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Biological pathways are central to understanding complex diseases such as cancer. The majority
of this knowledge is scattered in the vast and rapidly growing research literature. To automate
knowledge extraction, machine learning approaches typically require annotated examples, which are
expensive and time-consuming to acquire. Recently, there has been increasing interest in leveraging
databases for distant supervision in knowledge extraction, but existing applications focus almost ex-
clusively on newswire domains. In this paper, we present the first attempt to formulate the distant
supervision problem for pathway extraction and apply a state-of-the-art method to extracting path-
way interactions from PubMed abstracts. Experiments show that distant supervision can effectively
compensate for the lack of annotation, attaining an accuracy approaching supervised results. From
22 million PubMed abstracts, we extracted 1.5 million pathway interactions at a precision of 25%.
More than 10% of interactions are mentioned in the context of one or more cancer types, analysis
of which yields interesting insights.
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1. Introduction

Cancer stems from the synergistic perturbation of multiple pathways by mutations.1 Recent
advances in sequencing technology offer a plethora of panomics data, holding the promise to
make precision medicine and personalized treatment a reality. However, it remains a formidable
challenge to identify cancer drivers, due to complex cross talks and feedback loops in cancer
pathways.2 Moreover, even when the drivers are identified, they may not be directly druggable,
as in the case of RAS, where the promising targets lie in downstream signaling pathways.3

Pathways are thus essential to understanding cancer and developing targeted treatments. As
a result, pathways have been increasingly applied to panomics analysis.4–8

The majority of pathway knowledge resides in free text such as journal articles, which has
been undergoing its own exponential growth. For example, PubMed contains over 22 million
papers and adds more than one million each year. It is hard for manual curation to keep pace
with such a vast and rapidly growing literature, making it a priority to automate the curation
process. Such automation was traditionally pursued via rule-based systems,9 but hand-coding
extraction rules is expensive and time-consuming, and generally suffers low recall due to the
varieties of ways for expressing the same meaning. Machine learning approaches offer a much
more attractive alternative by effectively automating the rule engineering itself, but they in
turn require annotated examples, which are still difficult to acquire in scale.

The lack of annotated examples can be compensated for by leveraging distant supervision
from existing knowledge bases, as first proposed by Craven & Kumlien10 and recently pur-
sued actively in the natural language processing (NLP) community.11–13 However, no existing
approach addresses pathway extraction, focusing instead almost exclusively on newswire.
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Fig. 1. Example pathway annotation of the sentence “Involvement of p70(S6)-kinase activation in IL-10
up-regulation in human monocytes by gp41 envelope protein”.

In this paper, we present the first attempt to apply distant supervision in pathway extrac-
tion. We formulate pathway extraction as a classification problem and apply a state-of-the-art
distant-supervision method to it. To better evaluate the effectiveness of distant supervision
in bridging the gap from supervised learning, we propose a novel evaluation methodology to
create a controlled experimental setting using the GENIA event extraction dataset.14 Experi-
mental results show that distant supervision outperforms baseline systems such as rule-based
extraction by a wide margin, attaining an accuracy approaching supervised learning. Finally,
we applied distant supervision to all PubMed abstracts, using prior pathway knowledge from
the Pathway Interaction Database (PID).15 Our system extracted 1.5 million pathway inter-
actions at a precision of 25%. More than 10% of these interactions are cancer-related, analysis
of which yields a number of interesting observations.

2. Methods

2.1. Pathway Extraction from Text

Biological pathways capture the interactions among genes, gene products, and small molecules
such as metabolites. Examples of interactions include transcriptional regulation (e.g., tran-
scription factor binding for transcription initiation) and post-translational regulation (e.g.,
kinase phosphorylation for protein activity modulation). For simplicity, in this paper we focus
on static pathways such as signaling transduction and gene regulation, rather than metabolic
networks and dynamics. Figure 1 shows an example pathway fragment, with the correspond-
ing text and annotation. In general, pathways form a hypergraph where each node represents
a gene or gene product, and each hyperedge represents an interaction.

Decades of genetic studies have produced a wealth of pathway knowledge, which is scat-
tered in the literature, with each paper or sentence covering only a few interactions. For exam-
ple, the sentence “CTCF is a transcriptional repressor of the c-myc gene.” signifies a transcrip-
tional regulation of c-myc by CTCF. In this paper, we focus on extracting such regulatory rela-
tions between two proteins, which identify the Cause argument such as CTCF, the Theme argu-
ment such as c-myc, and, if available, the regulation direction such as negative regulation.
Formally, the pathway extraction problem is to classify each ordered triple (PT , S, PC) into
one of the following: {positive regulation, regulation, negative regulation, NULL},



Fig. 2. A simple distant supervision algorithm

Require: A set of sentences, with entity mentions identified
Require: A database of relation triples (entity, relation, entity)

1: For each relation triple, find all sentences containing the entity pair
2: Annotate those sentences with the corresponding relation
3: Sample unannotated sentences with co-occuring proteins as negative examples
4: Train a classifier using the annotated dataset
5: return the resulting classifier

where S is a sentence and PT , PC are protein mentions in S.∗

2.2. Distant Supervision

The main idea of distant supervision is to use known relation instances in the database to
automatically annotate training examples in unlabelled text,10 as shown in Figure 2. Suppose
we know from the database that CTCF down-regulates c-myc, and in the text we find a
sentence where CTCF and c-myc co-occur, such as “CTCF is a transcriptional repressor of
the c-myc gene”. We thus have some reason to hypothesize that this sentence might be stating
a negative regulation relation with Theme being c-myc and Cause being CTCF. A simple
distant-supervision method would thus label such sentences as positive examples, and sample
negative examples from random sentences where the co-occurring proteins do not have a
known regulatory relation.

Of course, this simple approach would often introduce noise in the labels, since the sentence
might not be about the given regulation, as in “In Bcl-deficient mice, expressions of both CTCF
and c-myc showed marked decrease”. A more reasonable assumption is that some sentence
in the text expresses this relation, though not necessarily every one with co-occuring CTCF,
c-myc.† This assumption is adopted in state-of-the-art distant supervision methods.12,13

In this paper, we use MultiR13 because it is such a state-of-the-art method with a publicly
available implementation. The key idea is to introduce a latent variable to signify whether
a relation R holds between entities (E1, E2) for each sentence where E1 and E2 co-occur and
are the Theme and Cause, respectively. Distant supervision is provided by enforcing during
training that for each relational triple (E1, R,E2), at least one latent assignment is true if
the database contains the relation, and none otherwise. Each instance is represented by a
linear model with features over the sentence and entities. The feature weights are learned
using online learning with perceptron. In each iteration, for each protein pair, MultiR first
computes the best assignment to each instance according to the model. If the assignment is
consistent with the database (each relation is expressed at least once, and no relations that
don’t appear in the database are expressed), no update is done on the protein pair. If not, it

∗This formulation might sometimes lose information, such as co-factors required in a regulation, or experi-
mental conditions. Lifting this limitation to handle n-ary, nested relations will be a key future direction.
†Note that this assumption still suffers a number of drawbacks. For example, it is possible that none of the
available sentences mention the given relation. Moreover, the existing database is incomplete, so the absence
of a relation might not necessarily signify its negation. Addressing these issues is an active research area.



uses a greedy algorithm to find the best assignment to each instance such that the assignment
is consistent with the database, and does a perceptron update toward this assignment.

We used the following standard lexical and syntactic features11 in our experiments, il-
lustrated with sentence “Involvement of p70(S6)-kinase activiation in IL-10 up-regulation in
human monocytes by gp41 envelop protein”, and E1, E2 being “gp41” and “p70(S6)-kinase”,
respectively.

Direction: 0 if the two protein spans overlap, +1 if E2 follows E1 in the sentence, and −1 if
E2 precedes E1. In the example, this feature is -1.

Distance: Four indicator features specifying whether E1 is more than k tokens to the right
of E2, with k = 5, 10, 15, 20. In the example, this feature is 1 for k = 5 and 0 otherwise.

Lexical: (1) the sequence of words between the two proteins, concatenated with direction,
such as Dir=-1 ∧ WordSeq="activation in IL-10 up-regulation in human monocytes

by"; (2) the sequence of lemmas of the words between the two proteins, concatenated
with direction, such as Dir=-1 ∧ LemmaSeq="activate in il-10 up-regulate in human

monocyte by"; (3) individual words between the two proteins, concatenated with direction,
such as Dir=-1 ∧ Word="activation", etc.; (4) individual lemmas between the two proteins,
concatenated with direction, such as Dir=-1 ∧ Lemma="activate", etc.

Dependency path: (1) unlexicalized dependency path between the two proteins (e.g.
↑nn↑by↑in↓of↓nn); (2) lexicalized dependency path using the lemmas for lexicalization (e.g.
↑nn protein ↑by up − regulate ↑in involve ↓of activate ↓nn); (3) upward (child to parent) and
downward (parent to child) portions of the dependency path as separate features, concate-
nated with the lemma of the path root, e.g., Upward=↑nn↑by↑in ∧ RootLemma="involve" and
Downward=↓of↓nn ∧ RootLemma="involve".

MultiR can be used in supervised learning by simply setting each relational assignment
according to the sentence-level annotation (i.e., they are no longer latent).

2.3. Controlled Experiments using GENIA Event Extraction Dataset

Evaluating distant supervision is challenging as by definition there is no annotated dataset, so
existing methods tend to resort to reporting sample precision and absolute recall (i.e., sample a
small subset of system extractions, manually inspect them to determine the precision, and use
it to estimate the number of correctly extracted instances). While this is useful for comparing
distant supervision methods, the sampling process inevitably introduces bias and variance.
Furthermore, it is difficult to assess the performance gap from supervised learning.

This motivates us to propose a new evaluation methodology by creating a simulated
distant-supervision scenario from an annotated dataset, which enables us to assess the true
precision and recall, and compare with supervised learning. Specifically, we used the GENIA
event extraction dataset from BioNLP-09 Shared Task 1,14 where protein annotation is given
as input, and pathway events are annotated as output (Figure 1).

We follow the formulation in Section 2.1 and reduce GENIA events to binary rela-



tions in { positive regulation, regulation, negative regulation, NULL }.‡ Specifi-
cally, for each protein pair E1, E2 in a training sentence, we compute all event paths between
them from the annotation, and reduce each event path into a relation summarizing the path
semantics as follows:

First, we identify the top event e in the path that has both proteins in its scope. E1 should
lie in the Theme branch from e, and E2 in the Cause branch. If not, the relation is set to NULL.

Next, we check whether the Theme path contains any Cause argument, as between TP53
and MAPK1 in “TP53-induced BCL overexpression is inhibited by MARK1”. If so, the relation
is also set to NULL. In general, as we can see from this example, we can not conclude a causal
relation between these two proteins.

Otherwise, we assign a regulation relation with E1 being the Theme argument and E2 being
the Cause argument. If any event in the path is regulation, we set the overall relation to
regulation as well (i.e., we can not determine the direction). Otherwise, we set the relation to
positive regulation if there are an even number of negative regulation events followed
by a Theme argument, and to negative regulation for an odd number.

For example, with sentence “Involvement of p70(S6)-kinase activiation in IL-10 up-
regulation in human monocytes by gp41 envelop protein”, and E1, E2 being “gp41” and
“p70(S6)-kinase”, respectively, the non-NULL relations are (positive regulation, IL-10,

gp41), (regulation, IL-10, p70(S6)-kinase).
We thus form a database with the unique relation triples derived from the training set,

which, together with the unlabelled text are served as input to the distant supervision method.
The learned classifier is then applied to the test text to extract new events. The results can
be evaluated using the test annotation and directly compared with the supervised learning
approach, which is separately learned using sentence-level annotation in training text.

2.4. Rule-based Relation Extraction

In the past, rule-based extraction has been used extensively in relation extraction, such as the
GeneWays system.9 This remains a preferred approach in the absence of annotated examples
for applying machine learning approaches.16 To enable a head-to-head comparison with distant
supervision, we followed standard practice as in GeneWays and other rule-based systems, and
spent substantial effort to develop a high-performing rule-based system for pathway extraction.

Upon first consideration, relation extraction appears straightforward to automate. For
example, in the sentence “CTCF is a transcriptional repressor of the c-myc gene.”, “tran-
scriptional repressor” clearly indicates a negative regulation relation. Unfortunately, the
same information may be expressed in many variations, as shown in Table 1.

Some variations can be normalized in syntactic analysis. For example, lemmatization can
normalize inflectional morphology (“inhibited” has the lemma “inhibit”), and derivational
morphology (both “inhibitor” and “inhibition” are derived from “inhibit”). Syntactic parsing
can normalize active/passive variations and identify related words even when they are far

‡GENIA also annotates simple unary events such as expression and transcription, which could be taken
into account in future work.



Table 1. Linguistic varitions describing the same pathway event.

Sentence Varation
CTCF is an inhibitor of the c-myc gene lexical
CTCF inhibits the c-myc gene part of speech
The c-myc gene is inhibited by CTCF active/passive voice
The ability of CTCF to inhibit c-myc modality
CTCF has been shown to inhibit c-myc background
Expression of the CTCF gene has been shown to inhibit c-myc explanation
CTCF as well as other genes have been shown to inhibit c-myc augmentation

apart in the sentence.
Other variations, however, are more difficult to handle in a domain-independent way,

so past systems resorted to writing domain-specific rules to capture such variations.9,16 We
followed this approach and developed our rules based on the event annotation in the training
set of GENIA. The rules identify subtrees that trigger a particular relation, as well as child
subtrees that identify the Cause and Theme of that relation. At the surface level, one might
say that “Cause inhibits Theme” is a trigger for negative regulation. We represent these
rules in terms of syntactic subtrees to better handle many of the aforementioned variations:
“(inhibit nsubj: Cause dobj: Theme)” triggers negative regulation.

To identify relations for a candidate sentence and protein pair, we first parse the sentence
using SPLAT17 and postprocess the parse into Stanford typed dependencies,18 which forms
a tree where each node represents a word by its surface form, its lemma, and its part of
speech, and each edge represents a typed dependency. For example, for “CTCF inhibits c-
cmyc”, “inhibits” is the root, with a “subject” being “CTCF” and an “object” being “c-
myc”. Next we attempt to match each trigger rule at each node in the tree. Here, matching
means finding a correspondence between the nodes in the trigger subtree and the nodes in
the candidate sentence. Each trigger subtree node must map to a unique sentence node, with
matching relation types and node lemmas, except for Cause and Theme, which can match any
nodes in the input tree. Finally, we check if the Cause and Theme are compatible with the
protein arguments. In the simplest case, this amounts to matching Cause and Theme to the
corresponding protein nodes. Additionally, we expand the criteria to account for variations in
protein mentions (e.g., matching to “gene” in “the BCL2 gene”, or matching to “BCL1” in
“BCL1 and BCL2”). If this is successful, we return the specified relation as the classification;
otherwise, NULL.

This results in a set of 159 trigger rules and 63 protein expansion criteria, by hill-climbing
on extraction accuracy over the GENIA training set.

2.5. PubMed Extraction with Distant Supervision from PID

Given the GENIA dataset, one might consider simply adopting supervised learning and ap-
plying the learned extractor to PubMed abstracts, as in EVEX.19 Such extractions would no
doubt be very useful, but there remains a major concern over how representative the examples
are, as with any supervised approach. The GENIA abstracts were chosen a decade ago and
are rather dated by now. More importantly, they were sampled from a narrow subject area



(PubMed search with MeSH terms “human”, “blood cell” and “transcription factor”).
In contrast, a distant supervision approach can learn an extractor for any subject area,

as long as there exist manually curated databases to leverage, which is generally the case.
To demonstrate the feasibility of this direction, we used PID15 as the database for distant
supervision, and applied the learned extractor to PubMed-scale pathway extraction.

PID represents each pathway as a hypergraph, where each node represents a gene (tran-
scription), gene product (proteins and complexes), or process (e.g., apoptosis), and each hyper-
edge represents an interaction, with multiple input and output nodes and their regulatory di-
rections (induction or inhibition). We followed the formulation in Section 2.1 and reduced each
interaction into binary regulations by creating relation triples between the component genes in
each input/output pair, excluding the case when the two nodes represent identical molecules.
This yields 15150 unique relation triples, such as (negative regulation, APC, TP53). We
filter out triples with conflicting regulation or causal directions between two proteins, such
as (positive regulation, CDKN1A, TP53), (negative regulation, CDKN1A, TP53), and
(positive regulation, PLAU, PLG), (positive regulation, PLG, PLAU). These are legit-
imate interactions representing feedback loops or contextual dependency, but their inclusion
would confuse the distant-supervision learner given the lack of sentence-level annotation. There
were 4,547 triples left after filtering, which were used for distant supervision.

In GENIA, gold protein annotation is given as input, which is not available for general
PubMed abstracts. We thus used the protein extractor from Literome20 to identify protein
mentions in all PubMed abstracts. This extractor was built on various available resources with
canonical mentions and synonyms for proteins, families, and complexes.

General PubMed abstracts are significantly more diverse and noisy compared to GENIA
ones. At training time, we filtered out instances where the two proteins have overlapping spans
or appear more than 15 words apart, which are unlikely to express a relation.

2.6. Cancer Classification

Given a pathway interaction, it would be useful to understand the context such as cell type,
localization, experimental conditions, etc. As a first step toward this direction, we focus on
identifying the cancer types mentioned in the same abstract. Specifically, we used the MeSH
terms provided by Medline for the majority of PubMed abstracts, and extracted the ones that
signify cancer types (i.e., ending in “Neoplasms”). An extraction instance is thus associated
with the cancer types for the given abstract.

3. Results

3.1. GENIA Experiments

We used the GENIA dataset to create a controlled setting to evaluate distant supervision and
compare it with rule-based and supervised approaches (Section 2.3). The GENIA dataset14

contains a set of annotated abstracts (800 training, 150 development). It also contains a test
set, but its annotation is not made public so we can not use it to evaluate binary relation
extraction. Therefore, we conducted training and development using the training data, and



Table 2. Test results on GENIA binary-relation classification comparing distant supervision
with two baseline systems, supervised learning, and MSR11, a state-of-the-art system training
on full event structures.

System Precision Recall F1
Most-Frequent 3.4 69.7 6.5

Rule-Based 45.8 5.2 9.4
Distant Supervision 39.2 19.0 25.6

Supervised 37.5 29.9 33.2
MSR11 55.1 28.0 37.1

reserved the development set for test. We subsampled negative examples to avoid label imbal-
ance (the ratio between positive and negative examples is about 1:3). For supervised learning,
we also filtered out features with fewer than 3 counts in positive examples. Training and test
both took less than a second.

We took all co-occuring protein pairs in test sentences as classification candidates and
evaluated precision, recall and F1 of system extraction given the gold labels. We compared
distant supervision with the rule-based system, a baseline that predicts the most frequent
relation in training (positive regulation) for co-occurring protein pairs, as well as the
supervised system trained on sentence-level annotation, which provides an upper bound. To
quantify a further upper bound when full event structures are taken into account, we also
evaluated MSR1121 by converting its publicly available event extraction output to binary
relations. MSR11 is an event extraction system trained on full event structures, with state-
of-the-art event F1 score of 55.7 on GENIA development. (The best score of 58.7 is reported
by Riedel et al.22) Note that event F1 accounts for simple unary events such as expression,
thus is not directly comparable with binary-relation F1. For example, MSR11 scores only 37.1
on binary-relation F1.

Table 2 shows the test results for all systems. Surprisingly, not only did distant supervi-
sion substantially outperform the two baseline systems, it also attained an accuracy that is
rather close to the supervised upper bound. For example, compared to the rule-based system,
distant supervision reduces the performance gap from the supervised upper bound by nearly
70%, while using much less information. (The rule-based system used sentence-level annotation
during rule engineering.) Note that this supervised upper bound is very strong, comparable to
state-of-the-art event extraction that leverages full event structures (33.2 vs. 37.1). Likewise,
we spent substantial effort to engineer the rule-based system, attaining a strong performance
on training (precision 80.3, recall 26.5, F1 39.8). Unfortunately, while its precision is relatively
high, it suffers low recall and a big performance drop from training to test, which is typical of
rule-based systems. Overall, these results clearly demonstrate the promise of distant supervi-
sion, which could attain competitive accuracy while requiring substantially less development
effort compared to both rule-based and supervised approaches.

3.2. PubMed Experiments

We applied distant supervision using PID and PubMed abstracts to train an extractor (Section
2.5). We sampled negative examples following the positive/negative ratio used in GENIA,
yielding 97,215 examples in total. We then ran the extractor to extract events from all PubMed



Table 3. Evaluation on 300 sample PubMed extractions, with annotation statistics and example instances.
Mentions are annotated with Cause and Theme from automatic predictions.

Outcome Count Example

Correct 75 The polycomb protein

Cause

Bmi-1 represses the INK4a locus , which encodes the

tumor suppressors p16 and

Theme

p14(ARF).

Imperfect Sign 27 This regulated control of

Theme

STAM expression by

Cause

Hrs was independent of
transcription.

Reversed Direction 46 This may possibly occur through inhibition of

Cause

insulin receptor (IR) tyrosine
kinase activity mediated by serine/threonine phosphorylation of the IR or

Theme

insulin receptor substrate 1 (IRS-1).
Protein Error 56 We found that the development of experimental autoimmune en-

cephalomyelitis (EAE), the rodent model of

Cause

multiple sclerosis, was signifi-

cantly suppressed in

Theme

IL-17 (-/-)-mice.
Non-Regulation 96 Anti-dsDNA B cells, on the other hand, are functionally unresponsive to

anti-IgM and

Theme

LPS stimulation, and do not phosphorylate intracellular pro-

teins, including

Cause

Syk , upon mIg stimulation.

abstracts by classifying candidate sentences with co-occurring protein pairs. Note that we do
not know the gold annotation for the positive examples used in training, nor could the learner
memorize them since no protein-specific features are in use. Training took five minutes and
extraction took 30 minutes using 900 cores. This PubMed-scale extraction yields 1,491,373
regulation instances, with 838,255 unique relation triples.

To assess the quality of the extraction, we sampled 300 extractions and manually anno-
tated them. Table 3 summarizes our findings. Among the 300 sample extractions, 56 have
wrong protein annotation, which is not surprising given that protein mentions are often
highly ambiguous. Of the remaining 244 instances, 75 are correct, giving an end-to-end preci-
sion of 25% and a precision of 31% assuming gold protein annotation. Among the errors, 46
are actually correct regulation events, but in 21 of them the sign (positive regulation or
negative regulation) is wrong or the sentence is ambiguous about it, and in the remaining
25 the causality direction is reversed. With this sample precision, we estimate that distant
supervision from PID yields about 372,000 correct extractions, and 210,000 unique relation
triples, which is an order of magnitude larger than PID.

These results are promising and testify to the feasibility of this direction. Of course, there
is still much room for improvement. Protein errors occur in about one fifth of extractions.
Currently, protein extraction does not benefit from distant supervision and is done separately
from event extraction. Joint learning of protein and event extraction with distant supervision
could potentially produce large improvement in both tasks. Relation errors often occur for
two proteins in paths that are in conjunction, as in the example in Table 3, which might
potentially be avoided with better filtering criteria. Finally, distant supervision can be used in



Table 4. Top ten most studied cancer types, along with the top ten genes for each type, both in the number of
unique pathway extractions.

Cancer Relations Top ten most studied genes
Breast 27988 TP53, ESR1, MYBL2, BRCA1, ZFP36, EGFR, ZFP, ESR2, EGF, AKT

Prostate 10981 CBX8, SLC22A3, AR, KLK3, EPHB2, TP53, TDRD7, NPEPPS, AKT, SERPINB6
Lung 9423 EGFR, TP53, KRAS, VEGFA, CASP, MMP2, AKT, EPHB2, CDH1, CEACAM5
Liver 8438 TP53, EPHB6, HCCS, AFP, MYLIP, CCL2, VEGFA, RELA, NFKB1, NA
Colon 6092 TP53, APC, CTNNB1, AOM, TMED7, RELA, EGFG, NFKB1, SRC, PTGS2

Colorectal 5381 TP53, CTNNB1, APC, CEACAM5, KRAS, EGFR, MSI, CASP, VEGFA, PTGS2
Pancreatic 5178 INS, KRAS, EGFR, VEGFA, CEACAM5, TNF, AURKA, MIA, RELA, NFKB1

Ovarian 4331 LPA, TP53, EGFR, VEGFA, AKT, MMP, MUC16, BRCA1, BARX2, IFNG
Skin 4324 SERPINB3, TP53, KRT13, NFKB1, RELA, CD4, VIM, TNF, IL2, CD68
Brain 3988 RIPK1, CCDC88A, TP53, CSF2, NCAM1, AFP, MGMT, EGFR, ELAVL1, AKT

Table 5. Top ten most studied cancer types, along with top genes ranked by association score.

Cancer Top ten most significantly associated genes
Breast ESR1, BRCA1, ESR2, BRCA2, PGR, CYP19A1, ERBB2, EGF, IGF1, KRAS

Prostate CBX8, KLK3, NPEPPS, AR, DYNLL1, SERPINB6, ERG, DPT, TMPRSS2, FOLH1
Lung EGFR, KRAS, ALK, PCSK9, CBX8, ARCN1, KLK3, BRCA1, F7, TTF1
Liver HCCS, EPHB6, AFP, TRIM26, HSPG2, ADAM17, LDLR, DNLZ, ALB, CCL15
Colon AOM, DLD, CEACAM5, DDX53, APC, CTNNB1, GAST, PPARG, WNT16, SELE

Colorectal KRAS, APC, MSI2, CTNNB1, MSI1, CEACAM5, MRC1, BRAF, FAP, MLH1
Pancreatic INS, GCG, MIA, SST, CCK, KRAS, ZGLP1, PDX1, PRSS27, SMAD4

Ovarian BRCA2, MUC16, BRCA1, LPA, DIRAS3, BRCA3, ARID1A, HEY1, GNRHR, ABCB1
Skin SERPINB3, TNFRSF8, COL1A1, CMM, MLANA, EGFR, MC1R, CPD, CD8A, MCC
Brain GFAP, MGMT, IDH1, MS, SMS, NEFH, KIAA1549, CSF2, GSC, NAA60

an integrative loop for eCuration:23 distant supervision produces initial extractions, eCurators
then verify them via an online interface such as Literome,20 fixing errors by a click of buttons,
which is much more efficient than annotation from scratch. The feedback could be fed back into
distant supervision via online learning and used to continuously improve extraction quality.
Active learning can also be incorporated by prioritizing the least confident extractions for
annotator verification.

3.3. Cancer Pathway Analysis

With cancer contexts identified by MeSH terms (Section 2.6) and PubMed extractions pro-
duced from distant supervision (Section 3.2), we conducted an exploratory analysis to survey
the research landscape and findings on cancer pathways.

Cancer Pathway Research Among the 1.5 million pathway extractions, 150,379 occur
in the context of cancer, or about 10%; among the 838 thousand unique pathway relations,
108,373 occur in the context of cancer, or about 13%. Table 4 shows the top ten most studied
cancer types, along with the top ten genes for each type, both in the number of unique pathway
relations found in our extraction. Not surprisingly, many well-known cancer genes are in the
list, such as TP53 and EGFR. Overall, the top ten most studied genes for cancers are: TP53,

EGFR, VEGFA, CBX8, ESR1, SLC22A3, AKT, MYLIP, EGF, EPHB2. For non-cancer context: INS,

TNF, CA2, TCF, CD4, TP53, IRF6, EPHB2, CALM3, CASP.
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Fig. 3. Heatmap indicating the strength of association between cancer types and genes.

Cancer-Specific Genes Genes like TP53 are crucial for many cancer types and are well
studied across the board. Additionally, we are interested in genes that act specifically to a can-
cer type. We thus searched for non-random association between genes and cancer types, using
the log-likelihood ratio test where the null model assumes that the gene occurs independently
from the cancer type in each extraction. Figure 3 shows a heatmap for the association scores
between the top ten cancers and their most significantly associated genes. Table 5 shows the
top ten most studied cancer types again, along with the top ten genes ranked by association
score instead. Compared to top genes by relation counts, these lists are clearly type-specific,
revealing many well-known associations, such as BRCA1, BRCA2, ESR1, ESR2 for Breast Can-
cer, EGFR, KRAS for Lung Cancer, BRCA1, BRCA2, BRCA3 for Ovarian Cancer, etc. Conversely,
the highly ranked genes with lower extraction counts might reveal research opportunities for
genes that are not yet well studied but potentially important for a cancer type. In general, our
PubMed-scale extraction enables cancer pathway analysis encompassing the entire research
landscape, revealing interesting insights as well as suggesting future research priorities.

4. Discussion

In this paper, we present the first attempt to apply distant supervision to pathway extraction.
Evaluation on the GENIA event extraction dataset shows that distant supervision substan-
tially outperforms rule-based extraction and other baselines, attaining an accuracy approach-
ing supervised upper bounds. Application to all PubMed abstracts using the PID database
yielded an order of magnitude more correct pathway interactions than the original database.
Analysis of cancer-related interactions led to a number of interesting observations. The ex-
tracted pathways, sample annotation, and trigger rules used by the rule-based system will be
made available at literome.azurewebsites.net/papers/psb15.

Overall, this demonstrates the great potential of distant supervision for cancer pathway



extraction and biological knowledge extraction in general: distant supervision could attain high
accuracy while requiring substantially less development effort compared to both rule-based
and supervised approaches.

This also opens up a number of interesting future research directions. Currently, pathway
extraction is pursued in an isolated fashion, feeding on output from other tasks such as protein
extraction. Joint learning with distant supervision is a promising direction for improving the
accuracy in all pipeline tasks. Existing distant supervision methods are only applicable to
binary relations; lifting this limitation to handle n-ary and nested relations is an important
future direction, and is particularly important for identifying relevant contexts and reconciling
seemingly conflicting relations. Our system currently ignores event modalities such as negation
and hedging, which need to be incorporated in the future. Distant supervision can be seam-
lessly integrated in eCuration, combining with online learning from annotator feedback, and
active learning for prioritizing verification requests. Finally, a particularly exciting prospect
is to integrate the extracted pathways with high-throughput panomics data for automating
discovery in genomic medicine.5
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