖1
)

(2)

However, this scaling is based on several theoretical assumptions on the underlying model. As
a result, it may behave erratically in practice on microarray data as we show in Section 7.
Even when all the theoretical assumptions hold, the

√
Sz factor is correct only asymptotically,

and not necessarily for smaller sample sizes. To illustrate the problem, we present an example
shown in Figure 2. (More quantitative results will be given in Section 6.) Here, a single
network with 100 vertices and 200 edges was randomly generated. Then, 10 sets with 20
samples, 10 sets with 30 samples, and 10 sets with 40 samples were generated, all from the
same network. We vary the sparsity parameter λ, and plot the mean edge count for each
sample size. Figure 2(a) shows the results of optimizing Eq. 1 without scaling a. As one can
see, although all the samples were generated from the same network, the networks learned
from the 40 samples have many more edges than those from fewer samples. Figure 2(b) shows
the results for optimizing Eq. 2 (with scaling). This works better, but networks learned from
the 40 samples still have considerably more edges than those from 20.

One possible strategy is to assign each network a different regularization parameter and
tune these manually according to known biological interactions. Unfortunately, this requires

aMB stands for Meinshausen and Buhlmann who proposed neighborhood selection2 for GGMs.



that we have enough prior knowledge about all the networks, which is unlikely for many
systems. Instead, it is preferable to develop an approach that only requires prior knowledge
about a small subset of the networks for the purposes of parameter tuning.

3. A More Robust Formulation
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Fig. 2. Comparison of non-robust vs. robust approaches on a simple exam-
ple. Our robust approach, ROMGL, produces networks that are much more
balanced than the naive and scaled methods (MB Naive and MB Scaled). See
text for details.

In order to calibrate the
networks to mitigate
the artifacts caused by
sample size heterogene-
ity, we propose the fol-
lowing approach. We
require that the sum
of the absolute edge
weights to be the same
for all networks recon-
structed. This is in
some sense similar to

the assumptions made in microarray data pre-processing via normalization which rely on
less than ideal yet necessary assumptions in order to remove systematic dye bias from the
data, e.g., quantile normalization in RMA assumes an identical distribution of gene expres-
sion values in all samples in a dataset.13,14

Rather than post-processing the networks, we integrate this assumption into our network
algorithm, thus allowing for a more principled and effective approach.

Unfortunately, it is difficult to directly modify neighborhood selection described in the pre-
vious section to incorporate this assumption, because we are constraining the entire networks
to have the same sum of absolute edge weights, rather than the individual neighborhoods. The
former assumption is much more realistic, since the latter implies all the nodes have similar
degrees. However, since neighborhood selection estimates each neighborhood independently,
it cannot incorporate this assumption in its procedure. Instead, we build our solution from
SPACE15 which is a procedure that simultaneously performs neighborhood selection on all
neighborhoods. First define,

M(X(z),ρ(z),σ(z)) :=
∑
u∈V

Sz∑
s=1

x(s,z)
u −

∑
v 6=u

β(z)
uv x

(s,z)
v

2

=
∑
u∈V

Sz∑
s=1

x(s,z)
u −

∑
v 6=u

ρ(z)
uv

√
σvv
σuu

x(s,z)
v

2

(3)

Then, using SPACE to estimate each network z ∈ Z separately will give the following opti-
mization problem:

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

(∑
z∈Z

1

Sz
M(X(z),ρ(z),σ(z))

∑
z∈Z

λ√
Sz
‖ρ(z)‖1

)
subject to ρ(z)

uv = ρ(z)
vu ∀z, ∀u 6= v (4)

Similar to the previous sections, the objective above decouples into Z separate problems.



Here σ(z)
uu = 1/var(ε

(z)
u ), where ε(z)u was defined in Section 2.1. Note that SPACE estimates

ρ directly instead of β. This is because while ρ
(z)
uv = ρ

(z)
vu , β(z)

uv 6= β
(z)
vu due to the relation in

Section 2.1.
Note that SPACE has the same problem as neighborhood selection with varying sample

sizes. However, because we estimate all the neighborhoods jointly, we can propose a new
formulation that enforces our assumption. This can be done by requiring the `1 norm of the
absolute value of the edge weights to be equal to C for all z ∈ Z.

ρ̂(1), ..., ρ̂(Z) = argminρ(1),...,ρ(Z)

∑
z∈Z

1
Sz
M(X(z),ρ(z),σ(z))

subject to ρ
(z)
uv = ρ

(z)
vu ∀z, ∀u 6= v, ‖ρ(1)‖1 = C, ‖ρ(2)‖1 = C, ..., ‖ρ(Z)‖1 = C (5)

The formulation above represents the foundation of our approach, which we call ROMGL
(RObust Multi-network Graphical Lasso). Note that this formulation is different than that in
Eq. 4, because if we write it in Lagrangian form with λ’s instead of constraints, then it is
equivalent to a different λ for each constraint

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

(∑
z∈Z

1

Sz
M(X(z),ρ(z),σ(z)) +

∑
z∈Z

λz‖ρ(z)‖1
)

subject to ρ(z)
uv = ρ(z)

vu ∀z,∀u 6= v (6)

Moreover, without solving the optimization problem, the correspondence between C and
the set of equivalent {λz}z∈Z is unknown. Thus, the advantage of our approach is that we only
have to explicitly set one parameter C instead of a different λ for each z ∈ Z (since |Z| might
be quite large). We demonstrate our approach in Figure 2. Unlike the non-robust methods,
our approach returns edge counts that are more similar across the different sample sizes.

4. Sharing Information Across States

So far, we have discussed robustly estimating a collection of networks without sharing infor-
mation among different cell states. However, in the small-sample-size scenarios prevalent in
regulatory genomics, this can result in poor estimation quality of the networks. For exam-
ple, in the hematopoietic stem cell dataset we consider, some of the cell states have only 4
microarray samples, which is clearly statistically insufficient for reliable network estimation.
However, since in many cases the gene networks are related, such as in a time series or a
genealogy, we can leverage this interconnectedness of the networks for more accurate network
reconstruction.

We assume we have prior knowledge of which networks are biologically related, and this
information is encoded as a graph over the cell states Z, which we denote by H = (Z,Γ).
H is constructed such that cell states closer to one another in the graph are assumed to be
more biologically similar than those farther apart. For cells over a tree genealogy (e.g. stem
cell differentiation), H represents a tree, and cell state z is connected to its parent and sibling
cell states. As stated earlier, several methods4–6 have recently proposed leveraging similarities
of multiple networks for more accurate multi-network estimation. KELLER4 proposes kernel
smoothing, which estimates a given network by pooling a weighted average of related samples.
TESLA and Treegl propose total variation regularization.5,6



However, these methods do not account for sample size heterogeneity. In fact, when sharing
information among related states, robustness to sample size heterogeneity is even more crucial.
This is because different cell states may have different numbers of neighbors in H, and thus
some may be able to share more information than others.

For simplicity, we only discuss how our robust formulation can be incorporated with kernel
smoothing. Consider a smoothing kernel Kh(z, y) that defines a similarity between cell state

z and cell state y. We use the Epanechnikov kernel: Kh(z, y) = 1 −
(
d(z,y)
h

)2
if d(z,y)

h ≤ 1, and

0 otherwise. Here we define d(z, y) to be the shortest path from z to y in H. Intuitively, this
means that cell states closer to one another in the graph are assumed to be more biologically
similar than those farther apart. Note that this is a more general setting than Song et al.,4

who merely consider smoothing over time. We can then estimate a network for a cell state
using a weighted average of samples from all cell states via the kernel:

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

∑
z∈Z

∑
y∈Z

Kh(z, y)M(X(y),ρ(z),σ(z))

subject to ρ(z)
uv = ρ(z)

vu ∀z,∀u 6= v, ‖ρ(1)‖1 = C, ..., ‖ρ(Z)‖1 = C (7)

We term this approach ROMGL-Smooth (an abbreviation for Kernel-Smoothed ROMGL).

5. Optimization

We briefly describe how to optimize Eq. 7. The objective is separable in z ∈ Z, and thus each
{ρ(z),σ(z)} pair can be optimized separately from the other z′ 6= z. However, Eq. 7 is not jointly
convex in both ρ(z) and σ(z). Fortunately, given a fixed σ(z) = σ̄(z), the problem is convex in
ρ(z). Similarly, given a fixed ρ(z) = ρ̄(z) we can update σ(z). Thus, we proceed by alternatively
updating ρ(z) and σ(z).

To optimize ρ(z) given a fixed σ̄(z), we use a projected gradient method, where after
updating the current value of ρ(z) in the direction of the gradient, it is projected back onto
the constraint set. For our constraint, the projection can be done very efficiently in O(n log n)

time using the method of Duchi et al.16 Updating σ(z) given a fixed ρ̄(z) can be done using a
similar update to traditional SPACE: 1

σ̄
(z)
u

← 1∑
y∈Z Kh(z,y)

∑
y∈Z Kh(z, y)Mu(X(y), ρ̄(z), σ̄(z)).

6. Synthetic Evaluation

We first focus on synthetic data where the modelling assumptions hold. Our ROMGL-Smooth
(Eq. 7 ) can naturally be compared with a Gaussian Graphical Model (GGM) version of
KELLER4 which also uses kernel smoothing. We find that in this case the

√
Sz scaling (Eq. 2)

performs better than the naive approach (Eq. 1), and therefore only compare our approach
to GGM KELLER with scaling (which we refer to as MB-Smooth Scaled) in this section.

We performed the experiments with two types of graphs: Erdos Renyi random graphs and
sparse graphs with hubs. For each type, we generate a sequence of graphs of length 25. Each
graph in the sequence has 100 vertices and 200 edges, and is created by randomly deleting
and adding 10 edges from the previous graph. The sample size is 30 for the first five graphs,
35 for the next 5, and so on up to 50 for the last 5 graphs. Note that all graphs have the same
number of edges (even though they are not identical). We run both methods for h = {2, 3},
for a variety of regularization parameters, and repeat each experiment for 5 different graph
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Fig. 3. Comparison of our robust approach, ROMGL-Smooth (blue circles), with an existing non-robust
method, MB-Smooth Scaled (red triangles), on synthetic Erdos Renyi random graphs. See text for details.
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Fig. 4. Comparison of our approach, ROMGL-Smooth (blue circles), with an existing non-robust method,
MB-Smooth Scaled (red triangles), on synthetic sparse graphs with hubs. See text for details.

sequences. The methods are evaluated on two different criteria. To measure accuracy of the
approaches in recovering the structures we plot precision/recall curves. The precision is defined
as prec = 1

Z

∑
z∈Z

Ê(z)∩E(z)

|Ê(z)|
and the recall is defined as rec = 1

Z

∑
z∈Z

Ê(z)∩E(z)

|E(z)| .

We also propose a quantitative measure of robustness. Let ê = (|Ê(1)|, ..., |Ê(Z)|) be the
vector of edge counts of the networks recovered by a method. Intuitively, if a method is robust
to sample size heterogeneity, the variance of ê should be small, since all the true graphs have
the same number of edges. Thus, we propose the quantity var(ê)/mean(ê) as a measure of
robustness (scaling by mean(ê) provides for easier comparison).

The precision/recall curves show that both methods perform comparably according to this
metric (Figures 3(a), 3(c), 4(a), and 4(c)), indicating that our new robust approach generates
results with comparable accuracy as the scaling method. However, our new approach yields
results with considerably lower variance, indicating that it is more robust than the scaling
method (Figures 3(b), 3(d), 4(b) and 4(d)). This is especially true when the recovered
graphs are sparser, since MB-Smooth Scaled has very high variance in this case. This is the
most prevalent scenario, since on many real biology datasets, the sample size is small, so we are
more likely to select sparse graphs. Furthermore, as we will see, the scaling method performs
much worse on real data than synthetic data.

7. Application to the Hematopoietic Stem Cell Dataset
We applied our method to the human hematopoietic stem cell dataset analyzed in Novershtern
et al.17 There are 38 cell states in the tree-shaped multi-lineage stem cell genealogy. We focus
on a subset of 732 genes from the entire dataset for the experiments in this section.

First, we quantitatively compare our approach (ROMGL-Smooth) to the non-robust ap-
proaches: naive (MB-Smooth Naive) and scaling (MB-Smooth Scaled). The bandwidth for



these algorithms was fixed to 5. For a given setting of the regularization parameter (λ or C),
we plot the average edge count over all the 38 cell states on the x-axis and the difference be-
tween the largest edge count and the smallest edge count on the y-axis. As shown in Figure 5,
the non-robust methods produce networks with very different sizes, e.g., some of the networks
have less than 100 edges while others have thousands. Our robust approach produces much
more calibrated results.
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Fig. 5. Our approach, denoted by ROMGL-Smooth
(blue) compared with MB-Smooth Scaled (red) and
MB-Smooth Naive (green) on the hematopoietic stem
cell dataset. Our approach returns networks that are
much more calibrated with more similar edge counts.

To examine these differences further,
we show cell-specific networks for two cell
states, granulocytes (GRAN3) and com-
mon myeloid progenitors (CMP), recov-
ered by the three approaches in Figure 6.
GRAN3 is a leaf in the cell genealogy; it
has few neighbors and the lowest effective
sample size (14.92) when the smoothing
kernel is applied. In constrast, CMP is an
internal node in the genealogy that can
differentiate into megakaryocytes, erythro-
cytes, granulocytes, and monocytes, and
thus has many neighbors; it has the high-
est effective sample size (60.52). As one can

see, for the naive approach (Figures 6(a) and 6(b)), sample size heterogeneity is such a prob-
lem that the GRAN3 network has zero edges while the CMP network has 4532. Similarly, the
scaling approach also performs poorly. The GRAN3 network has only 72 edges (Figure 6(c))
while the CMP network has 2944 edges (Figure 6(d)). Thus, with both of these approaches,
it is practically impossible to analyze the GRAN3 network in relation to the other networks.
In contrast, our approach gives much more balanced results; the GRAN3 network has 1269
edges (Figure 6(e)) while the CMP network has 1614 edges (Figure 6(f)).

Next, we examined the results generated by our robust approach in more detail. Nover-
shtern et al.17 discovered various gene modules and their corresponding regulators active in
different cell states in the hematopoietic stem cell dataset. It is unknown, however, how genes
in these modules interact with one another. We compare and contrast our results to theirs
on the two modules 721 and 817 described in Novershtern et al.17 The former module is in-
duced in granulocytes and monocytes (GRAN/MONO), while the other in B cells, T cells,
and granulocytes (BCELL/TCELL/GRAN).

The subnetworks corresponding to the GRAN/MONO 721 module we recovered in the
granulocytes and monocytes are shown in Figure 7 (a) and (b). It can be seen that we recovered
all the genes in the module for both subnetworks, which include both experimentally verified
ones (shown in dark purple and dark green) and unverified ones (light green). Note almost
all of the proposed genes in the module are within 2-3 hops from the regulators CEBPD and
MNDA in the GRAN3 and MONO2 subnetworks. Moreover, our results reveal interaction
patterns of the genes in these subnetworks (only a list of genes in the module was shown in
Novershtern et al.17). A closer examination of the two subnetworks reveals that they contain



Fig. 6. The cell-state-specific networks for granulocytes (GRAN3) and common myeloid progenitors (CMP)
recovered by the three approaches. The robust approach (ROMGL-Smooth), shown in (e) and (f), produces
substantially more balanced networks than the other two approaches.

two modules with similar gene interaction patterns, one is a large 10-gene module with MNDA,
CREB5, VDR, RAB31, NOD2, CEBPD, CFP, MYCL1, WDFY3, and VENTX, and the other
is a small 2-gene module with HBEGF and ATF3. Interestingly, 7 out of these 12 genes were
also proposed by Novershtern et al.
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Fig. 7. The ROMGL-Smooth reconstructed subnetworks corresponding to (a) module 721 in granulocytes
(GRAN3), and (b) module 721 monocytes (MONO2) (c) PIAS1 module in B cells (BCELLa3), (d)PIAS1
module in T cells (TCELL3), and (e) PIAS1 module in granulocytes (GRAN3). Purple represents genes that
are regulators of the module and were experimentally validated in Novershtern et al.17 Dark green represents
other genes in the module that were experimentally validated. Light green represents the genes in the module
which were not experimentally validated. All the other genes are colored gray.

Finally, we examined the reconstructed subnetworks in B cells (BCELLa3), T cells
(TCELL3), and granulocytes (GRAN3) corresponding to the BCELL/TCELL/GRAN 817
module in Novershtern et al.17 (Figure 7 (c),(d),(e)). In this case, the topologies of the subnet-
works are very different. The only gene module shared between the BCELLa3 and TCELL3
subnetworks is HNF4G–PIAS1–BCLAF1. In addition, the topology of the GRAN3 subnet-
work corresponding to the BCELL/TCELL/GRAN 817 module is distinctly different from the
BCELLa3 and TCELL3 subnetworks. These findings are consistent with the fact that both B
cells and T cells are lymphocytes and closer in the genealogy than granulocytes.

8. Discussion

In conclusion, we have identified the problem of sample size heterogeneity in multi-network
reconstruction and proposed a principled solution that works well in practice. Our method
assumes that all networks have approximately the same number of edges. However, more



complex assumptions are possible if we have prior knowledge about the network densities.
For example, we can assume cell states in a certain category each have sum of absolute edge
weights equal to C1, while cell states in another category are associated with parameter C2.

Acknowledgements This research was made possible by Grants NIH 1R01GM093156 and
NIH 1R01GM087694, and an NSF Graduate Fellowship (Grant No. 0946825) to APP

References

1. R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical
Society. Series B (Methodological) 58, 267 (1996).
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