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The availability of high-quality physical interaction datasets is a prerequisite for system-level analysis
of interactomes and supervised models to predict protein-protein interactions (PPIs). One source is
literature-curated PPI databases in which pairwise associations of proteins published in the scientific
literature are deposited. However, PPIs may not be clearly labelled as physical interactions affecting
the quality of the entire dataset. In order to obtain a high-quality gold standard dataset for PPIs
between human immunodeficiency virus (HIV-1) and its human host, we adopted a crowd-sourcing
approach. We collected expert opinions and utilized an expectation-maximization based approach to
estimate expert labeling quality. These estimates are used to infer the probability of a reported PPI
actually being a direct physical interaction given the set of expert opinions. The effectiveness of our
approach is demonstrated through synthetic data experiments and a high quality physical interaction
network between HIV and human proteins is obtained. Since many literature-curated databases suffer
from similar challenges, the framework described herein could be utilized in refining other databases.
The curated data is available at http://www.cs.bilkent.edu.tr/~oznur.tastan/supp/psb2015/
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1. Introduction

Literature curated databases1–8 extract PPIs from published articles, organize them and make
them available online. In addition to supplying prior knowledge for future experiments on a
specific protein function, these sets of interactions enable system level analyses of interactomes,
serve as benchmark data to quantify error rates in high-throughput experimental assays9 or
they are used as training/testing data to build predictive models.10 Such analyses depend
critically on the inherent quality of the data.

Obtaining a high quality set of direct physical PPI interactions often presents a challenge.
In some cases, databases include a mixture of functional indirect associations and direct phys-
ical interactions, without specifying the distinction. For example, the work presented here
is motivated by our previous study on predicting the HIV-1-human interactome,11 where we
faced the challenge of extracting the subset of direct physical interactions from the NIAID
HIV-1, Human Interactions database,2,3 which does not readily provide a reliable direct phys-
ical interaction set. Since this is a general problem, the International Molecular Exchange
(IMEx) consortium12–14 has announced that literature-curated databases should provide more
detailed information about the experiments using structured ontologies describing the type of
the interaction or the experimental techniques employed. In theory, these experimental details
might allow the user or the database curator to review each interaction and use their own
judgment to decide how reliable a pair is. In practice, this route is time consuming and is not



guaranteed to arrive at good quality datasets. Users either assume all small-scale experiments
are of equally high quality15 or disregard some portion of the interactions based on additional
criteria such as the type of experimental technique, or the number of publications that vali-
dates the interaction. Few databases provide reliability scores, e.g. the Molecular Interaction
Database (MINT)16,17 that combines information such as the scale of the experiment, the type
of the experiment, the number of publications supporting an interaction, and the presence or
absence of ortholog interactions. However, the scoring function blends in several parameters
to quantify reliability.16,17

Assessing whether there is enough evidence to conclude that a reported association is a
direct physical interaction requires a complex judgment. One has to concurrently account
for the methods employed, the proteins under study, and the results of each specific study.
Some experimental techniques are more conclusive than others and techniques do not work
uniformly well across all proteins. In addition to the variability in the power and limitations
of each technique, the conditions under which a study is conducted are important: in vitro
or in vivo environment, the strains used, the nature and positions of mutations or labels
introduced. All such parameters should be taken into account when interpreting the results.
Such a complex judgment can be best provided by domain experts.

Although domain experts can provide high quality labels for PPIs, different experts might
have different opinions, especially when there is not enough evidence accumulated in the
literature to give a perfectly conclusive answer. Additionally, disagreements among experts
arise because of their biases, expertise and/or stringency levels; e.g., some experts are more
difficult to convince with partial evidence or results of certain experimental techniques than
others. Despite these limitations it has been demonstrated in several other domains, that
harnessing the power of human judgments collectively – although imperfect individually – can
be invaluable for solving difficult tasks.18

A long line of work exists in the biostatistics and epidemiology literature where latent
variable models have been used to estimate the observer error rates based on results from
multiple diagnostic tests without a ground-truth set.19 Recently, “learning from crowds” has
become a very active research topic in machine learning and has already had several successful
applications.18,20,21 For example, through the Dialogue on Reverse Engineering Assessment and
Methods (DREAM) project, Marbach et al.22 used community-based methods to construct
high-confidence gene regulatory networks for E. coli and S. aureus. Their integration strategy
through “learning from crowds” was shown as a powerful and robust tool for the inference of
transcriptional gene regulatory networks. Similarly, Lu et al.23 combines multiple annotations
in the Gene Normalization (GN) challenge in BioCreative III.

In this paper, we adopt a crowd-sourcing strategy to revise an otherwise noisy and hetero-
geneous literature curated HIV-1, human PPI dataset by collecting expert opinions on PPI.
We apply a probabilistic approach to estimate experts labeling accuracies in the absence of a
benchmark dataset similar to the approach proposed by Raykar et al.20 Using these estima-
tions, the probability of the literature curated pairs to reflect direct interactions is assessed,
which results in a high quality set of labels for HIV-1, host PPIs. We verify the utility of this
approach through synthetic data experiments as well as performance tests conducted with a



new model that is trained with these high quality labels.

2. Literature Curated HIV-1, Human PPIs and Collected Experts’ Labels

2.1. Existing Literature Curated HIV-1, Host PPIs:
We retrieved literature curated HIV-1 and human PPIs from the NIAID HIV-1, human protein
interaction database (henceforth referred to as NIAID database).2,3 The set includes 2589 HIV-
1, human PPIs between 1448 human proteins and 18 HIV-1 proteins. Whether the reported
association is a direct physical interaction or not is not provided by the database. Instead, the
database describes each interaction by one or more descriptive key phrases such as “ interacts
with” or “binds”, which are extracted from publications reporting these interactions.
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Fig. 1. Distribution of the number of publications supporting each HIV-1, human protein interaction in the
NIAID database.2,3 The graph depicts two analyses, where publications are counted individually (black) or
publications are grouped together if they share a common author (gray).

We retrieve the list of publications supporting each interaction in the NIAID database and
conduct an analysis on the number of supporting publications for each PPI. Interestingly, 44%
of all the PPIs in the database are reported only in a single publication (Fig. 1). When the
publications that share at least one common author are grouped together, the statistics become
even more striking; the proportion of PPIs supported by a single group is as high as 53%
(Fig. 1). The number of PPIs that are supported by more than five publications constitutes
only 19 and 13% of all PPIs when publications are ungrouped and grouped, respectively. The
lack of follow-up studies by other labs for a given PPI hints at the possibility that for most
interactions, there may not be enough experimental validation for their inclusion in a gold
standard dataset. This justifies the need to develop a good way to assign confidences to the
associated pairs.

2.2. Collecting Opinions from Experts

To obtain judgments on interactions published, we contacted a number of experts working
in the HIV field. 16 experts provided their opinions on the interactions. One of the experts
is a PhD student working with HIV-1 experimentally; all others were professors at different
universities who have worked several years on one or more HIV-1 proteins experimentally.
The experts were asked to annotate only the interactions of the HIV-1 proteins for which
they consider themselves experts. For each HIV-1 protein, an Excel file was prepared, in



which interactions with the HIV-1 protein were listed. The file included the human protein
interaction partners of the HIV-1 protein, the keywords retrieved from the NIAID database,
and hyperlinks to the original publications so the experts could check the articles if necessary.
For HIV-1 proteins, where the number of PPIs are ≤ 50, all the interactions reported in the
NIAID database were sent to experts. In cases where > 50 interaction partners were listed
for HIV-1 proteins, experts were only provided with the subset of PPIs described with the
keywords “interacts with” and “binds”. This was to avoid experts feeling overwhelmed with a
long list. We adopted this route to increase the chance of receiving a response. In some cases,
experts did not use the files; instead, they provided us with a set of interactions which they
thought are real and direct PPIs.

3. Model to Estimate Expert Labeling Qualities and PPI Labels

Presented with the same protein pair and the accompanying published evidence, experts
sometimes disagreed on whether to label the PPI pair as a direct interaction or not. When there
is not enough evidence accumulated in the literature, disagreements among experts might arise
because of their biases, expertise, and/or stringency levels. For these reasons, expert opinions
will be noisy and subjective. By asking several experts about the same interaction pair, the
reliability of the interaction being a direct interaction can be better assessed. Although having
as many expert opinions as possible is beneficial, we were not able to obtain multiple expert
opinions on all protein pairs due to time or expertise constraints. Thus, there is variance in
the number of expert opinions for some pairs.

Taking these considerations into account, the computational problem becomes the follow-
ing: given noisy opinions and with possibly varying number of judgments for each case, how
can we accurately decide if a protein pair is more likely a “direct physical interaction”and
what is the uncertainity of the label. A commonly used strategy in this situation is to decide
on labels based on a majority vote of the expert labels. However, majority voting assumes
that all experts provide opinions of equal accuracy. When there is subjectivity and noise in the
opinions, majority voting cannot be expected to perform as desired. In our model, we account
for that with a probabilistic latent variable model. In this model experts’ labeling accuracies
and the probability of the association being a direct interaction are estimated jointly.

3.1. A Probabilistic Model for Expert Opinions

Let’s consider N literature reported PPI and let yi ∈ Z indicate the true and hidden label
for the ith PPI, where Z = {0, 1} (“direct physical interaction” or “not”, respectively). The
labels yi are unknown. Instead we have multiple expert labels yi = {y1

i , y
2
i , . . . , y

M
i } provided

by M different experts. We introduce a parameter that represents the true unknown labeling
accuracy of the expert j for the label type z. We propose to model each expert’s labeling
accuracy using a biased-coin model,20 which is,

P
(
yj = z | y = z

)
= θjz (1)

where z ∈ Z = {0, 1}. This model assumes that when the hidden true label is one, the
expert j flips a coin with bias θj1, meaning that the expert j has a probability of θj1 to assign
correct label 1 to this instance. When the hidden true label is 0, the expert j flips a coin
with bias θj0, meaning that the expert j has a probability of θj0 to assign correct label 0 to the



instance. The above formulation can model the situation of different experts having different
error rates in their annotations of “direct interaction” and “not direct interaction” label types.
This model assumes that the parameter vector θj = (θj0, θ

j
1) does not depend on the instance x.

Also, another parameter representing the prior probability of different labels is pzi = P (yi = z).
A procedure to estimate Θ = {θ1, θ2, . . . , θM , p} for all experts is presented in detail throughout
the next subsection. Using this model, a soft probabilistic estimate of the hidden true label
can be calculated as follows:

gi(z |Θ) ≡ P
(
yi = z | y1

i , y
2
i , . . . , y

M
i ,Θ

)
∝ P

(
y1
i , y

2
i , . . . , y

M
i | yi = z,Θ

)
×P (yi = z |Θ) (2)

=

M∏
j=1

P
(
yji | yi = z,Θ

)
×P (yi = z |Θ) = pzi × [θjz]

h(yji =z) × [(1− θjz)]1−h(yji =z)

where h is the indicator function. Note that we assume that decisions by the experts are
conditionally independent given the true label. Thus, we use the following equation to predict
the most probable label for an interaction:

ŷi = arg max
z∈Z

gi(z |Θ) (3)

The uncertainty of this label based on the above equation is defined as:

ûi(ŷi) = 1−P (yi = ŷi |yi,Θ) (4)

3.2. Maximum Likelihood Estimator for Experts’ Labeling Qualities

We estimate the parameters Θ through maximum likelihood estimation (MLE):

Θ̂mle = arg max
θ
L(D |Θ) (5)

where D = {(y1
i , y

2
i , . . . , y

M
i )}i=1,...,N

Below, we show how to estimate Θ̂mle for the case where every interaction receives opinions
from every expert. Later, we refine the model by relaxing this assumption.

Case 1: Every expert provides labels for every example (global annotation case)
The log-likelihood of the observed expert opinions:

L(D |Θ) =
N∑
i=1

logP (yi |Θ) =
N∑
i=1

log
1∑
z=0

P (yi | yi = z,Θ)×P (yi = z |Θ) (6)

The last equation marginalizes over the hidden true label, yi. We assume decisions by the
experts are conditionally independent given the true label:

L(D |Θ) =
N∑
i=1

log
1∑
z=0

 M∏
j=1

P
(
yji | yi = z,Θ

)
P (yi = z |Θ)

 (7)

In Eq. 7, P
(
yji | yi = z,Θ

)
is the probability of observing expert label yi,j for interaction i,

given the true label of that interaction is yi = z (similar to calculations in Eq. 2):

P
(
yji | yi = z,Θ

)
= [θjz]

h(yji =z) × [(1− θjz)]1−h(yji =z) (8)

where h is the indicator function. P (yi = z) = pz is the prior probability of a potential pair
belonging to class z; it is assumed that this prior probability is the same for all i = 1 . . . N . In



order to estimate Θ, first Eq. 8 is inserted into Eq. 7 and next, the expectation-maximization
(EM) algorithm24 is applied to maximize a lower bound of this incomplete data likelihood, by
considering true label y as the hidden variable:

L(D |Θ) =
N∑
i=1

log
1∑
z=0

P (yi, yi = z |Θ) ≥
∑N

i=1

∑1
z=0 logP (yi, yi = z | θ) (9)

=
∑N

i=1

∑1
z=0 gi(z) log P(yi,yi=z |Θ)

gi(z)

It is iteratively maximized with respect to the probability distribution g(z) and Θ in the
expectation and maximization steps, respectively. The derived update equations for step t+ 1

are as follows:

E-step:

g
(t+1)
i (z′) = P

(
yi = z′ |yi,Θ(t)

)
=

M∏
j=1

P
(
yji | yi = z′,Θ(t)

)
P
(
yi = z′ |Θ(t)

)
1∑
z=0

P
(
yi = z |Θ(t)

) M∏
j=1

P
(
yji | yi = z,Θ(t)

) (10)

M-step:

[θjz′ ]
(t+1) =

N∑
i=1

g
(t)
i (z′)× h(yj

′

i = z′)

n∑
i=1

g
(t)
i (z′)

(11)

The prior probability pz is an estimate of the class distribution, is derived from majority
vote labels based on the MLE solution. The above procedure is repeated until convergence is
attained.

Case 2: Experts only provide labels for a subset of examples (subset annotation
case) Not every expert might be available to provide labels for each potential interaction
due to expertise and time limitations. Thus, the assumption that every expert can report
labels for every instance may not hold. In this section, we provide a solution that works
when this assumption is relaxed. Let the group of labelers for the interaction i be a subset,
Ai ⊂ {1, . . . ,m}. It is required that each interaction will have received at least one opinion
from at least one expert. In this case, the EM update equations are modified as follows:

E-step:

g
(t+1)
i (z′) = P

(
yi = z′ |yi,Θ(t)

)
=

M∏
j=1
j:j∈Ai

P
(
yji | yi = z′,Θ(t)

)
P
(
yi = z′ |Θ(t)

)
1∑
z=0

P
(
yi = z |Θ(t)

) M∏
j=1
j:j∈Ai

P
(
yji | yi = z,Θ(t)

) (12)



M-step:

θ
(t+1)
z′,j′ =

n∑
i=1

i:j′∈Ai

g
(t)
i (z′)h(yj

′

i = z′)

n∑
i=1

i:j′∈Ai

g
(t)
i (z′)

(13)

Once the expert labeling accuracies are obtained from the above procedure, they can be
plugged into Eqs. 3 and 4 to identify the most probable label and the uncertainty associated
with it.

4. Synthetic Data Experiments

Since there are no real data with opinions and expert labels, synthetic data experiments were
carried out to test the effectiveness of the method. The synthetic data was generated as follows:
Given a prior distribution of label types, a set of true labels was first generated randomly.
Meanwhile, each expert’s true labeling quality on each label type, θj,z, was assigned uniformly
at random. The underlying rationale is that experts are likely to produce better-than-random
answers. In the next step, to simulate an expert’s opinion on an instance, true labels for data
points were randomly converted to incorrect label types with a probability that follows the
expert’s error rate (1-θj,z).

Two scenarios were considered: i) in the global annotation scenario, every expert produces
labels for every example and ii) in the subset annotation scenario, each instance receives a
label from a subset of labelers (see above). To realize the second scenario , a probability, γj,z, is
assigned to each expert and label type which defines how often the expert provides labels for
label type z. Each γj,z is drawn uniformly at random from the interval [0,1]. γj,z = 1 indicates
expert j labels all instances contained in class z and γj,z = 0 indicates the expert never labels
that label type.

4.1. Baseline Estimators

The most probable label estimation is compared to the four following estimators; each labels
the interaction as a ‘direct interaction’ if:

(1) the majority of the experts label them as “direct interaction” (Majority voting).
(2) there is at least one expert that thinks it is a “direct interaction” (Single voting )
(3) there is at least two experts voting for “direct interaction” (Double voting)
(4) all the experts agree on the “direct interaction” label (All voting)

4.2. Evaluation of Synthetic Data Experiments

The synthetic experiments were repeated n = 300 times. To measure how accurately the max-
imum likelihood estimator can recover the true expert labeling accuracies and uncertainties,
the average mean squared error (AMSE) was calculated:

AMSE(θ̂mle) =
1

n

1

2m

2∑
z=1

m∑
j=1

(θ̂mle
z,j − θz,j)2, AMSE(û) =

1

n

(
ûi(ŷi, θ̂

mle)− ui(ŷi, θ)
)2

(14)



In order to assess whether the accuracy of the final label is correctly assigned, precision and
recall rates are reported. The precision is defined as the fraction of true direct interactions
that are identified by the method as “direct interaction”. On the other hand, recall is the
fraction of the correctly identified “direct interaction” pairs among all the pairs that are
direct interactions:

4.3. Preformance Results
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Fig. 2. The average mean squared errors in estimating a) expert labeling qualities and b) uncertainties are
plotted as a function of the number of experts for different numbers of pairs to be annotated.

In order to understand the method’s robustness for the number of examples and experts
that are present, the error rates were measured as a function of the number of experts and
number of pairs annotated. Fig. 2 A displays the results for estimated expert label accura-
cies for the global annotation case. Not surprisingly, the error decreases as more experts are
included and more data are provided. Nevertheless, the average MSE of expert labeling ac-
curacies, θ, is 0.0087(±0.0121), even for the case with only 3 experts and n = 100 data points.
Similarly, the error in estimating the uncertainties of data points is not more than 0.010 (see
Fig. 2 B). Comparison of error curves for different n reveals that the gain in accuracy decreases
in different data regimes. For example, the error in estimating θ decreases by an amount of
0.003 when n is ramped from 100 to 200 and there are 3 experts. This difference is only 0.0008

for cases n = 800 and n = 1600. A similar trend was observed for the number of experts; the
largest gain in accuracy occurs when the number of experts increases from 3 to 5.
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Fig. 3. Precision and recall rates of different labeling strategies.

To assess how well the method can identify true direct interactions, the precision and



recall rates of the estimator are calculated. The precision and recall of the MLE estimator
were compared to four other estimators (described in Section 4.1). Fig. 3 displays the precision
and recall for different numbers of labelers for the experiments described above and shown
in Fig. 2. As can be seen in Fig. 3, single-voting would cover the largest quantity of the true
interactions correctly, but it would also consider many incorrect interactions as real physical
interactions thus exhibiting a low precision and high recall rate. A similar observation is valid
for the double-voting scenario. In both cases the precision becomes worse as the number of
labelers increase, since the probability of any pair of labelers producing an incorrect label
increases. The opposite trend is true for the all-voting case; the precision is high since the
criterion to label a pair as direct interaction is very strict: an agreement between all experts
is sought. However, this estimator suffers from low recall rates. In summary, the all-voting
strategy results in high confidence sets, but disregards a large portion of the available data;
whereas single-voting or double-voting lead to sets with high coverage but both suffer from
high false positive rates. The majority-voting method is a robust one; both the precision and
recall rates are high, and additionally, as the number of experts increases, the performance
improves too. Nevertheless, the maximum likelihood estimator is the best method for both
precision and recall rates for all numbers of experts. This is because the noise is taken into
account in our probabilistic framework.

5. Refined Literature Curated HIV-1, Human Protein Interactome
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Fig. 4. a) Number of interactions annotated for each HIV-1 protein b) Number of interactions annotated
as “direct interaction” (green) and “not a direct interaction” (gray) by each of the 16 HIV-1 experts c) the
number of experts annotating each interaction d) Counts of agreed and disagreed interactions when multiple
experts assign labels.

In order to estimate expert labeling accuracies, only the interactions that are multiply
annotated were considered. For various HIV-1 proteins, different numbers of interactions are
annotated; the HIV-1 protein nef has 67 interactions annotated, whereas capsid has only 13
(Fig. 4a). Each HIV-1 expert provided different number of labels (Fig. 4b). The majority of
interactions received only one expert opinion (213/384), whereas the rest (171/384) received



multiple expert comments (Fig. 4c). For interactions for which there are multiple opinions
from different experts, disagreements among the experts were observed: for 37% of interactions
(63/171) experts disagree on the label type (Fig. 4d). Of all the expert annotated interactions,
299 of them are described by the keywords “interacts” with and/or “binds” and these have
the most potential to be direct interactions. However, at least two experts still annotated 73
out of 299 as “not a direction interaction” with no disagreements. These results highlight the
necessity of reviewing the published interactions with community opinion.
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Fig. 5. The estimated labeling accuracies of experts on annotating the PPIs for a) “direct interaction” class
and b) “not direct interaction” class.
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Fig. 6. Refined HIV-1, human protein interaction network based on the estimated confidence scores using
HIV-1 expert opinions. Nodes indicate HIV-1 proteins (red) and human proteins (blue). An edge indicates
an interaction at least one expert having provided an opinion about it. The thicker the edge, the higher the
probability of the pair being a direct interaction according to the estimates. The solid lines represent the
interactions for which P (y = direct interaction) > 0.5, whereas dashed lines represent cases for which this
probability is < 0.5. The HIV-1 proteins’ names are placed next to its subnetwork of interactions.

Using the interactions that receive more than one expert opinion (171 interaction pairs),
the experts’ labeling accuracies were assessed. There were 16 experts in total, but not all
experts provided data for both label types. The estimated label accuracies for the experts are
plotted in Fig. 5. 7 out of 10 experts have a labeling accuracy of more than 75 % accuracy
on the “direct interaction” class and 8 out of 10 retain this level of accuracy for the “not
direct interaction” class. Using the expert labeling accuracies, the most probable class label
was calculated for all the annotated interactions. For 147 (out of 384) reported interactions,
there was enough evidence to conclude that they have a direct interaction. Fig. 6 displays the
resulting network.



6. Validation of Derived Labels with a Supervised Model

Table 1. Performance of the three Random Forest models.

Trained with MAP MAP AUC AUC
avg stderr avg stderr

expert positives + expert negatives 0.7144 0.0083 0.7818 0.0052
expert positives + random selected negatives 0.5466 0.0077 0.6392 0.0084
Baseline 0.4298 0.0075 0.4966 0.0098

The estimated labels obtained in this paper provide a high quality set of interaction labels,
which include 158 positive examples and 226 negative examples. In the ensuing discussion,
we will be designating this set as “expert-labeled”. To validate these labels, we explore a
supervised prediction strategy. We built models to classify an interaction into two classes of
“direct interaction” and “not direct interaction” based on biological features of interacting
proteins a. A Random Forest classifier was learned using the the expert-curated labels in a
cross-validation setting. This model achieves a 71% MAP score, which is significantly better
than the baseline whose MAP score is 43% (Table 1). The baseline classifier was trained on
the same set of examples while the labels of the training examples were randomly permutated.
This indicates that the expert-derived labels correlate with the features more strongly.

The subset of interactions estimated to have the “not direct interaction” label type is
especially valuable for the prediction task as there is no negative set of PPI interactions
readily available. A common way to circumvent this difficulty is to create negative datasets
by selecting randomly paired examples that are not in the positive set.25 As the randomly
selected negative labels are likely to be far away from the class boundary, they are more easily
classified and more likely to give optimistic estimates favoring prediction success; that is the
decision boundary learned from them might be too far away from the real decision boundary.
Conversely, the expert-labeled negatives from our study are more likely to be in close proximity
of the class boundary because they are functional associations. Therefore, our expert-labeled
negative examples will define a better decision boundary.

In order to judge how our expert-labeled negative data contributes to the supervised
prediction model, a third Random Forest classifier26 was trained. This model uses the expert
labeled positive set and a negative label set comprising random pairs that are not reported in
the NIAID database. This model performs better than the baseline, 0.55 (± 0.0077) (compare
to 43%), but it performs worse than the first model which uses the expert labeled negative
examples, (compared to 71% MAP). The AUC values are also ranked similarly (See Table 1).
All three models were tested on the expert labeled data in a 3-fold cross validation (CV)
scenario. The CV procedure is repeated 10 times, where at each repeated run the splitting of
the data is different and random. These empirical results strongly indicate that the curated
data is highly valuable.

7. Conclusions

In this paper, a set of expert opinions on literature curated HIV-1, host interactions were col-
lected. To account for noise and subjectivity in expert opinions, the expert labeling accuracies

aEach PPI pair is described by 42 features derived from diverse set of biological information with details
described in our earlier work.11



were estimated and these estimates were used to compute reliability scores that rank interac-
tions with their likelihood to be direct physical interactions. A Random Forest model trained
with the derived labels validates the quality of the collected data. The scope of the method pre-
sented here is not limited to HIV data, but is applicable to other bodies of literature-curated
databases, where noisy labels from multiple experts are available and there is no benchmark
data to estimate labeler qualities.
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