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Inferring causal relationships among molecular and higher order phenotypes is a critical step in
elucidating the complexity of living systems. Here we propose a novel method for inferring causality
that is no longer constrained by the conditional dependency arguments that limit the ability of
statistical causal inference methods to resolve causal relationships within sets of graphical models
that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses
of perturbation events on molecular traits given a hypothesized graph structure. A distance measure
between the inferred response distribution and the observed data is defined to assess the ’fitness’
of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within
equivalence classes of gene networks in which the form of the functional interactions that are possible
are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply
our method to infer causality in real metabolic network with v-structure and feedback loop. We
show that our method can recapitulate the causal structure and recover the feedback loop only from
steady-state data which conventional method cannot.
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1. Introduction

One of the primary objectives of biomedical research is to elucidate the networks of molecular
interactions underlying complex human phenotypes such as cancer and Alzheimer’s disease.
Over the past few years, a wave of advanced biotechnologies has swept over the life sciences
landscape to enable more holistic profiling of biological systems. Whole genome sequencing,
RNA sequencing, methylation profiling, and mass spectroscopy and NMR based metabolite
and protein profiling technologies have been applied to a wide range of biological problems and
have contributed to discoveries relating to the complex network of biochemical processes as
well as to the reconstruction of gene networks underlying living systems1 and common human
diseases.2,3

State-of-the-art statistical learning methods assume a Markov condition for gene network
reconstructions as a way to reduce the complexity of the joint probability distribution that
graphical network structures represent. It is well-known that algorithms based on Markov
conditions can learn the correct causal relationships up to Markov equivalence given a large
enough sample size.4 However, because the structures represented within a given equivalence
class are statistically indistinguishable from one another, it is not possible to further resolve the
correct causal relationships within a class without introducing perturbations that break the
symmetry giving rise to this equivalence. Given the recovery of accurate mechanistic networks



is a crucial first-step to understanding the pathophysiology of human disease and how best to
diagnose and treat it, methods to accurately infer causal relationships are critical.

To at least partially address this problem, we had previously proposed a Bayesian network
learning framework1 to improve causal inference within Markov equivalence classes by inte-
grating genotypic data associated with molecular phenotypes (e.g., expression quantitative
trait loci, or eQTL) and disease traits as an asymmetric and systematic source of perturba-
tions. This approach has been effective in helping untangle the causality in gene networks given
it leverages the propagation of structural asymmetry required to break Markov equivalence.

In this paper, we propose a statistical method that infers causal structures from multivari-
ate datasets (e.g. gene expression data), reducing the need to integrate additional data such
as eQTLs to accurately infer causal relationships. Our proposed method is complementary to
more integrative approaches, given it will enable accurate causal inferences in cases in which
integrative approaches are not possible or not well powered. For example, even when eQTL
data are available, inferring a complete causal network structure remains challenging given the
conventional top-down Bayesian network learning approach decomposes the joint probability
function representing a given graph into the product of local conditional probabilities based
on d-separation, so that the effect of causal information stemming from eQTL-controlled root
nodes will not always effectively propagate through the entire network, leaving the issue of
equivalence classes unresolved at distal local structures. This issue is exacerbated as the num-
ber of nodes in the network increases, given the super-exponential rate of growth of the space
of possible networks and the fact that trans-acting eQTL effects (eQTL that act on genes
that are distal to the physical location of the eQTL) are difficult to detect. Therefore, the
development of methods to infer causality among structures in equivalence classes remains
a fundamental objective for reconstructing accurate probabilistic causal network structures.
To demonstrate the utility of our causal inference procedure, we apply it to simulated gene
expression data that reflects the type of noise structures common in these high-throughput
biological experiments as well as the biological relationships we seek to represent. In this con-
text we demonstrate the ability to resolve Markov equivalent structures across a variety of
general assumptions regarding the nature of gene-gene interactions.

2. Developing a Method to Infer Causality from Associative Data

A new class of methods referred to as Information Geometric Causal Inference (IGCI) meth-
ods5 defines classic measures of independence among variables in terms of orthogonal com-
ponents of the joint probability distribution of these variables, as a way to leverage more
information regarding the relationships among them. This approach stands in contrast to tra-
ditional approaches in which data informing on the relationships among variables of interest
are extracted using only conditional independencies. In the IGCI methods, to infer whether
X causes Y , orthogonality is computed between the conditional distribution PY |X and PX ,
which are then compared to the values computed for PX|Y and PY . If the relationship ”X
causes Y ” is true, then the orthogonality metric is such that the causal hypothesis Y causes
X is implausible. Remarkably, this asymmetry between cause and effect becomes particularly
simple if X and Y are deterministically related. In the case of a nonlinear relationship between



X and Y , the nonlinearity in the function defining the relationship between the cause X and
effect Y , i.e. Y=f(X), can also be considered for causal inference in the presence of additive
noise.6 The nonlinearity provides information on the underlying causal model and thus allows
more aspects of the true causal mechanism to be identified. An alternative approach, referred
to as functional causal modeling (a.k.a. structural causal or nonlinear structural equation
modeling), involves a joint distribution function that along with a graph satisfies the causal
Markov assumption.7 This functional form can also allow one to distinguish between X→Y
and X←Y.

Our proposed method sits squarely within the class of functional causal modeling ap-
proaches,7 where we utilize the inherent probabilistic inference capability of the Bayesian
network framework to generate predictions of hypothesized child (response) nodes using the
observed data of the hypothesized parent (causal) nodes. By defining a distance metric in
probability space that assesses how well the predicted distribution of child nodes matches the
distribution of their observed values, we can evaluate the different graphical structures within
an equivalence class to determine the one best supported by the data. One key advantage of
this modeling approach is that it enables the propagation of the effects of a parent node to
child nodes that can be greater than a path length of one from the parent, thereby making it
possible to infer causality in a chain of nodes or in a more complex network structures.

To describe our approach, we begin by reformatting the general posterior probability cor-
responding to any given graphical structure as defined in conventional Bayesian network
approaches.8 Here we let X represent the vector of variables represented as nodes in the
network; E is the evidence; D denotes the observed data; G is the graphical network struc-
ture to infer; and θ is a vector of model parameters. From this we can write the posterior
probability as P (G|D) = P (D|G)P (G)/P (D), where the marginal probability P (D|G) can
be expressed as an integral over the parameters, given a particular graphical structure G:
P (D|G) =

∫
θ P (D|G, θ)P (θ|G)dθ. Unlike the traditional Bayesian Dirichlet score, D in our case

contains continuous values, and thus, the likelihood of the data is not derived from a multi-
nomial distribution, but rather a continuous density function whose form is estimated using a
kernel density estimation procedure. In addition, the parameter prior P (θ|G) does not follow a
Dirichlet distribution but rather is either described by a set of non-parametric constraints in
parameter space or is sampled from a uniform distribution defined in its range (the approach
used herein). Given this, the above integral has no analytical solution. We will optimize the
data likelihood by estimating θ using maximum-a-posteriori (MAP) estimation:

P (D|G) ∼= P (D|G, θ̂) (1)

where θ̂=argmaxθ{P (D|G, θ)P (θ|G)}. We use a Monte Carlo sampling procedure to efficiently
sample θ from P (θ|G), evaluating the likelihood for each parameter sample.

2.1. Deriving a Data Likelihood Score

To calculate and optimize the data likelihood P (D|G, θ), we incorporate belief propagation
as a subroutine in the causal inference procedure to predict the marginal probabilities of all
response variables given the observed data for the predictor variables for a given causal struc-
ture (G). In this instance, the marginal probability of X given G and the sampled parameter
θ is calculated via belief propagation.9 In what follows we discuss how to use the Bayesian
belief inference P (X|E,G, θ) to calculate the data likelihood P (D|G, θ) given in Eq. 1, where



E and D represent the observed data on the parent and child nodes, respectively. First, to
avoid confusion, we introduce the notion Xb to describe the binary variable in the probability
space mapped from the continuous variable X ∈ R. Second, we rescale the original observation
data so that it falls in the interval [0,1] (see discussion below). Third, we introduce a hidden
variable H to fully specify the data likelihood as

P (D|G, θ) =

∫
H
P (D|H)P (H|G, θ) (2)

Given G and θ, the soft evidence enters P (Xb|E,G, θ) as the observed, rescaled data D, which
effectively ”clamps” (or fixes) the marginal probability of the parent nodes, from which the
marginal probabilities of the child nodes are predicted via belief propagation in the Bayesian
network.9 These marginal probabilities are then used to define the hidden data H, which
are used to construct the marginal data likelihood in Eq. 2. In probability space, the belief
inference is deterministic, i.e. given a causal structure G, a specific set of parameters θ, and ev-
idence E, P (Xb|E,G, θ) is uniquely determined. In Eq. 2, when H=P (Xb|E,G, θ), P (H|G, θ)=1
and 0 otherwise, and as a result the data marginal likelihood in Eq. 2 can be re-written as

P (D|G, θ) = P (D|H(G, θ)) = P (D|P (Xb|E,G, θ)) (3)

The inner probability describes the marginal belief of the binary variable Xb in probability
space to which the original continuous variable X has been mapped. This belief probability
is a linear function between the child and parent marginal probabilities, multiplied by the
conditional probabilities determined by sampling over the uniform distribution the parameters
θ are assumed to follow:

P (Xchd
b = k) =

∑
i

[P (Xchd
b = k|Xπ

b = Ci)P (Xπ
b = Ci)] (4)

with Xπ
b representing Xb for the parent node, Xchd

b for the child node, and where Ci represents
the i-th configuration of the parent nodes. For example, given the hypothesis ”gene A activates
gene B”, the marginal belief is calculated as

P (B) = P (B|A)P (A) + P (B|Ā)(1− P (A)) = [P (B|A)− P (B|Ā)]P (A) + P (B|Ā) (5)

In this instance, the conditional probability distribution θ={P (B|A), P (B|Ā)} is the parameter
sampled from the uniform distribution on [0,1]. We note that this belief propagation can be
considered as a linear regression of the form P(B)=βP(A)+C, where β=(P (B|A) − P (B|Ā))

and C=P (B|Ā). Given probability measures are constrained to be between 0 and 1, β ∈ [−1, 1]

and C∈[0,1]. These constraints, which follow naturally from probability theory, give rise to the
asymmetric basis of our approach for causal inference (see section 2.4). We further note that
in our approach we implicitly assume binary variables in probability space, where the belief
probability of a binary variable is defined as the level of belief on that variable observed in
its maximal state (i.e., P (Xb = 1)) or minimal state (i.e., P (Xb = 0)). When X is equal to its
minimum (or maximum) value in the real valued space D, in probability space Xb is observed
in its minimum (or maximum) state, and therefore, this observed sample will correspond to
Pr(Xb = 0) = 1 (or Pr(Xb = 1) = 0) in probability space. As the value of X varies between its
minimum and maximum values, the belief probability of the binary mapping of this variable
will vary between [0,1]. The Bayesian interpretation of the belief probability allows us to
compare the inferred belief probability to the real-valued observed data by implicitly assuming



that the original data D and the marginal probabilities of H are positively correlated, though
the precise kinetics of this correlation is unknown. To make such a comparison, we rescale
D ∈ R to D ∈[0,1].

Since the exact function mapping between real values and their belief probabilities is un-
known, we employ a non-parametric metric, i.e. Kullback-Liebler (KL) divergence, to compare
the distribution of real observations to the distribution of predicted marginal probabilities. If
the predicted and observed distribution of the child nodes match well, we can conclude that
the predictions based on G and θ well reflect the observed data D, which results in a smaller
value of the KL-divergence. To force the KL divergence to behave as a true probability mea-
sure, we make symmetry and normalization modifications to this function defined on D and
H such that k(D,H)=1-exp[-(KL(D||H)+KL(H||D))/2]. The data likelihood function in Eq. 3
can be defined by any normalized monotonic decreasing function on the kernel. For model
selection, we set S = − log(K(D,H)) to represent the posterior score of the model, which is
negatively correlated with the kernel value. To optimize the model, we maximize this score,
which is equivalent to minimizing the KL-divergence.

2.2. Piecewise Regression Fitting to D by Integrated Probability Inference

The calculation of the KL-divergence involves comparing the real-valued observed data D to
the inferred belief probabilities H given a particular causal hypothesis G and θ. The original
interaction between parent(s) Xπ and child Xchd nodes in D can be described by an arbitrary
function Xchd=µ(Xπ) plus some observation noise. Depending on the nature of the causal re-
lationships to be modeled, µ() can take various forms, including linear, non-linear, monotonic,
non-monotonic, concave, convex, step and periodic functions. In the biology domain, a direct
causal interaction between two proteins or between a protein and DNA molecule often take the
form of a hill function, a step function, or a more general non-monotonic, nonlinear function.

One way to derive the belief inference given in Eq. 4 is to represent the relationship between
the parent and child nodes as a cubic spline, which can well approximate general nonlinear
relationships. However, a more straightforward alternative to splines would be regressing the
marginal belief of Xchd onto Xπ, assuming a linear relationship. If we subdivide the range of
the parent nodes into L segments based upon the behavior we expect in a causal relationship
between two nodes, linear regressions can be carried out in each segment.10 In the case |π|=1,
our problem is to regress onto a single variable whose range has been divided into L segments,
whereas when |π| >1 we are regressing onto multiple variables divided into a |π|-dimensional
grid comprised of L|π| components. Here we focus only on inferring causality between equivalent
class structures in which |π|=1, but our approach easily extends to the more general case. To
derive a procedure for fitting the belief inference equation to the data in a piecewise fashion,
we first define some terms. Let X denote a vector of predictor(s)/parent node(s) (in this
pair-wise causality setting X represents just a single variable for any given Markov equivalent
structure being considered) and let Y represent the response variables. Let D ∈ Rn represent
the original noisy observed data and Dl

0 ∈ [0, 1]n denote the rescaled observed data in the l-th
segment/grid element, which is comprised of the observed values over the parent and child
nodes in the given segment/grid element, i.e. Dl

0={Dl
X, D

l
Y }. Similarly, let the predicted data

in the l-th segment be given by H l={H l
X, H

l
Y }. Given this, we pre-define a total of K bins

that are evenly distributed in [0,1], Ik=[k/K, (k + 1)/K], k = [0,K − 1], and then for each bin
we count the number of occurrences of the inferred marginal probability of Y falling in each



Fig. 1. Pairwise Causal Inference

of the l segments, i.e. H l
Y falls in the k-th bin Ik ∈[0,1]. We denote the number of occurrences

for the k-th bin and the l-th segment/grid element by M l
k. The counterpart of this number

in Dl
Y , with respect to the observed data, is denoted by N l

k. The frequency for the predicted
data is then calculated as plk=M

l
k/

∑
kM

l
k for H l

Y and similarly for the observed data, Dl
Y ,

qlk=N
l
k/

∑
kN

l
k. These counts and frequencies are used to compute the KL-divergence kernel,

maximize the likelihood score, and identify the maximum LR model θ̂ in Eq. 1 per segment
as described below. To maximize the data likelihood function P (D|G, θ̂) in Eq. 1 in each
segment, we identify the parameter θ̂ that minimizes the KL-divergence for the current causal
hypothesis G, which is defined as the symmetrized KL-divergence between the predicted belief
and the rescaled observed data for every segment:

θ̂l = argmax
θ
{P (Dl

0|G, θ)P (θ|G)} ∝ argmax
θ
{P (Dl

Y |P (Y |E = Dl
X , G, θ))} ∝ argmax

θ
{P (k(Dl

Y , H
l
Y (G, θ)))}

∝ argmax
θ
{− log(k(Dl

Y , H
l
Y (G, θ)))} ∝ argmin

θ
{
K∑
k=0

plk ln(plk/q
l
k) +

K∑
k=0

qlk ln(qlk/p
l
k)} (6)

where P (θ|G)=1/M for θ sampled uniformly in [0,1]. The statistical counts of the predicted
probability, plk for l-th segment in k-th bin, is a function of G and θ. The optimal statistical
count of the fitted model for the l-th segment and k-th bin is M̂ l

k. The overall fitted linear
regression model (G,θ̂l|l = 1, ..., L) with the counts across all segments in k-th bin of [0,1] is
obtained by summing M̂ l

k over the total L segments, i.e. M̂k=
∑L

l=1 M̂
l
k. According to Eq. 1

and Eq. 3, the final optimized estimation of the data likelihood is then equal to

P (D|G, θ̂) ∝ − log(1− exp(−1

2

K∑
k=0

p̂k ln(p̂k/qk) +
K∑

k=0

qk ln(qk/p̂k))) (7)

For simplicity, in the experiment section below, to obtain the L segments in [0,1], we simply
divide the range of each parent node evenly into L segments.

2.3. Pair-wise Causality Example

To illustrate our causal inference procedure, we apply it to a pair of variables, leaving to
the following section our application to more complicated causal networks such as triple-node
equivalence classes. To begin we generate synthetic data given true pair-wise relationships as
depicted in Fig. 1. We assume the observed data for the parent nodes is drawn from a uniform
distribution and use a hill function to describe the common interactions between the parent
and child nodes. We add Gaussian noise to the synthetic data to model uncertainty inherent in



the measurement data, and without loss of generality we set L=4. In practice we must exercise
some care in the selection of L, since if L is set too high, the power of the likelihood score to
distinguish the true causal direction from the null hypothesis can be significantly decreased.
On the other hand, if L is set too low, the fit of the data could be poor, leading to likelihood
scores for the true and null causal models that may not achieve statistical significance.

In Fig. 1, panels (a: A→B) and (b: A←B) show the fit of the regression model in the true
and false causal directions, respectively. Each color denotes a different segment. The linear
regression (LR) model is depicted by the line in each segment. The distribution of the predictor
variables (parent nodes), is plotted in blue and the distribution of the response variables (child
nodes) are shown by the stack plot, with the different colors corresponding to the different
segments. In panel (a), A is the parent and its belief probability is clamped according to the
observed and fitted distributions of the predicted values of the child node B. If the predicted
values well match the observations, the likelihood score for (a) will be increased relative to the
likelihood score for (b), which represents the opposite relationship (B as the parent node and
A as the child). We note that in (b) for the ’flat’ regions (I&IV) of the interaction function,
the fitted LR does not cover the full range of values A can take on in these segments, which
results in a truncation of the distribution of A at the ends of these two segments, resulting in
a worse likelihood score compared to the true causal direction.

2.4. Performance Analysis

The asymmetric performance in predicting values along the true and false causal directions
results from the constraints ([-1,1] in Eq. 4) defined for our pairwise causality test, which
constrains the slope coefficient to fall ∈ [-1,1] and the intercept coefficient to fall ∈ [0,1] for
each segment. These constraints enforce an asymmetry in the fit of the regression model
between the true and false causal directions needed to infer the true direction. We have also
assumed that any nonlinear curve can be well approximated by a piecewise linear regression
(LR) model. That is, in each segment the LR is good enough when fitting along the true
causal direction. When a segment is fit along the correct causal direction (i.e., the segment is
assumed to lie in the dimension of the parent node and is mapped to the child node via the
regression function), the length to set for the segment should be determined by the degree of
noise in the data. If noise levels are low (high) along the true causal direction, then the size of
the segment can be longer (shorter) with a smaller (larger) number of segments. In our case,
given we constrain the slope and intercept coefficients in the LR, the belief propagation is able
to fit the distribution of noisy observations well so long as the segment size is small enough.
However, if the segment is fit along the wrong causal direction, the length of the segment
will no longer help scatter the observed data into different segments, given the distribution of
observed values of the child nodes in the flat or U shaped regions of the distribution of the
parent nodes are not be completely captured, but instead are truncated as discussed above.
As a result, there will be a high probability of the observed values on the child nodes falling
in the same segment no matter how small the segment size is or how low the noise level is. In
this case, the ideal length of the segment will be determined by the shape of the interaction
function.
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Fig. 2. Synthetic Causal Network Structure

We note that while we have made the argument that smaller-sized segments will not
significantly improve the fit along the wrong causal dimension, we have not ruled out the
possibility that the distribution of the true parent node given the child node (wrong causal
direction) is well approximated across the different segments (i.e., the truncation of the ends of
the distribution discussed above goes away), when an extremely small segment size is chosen.
If such a case were to arise, the likelihood score would be equally good in the true and false
causal directions. Similarly, if the segment size chosen is too big, the possibility exists that
even along the correct causal dimension, the coverage of the predicted distribution of the child
node may not be complete, making the likelihood score in the true and false causal directions
equally bad. Although there are some existing algorithms on choosing the optimal number of
segments, e.g. Multivariate Adaptive Regression Splines,13 we leave further investigation of
choosing optimal segment sizes and positions as an interesting topic for future research.

3. Inferring Causality Among Markov Equivalent Structures

We next formally tested our causal inference procedure on synthetic data simulated to rep-
resent relationships that are common in biological systems, and on data generated from a
dynamical systems model to recover metabolic network models. For the simulation experi-
ment, we generated a large number synthetic datasets based on different nonlinear functions
from the more difficult triple-node structures that are Markov equivalent. To infer known
metabolic networks, we applied our method to yeast data generated from a metabolic model
to demonstrate the ability to recover known metabolic networks.

3.1. Markov Equivalent Structures

For this problem, we test our method using the nonlinear functions y=ax3+sin(kπx) and
z=by2+sin(kπy) to model equivalent structures. These functions represent a flexible framework
for representing nonlinear biological relationships such as activation/inhibition and feedback
control relationships, with the parameters a, b and k controlling the nonlinear features of such
relationships: a,b∈[-2,+2] and k∈[0,2]. To demonstrate the broad applicability of our method
to general nonlinear data, we allow the parameters to vary across a wide range of values. For
the simulation component of our study, we generated 1000 datasets for each of the scenarios
depicted in Fig. 2, with each dataset comprised of 100 samples (a typical sample size in bio-
logical experiments). The data were simulated based on the ground truth structure G1 shown



in Fig. 2. The data were simulated from different distributions: Uniform(U), Gaussian(G)
and Poisson(P), to mimic microarray and RNA-sequencing gene expression data. For each
simulation, the parent node A (x) was sampled from the U, G and P distributions, and the
child nodes B (y) and C (z) were then generated according to the above nonlinear function.
Before adding Gaussian noise, we firstly rescale the observation of A, B and C into [0,1]. Next,
Gaussian noise (0, σ2) was also simulated to reflect technological variation inherent in the
types of measures made in biology; Finally, this noise was added to the values of A, B and
C and the added value is rescaled to [0,1] to complete the generation of our observation data
D. The graphical structures depicted in Fig. 2a are Markov equivalent and so in the context
of conventional Bayesian networks they all give rise to the same data likelihood, and thus,
are statistically indistinguishable from one another. We evaluated the learning performance
by generating receiver operator characteristic (ROC) curves (Fig. 2b). Here we see that our
method infers the correct causal relationships among the Markov equivalent structures, given
the explicit assumptions made on the nature of the interaction between the parent and child
nodes and on the distribution of these nodes.

3.2. Inferring Metabolic Signaling Pathways in Yeast

We next applied our method to metabolic data generated from a yeast model to assess whether
we could recover a known metabolic pathway, trehalose biosynthesis. Trehalose functions as
a carbohydrate reservoir and has has recently been shown to play a crucial role in stabilizing
proteins and cellular membranes under stress conditions such as heat shock. The metabolic
pathway that produces trehalose is believed to regulate glucose uptake, particularly when the
cell exists in a high-stress environment. It has also been shown that trehalose 6-phosphate
(T6P), an intermediate of trehalose biosynthesis, plays a key role in the control of glycolytic
flux. The kinetic values of this dynamical model have been identified experimentally12 and are
represented in the BioModels Database11 (BIOMD0000000380).

We generated data for the trehalose biosynthetic pathway (in-silico) simulating the kinetic
model for this model represented in the BioModel database. This model is comprised of a
cycle of reactions between 11 different metabolites: external glucose (GLX), cellular glucose
(GLC), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), glucose 1-phosphate (G1P),
uridine triphosphate (UTP), uridine diphosphate (UDP), uridine diphosphate-glucose (UDG),
diphosphate (Pi), trehalose 6-phosphate (T6P), and trehalose (TRH). These metabolites can
be divided into two groups, the primary metabolites (M=7) whose concentrations vary as a
result of reactions in this pathway, and extracellular glucose and boundary metabolites whose
concentrations are fixed but they impact the reaction rates. Fig. 3 depicts the core causal sig-
naling network we attempted to recover with our causal inference procedure. Represented in
this network is a v-structure and feedback loop, structures containing Markov equivalent com-
ponents that cannot be unambiguously resolved using classic Bayesian network approaches.
To infer causality along each undirected (bold) edge, we generated a dataset by sampling

100 (a typical sample size in biological experiments) starting concentrations of extracellular
glucose12 (changing the medium) X0

glx from the interval [0,100] (To ensure the system ex-
hibits nonlinearity response to perturbations, we choose a wide range for the extracellular
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Fig. 3. Core Causal Signaling Pathway for Trehalose Synthesis in Yeast
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Fig. 4. Steady-state concentration given variations in starting extracellular glucose concentrations

glucose level). For each starting condition we let the dynamic system representing the tre-
halose biosynthetic pathway evolve to its new steady-state, generating a vector of steady state
values for every primary metabolite, for each of the 100 starting conditions. This procedure
resulted in a 100× 7 data matrix of primary metabolite steady-state concentrations. In addi-
tion, we simulated Gaussian noise and added these noise components to the data matrix. Our
final observation dataset is shown in Fig. 4. Each subplot describes the relationship of the
steady-state concentrations between two (undirected) neighbor nodes in the pathway given
the 100 different external glucose concentration starting conditions. The upper row shows
these steady-state values before adding noise, while the lower row shows the rescaled values
with the noise terms added, which represent the data used for the causal inference.

Given the connectivity structure of this network, we sought to resolve the edge direction by
applying our method by calculating the causal structure score (Eq. 7) for each of the possible
causal configurations. Given there are a total 8 edges in this network and that each edge can
be oriented in one of two possible directions, there are 256 possible causal configurations to
consider. The causal structure with the highest score was selected as the most likely causal
structure supported by the data. In table 1 we list the top three inferred causal structures and
their causality scores. We can see that our inferred top structure is the true causal network
in 3. We note that the correct causal structure was inferred by considering the global structure
of this network, as opposed to resolving the structure using pairwise causal relationships. One
of the unique features of the modeling approach we developed is the ability to propagate
information through the entire network. As a result, our global causal inference approach
can leverage the correctly inferred causal relationships at between a given pair of nodes to
infer the appropriate causal relationships among other nodes. This feature of our modeling
approach is demonstrated by the causal inference of the feedback loop, i.e. TRH→GLC. With
existing causal inference procedures, the inferred causal relationship would be estimated as
GLC→TRH, whereas our method appropriately leveraged the global structure to correctly
infer this edge, given the fitness of GLC, G1P and UDG is improved when we consider the



Inf. Str. 1st.(top) rank GLX,TRH→GLC GLC→G6P G6P→G1P G1P→UDG G6P,UDG→T6P T6P→TRH Total Score

GLCGLX G1PG6P UDG TRHT6P

3.41012 4.47932 5.3111 4.2021 4.3202 4.21400 25.93696

Inf. Str. 2nd. rank GLX→GLC GLC,T6P→G6P G6P→G1P G1P,T6P→UDG TRH→T6P GLC→TRH Total Score

GLCGLX G1PG6P UDG TRHT6P

3.40264 4.47932 5.27015 4.08511 4.04915 4.04646 25.33285

Inf. Str. 3rd. rank GLX→GLC GLC→G6P G6P→G1P G1P,T6P→UDG G6P→T6P GLC→TRH Total Score

GLCGLX G1PG6P UDG TRHT6P

3.40264 4.564723 4.99965 4.09345 4.16278 4.04646 25.26973

feedback in the top structure, compared to the other competing structures.

4. Conclusion and Discussion

In the life and biomedical sciences the technology now exists to score molecular and higher
order phenotypes and genotypes on a massive scale, producing rich patterns of associations
among molecular and higher order features that have the potential to elucidate the complex-
ity of living systems. However, missing in biology is knowledge of the comprehensive set of
pathways that operate in living systems, the structure of these pathways, how they interact
with each other, how they change over time in response to different biological contexts etc.
Even what are considered as canonical pathways are routinely shown to be incomplete and
even inaccurate in different contexts. Therefore, methods that can help infer the causal rela-
tionships among the vast sea of phenotypes that can be scored are needed to better focus the
type of hypotheses that can be experimentally pursued in a laboratory setting. Here we have
attempted to address one significant limitation towards this end by developing a method to
infer causality from correlation-based data by utilizing a Bayesian belief inference framework
that is capable of distinguishing between Markov equivalent structures. By assuming different
functional forms of the interactions that are possible among molecular features, observed data
can be fit to probabilistic models of these relationships to assess which model best predicts the
observed data. Our method is able to achieve good power in resolving causality by appropri-
ately constraining the parameters of the probabilistic model in a way that allows the putative
deterministic relationship between two variables to be assessed in a probabilistic framework.
We applied our algorithm to multiple synthetic gene expression and RNA sequencing datasets
to demonstrate that our approach can accurately infer causality under different biologically
realistic assumptions regarding interaction types and noise structures.

Perhaps the biggest advantage of our approach is that it enables causal inference in a more
complex network setting compared to previous methods that are limited to assessing pair-
wise causal relationships. This generality is achieved by leveraging the marginal probabilistic
inference in a Bayesian network setting. We believe this advantage has significant importance
given conventional top-down Bayesian network approaches can be systematically combined
with our causal inference approach to form a integrated learning-inference framework. That
is, our approach can enable a unified bottom-up and top-down modeling approach. Of course
there are a number of ways in which the modeling approach we propose can be improved
beyond our initial proof concept. Because our approach infers causality by maximizing the
data likelihood that is based on a symmetrized KL-divergence measure between predicted and
observed probabilities, implemented using a piece-wise linear regression framework, optimizing



the selection of the segment size and number is necessary to achieve maximal power and
accuracy. Further, the causality inference can be embeded in structure search engine to search
for optimal causality given initial graph. Finally, integrating our approach with a conventional
structure-based learning approach, e.g. Bayesian network, has the potential to provide a very
flexible framework that can model biological systems in a more comprehensive and accurate
fashion, providing a way to incorporate bottom up modeling in a top-down framework to
maximally leverage not only existing data, but knowledge derived from such data.
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