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Brain tumor is a fatal central nervous system disease that occurs in around 250,000 people each year
globally and it is the second cause of cancer in children. It has been widely acknowledged that genetic
factor is one of the significant risk factors for brain cancer. Thus, accurate descriptions of the loca-
tions of where the relative genes are active and how these genes express are critical for understanding
the pathogenesis of brain tumor and for early detection. The Allen Developing Mouse Brain Atlas
is a project on gene expression over the course of mouse brain development stages. Utilizing mouse
models allows us to use a relatively homogeneous system to reveal the genetic risk factor of brain
cancer. In the Allen atlas, about 435,000 high-resolution spatiotemporal in situ hybridization images
have been generated for approximately 2,100 genes and currently the expression patterns over spe-
cific brain regions are manually annotated by experts, which does not scale with the continuously
expanding collection of images. In this paper, we present an efficient computational approach to
perform automated gene expression pattern annotation on brain images. First, the gene expression
information in the brain images is captured by invariant features extracted from local image patches.
Next, we adopt an augmented sparse coding method, called Stochastic Coordinate Coding, to con-
struct high-level representations. Different pooling methods are then applied to generate gene-level
features. To discriminate gene expression patterns at specific brain regions, we employ supervised
learning methods to build accurate models for both binary-class and multi-class cases. Random
undersampling and majority voting strategies are utilized to deal with the inherently imbalanced
class distribution within each annotation task in order to further improve predictive performance.
In addition, we propose a novel structure-based multi-label classification approach, which makes use
of label hierarchy based on brain ontology during model learning. Extensive experiments have been
conducted on the atlas and results show that the proposed approach produces higher annotation
accuracy than several baseline methods. Our approach is shown to be robust on both binary-class
and multi-class tasks and even with a relatively low training ratio. Our results also show that the
use of label hierarchy can significantly improve the annotation accuracy at all brain ontology levels.

Keywords: Gene Expression Pattern, Image Annotation, Sparse Learning, Imbalanced Learning,
Multi-label classification, Label Hierarchy

1. Introduction

Brain tumor is a fatal central nervous system disease and it is the second cause of cancer
in children.1 Previous studies indicate that preventing and detecting brain tumors at early
stages are effective methods to reduce brain damage; these studies also show the potential
benefit of utilizing the genetic determinants.2 Accurate descriptions of the locations of where
the relative genes are active and how these genes express are critical for understanding the
pathogenesis of brain tumor and for early detection.

An accurate characterization of the gene expression and its role on brain tumor requires
extensive experimental resources on brain. A recent study2 uses mouse to reveal the genetic
risk factor of brain cancer. However, such study was performed on a limited set of genes. The
Allen Developing Mouse Brain Atlas (ADMBA) is an online public repository of extensive gene
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Fig. 1. Sample schemas of different gene expression metrics and brain ontology

expression and neuroanatomical data over different mouse brain developmental stages.3,4 The
knowledge is documented as high-resolution spatiotemporal in situ hybridization (ISH) images
for approximately 2,100 genes from embryonic through postnatal stages of brain development.
In addition, a brain ontology has been designed to hierarchically organize brain structure for
the developing form of mouse brain, which facilitates gene expression pattern annotation to
specific brain areas. For a complete description of the status of gene expression revealed by
in situ hybridization, three kinds of metrics, i.e., pattern, density and intensity, are utilized
at the Reference Atlas for ADMBA (R-ADMBA). These metrics were scored for each brain
region according to a set of standard schemes; some examples are shown in Figure 1.

It is worthwhile to mention that such annotation tasks are very costly. The entire atlas
contains around 435,000 ISH images and there are over 1,000 brain regions that need to
be annotated in the designed brain ontology. To precisely assign gene expression metrics to
specific brain areas, current reference atlas uses expert-guided manual annotation, which was
performed by Dr. Martinez’s team at Spain.4,5 However, it is labor-intensive since it requires
expertise in neuroscience and image analysis, and it does not scale with the continuously
expanding collection of images. Therefore, developing an effective and efficient automated
gene expression pattern annotation method is of practical significance.

The gene expression pattern annotation problem can be formulated as an image annotation
problem, which has been widely studied in computer vision and machine learning. Specifically,
a key to solve the problem is to learn effective feature representations of images. The scale-
invariant feature transform (SIFT) algorithm has been commonly applied to transform image
content into local feature coordinates that are invariant to translation, rotation, scale, and
other imaging parameters.6 SIFT has been shown to be a powerful tool to capture patch-level
characteristics of images. Based on those local image descriptors, the next step is to construct



high-level feature representations of the ISH images. A common approach is to use the bag-of-
words (BoW) model to represent high-level features, which has been used in a recent study.7

However, BoW is not efficient to learn a large number of keywords or deal with large scale
data atlas. In this study, we employ sparse coding to construct high-level features, which has
been demonstrated to be effective in many fields including image recognition.8 Sparse coding
aims to using sparse linear combinations of basis vectors to reconstruct data vectors and learn
a non-orthogonal and over-complete dictionary, which has more flexibility to represent the
data.9–11 The previous study7 uses BoW instead of sparse coding mainly due to the high
computational cost of solving the sparse coding problem especially for large-scale data in
ADMBA. In this study, we adopt a novel implementation of sparse coding, called Stochastic
Coordinate Coding (SCC),12 which has been shown to be much more efficient than existing
approaches.

Besides the image representation problem, many other difficulties are also inherent in the
annotation tasks. First of all, for a specific set of ISH images, current reference atlas uses up
to four categories [see Figure 1, (a)-(c)] to give an accurate description of the gene expression
status for a specific metric. Thus, the annotation problem we are facing is indeed a multi-
class classification problem. Secondly, the imbalanced class distribution is often involved in
each annotation task, while traditional machine learning methods will often be biased and fail
to provide reliable models.13 In addition, annotating gene expression pattern over the brain
ontology is essentially a multi-label classification problem. However, if we simply treat each
label separately, we do not make full use of the structural relationships among labels [as shown
in Figure 1 (d)] in the learning procedure, resulting in suboptimal prediction performance.14,15

In this paper, we propose an efficient computational approach to perform automated gene
expression pattern annotation based on ADMBA ISH images. We first employ the SIFT
method to construct local image descriptors. We next use sparse coding to efficiently learn
the dictionary from SIFT descriptors of all ISH images and generate patch-level sparse feature
representations of the images. Different pooling methods are utilized to combine patch-level
representations to form image-level features, and further generate gene-level representations.
To discriminate gene expression patterns over each brain area, we employ sparse logistic
regression classifier and its multi-task extension to learn models for binary-class and multi-class
classification. In addition, random undersampling and majority voting strategies are utilized
to deal with imbalanced class distribution inherent within each annotation task. Furthermore,
we make full use of the label hierarchy and dependency by developing a novel structure-based
multi-label classification approach, which consists of two learning phases. In the first phase, a
set of interested tasks (at the bottom of the label hierarchy) are learned individually, and in
the second phase, knowledge learned from the first phase will be utilized to train models for the
remaining tasks. We test our proposed approach on the four embryonic mouse developmental
stages. Annotation results show that the adopted sparse coding approach outperforms the bag-
of-words method. The proposed method provides favourable classification accuracy on both
binary-class and multi-class tasks and even with a relatively low ratio of training. Experiment
results also show that the structure-based multi-label classification approach can significantly
improve the annotation accuracy at all brain ontology levels.



The remaining part of the paper is organized as follows: Section 2 details our feature
extraction framework; Section 3 introduces several regularized learning methods, our strategies
for learning from imbalanced data, and the proposed structure-based multi-label classification
approach; Section 4 presents extensive empirical studies and Section 5 concludes the paper.

2. Proposed Feature Extraction Framework

2.1. Image-level feature extraction

Extracting and characterizing features from images is the key for image annotation. To capture
as much gene expression details as possible over the entire brain ontology, ADMBA provides
numerous spatiotemporal high-resolution ISH images. However, those raw images are not well
aligned since they were taken from different samples and at different spatial slices. This makes
it challenging to generate features from raw ISH images. A commonly used approach in such
case is to employ the well-known scale-invariant feature transform method to construct lo-
cal image descriptors. Specifically, the SIFT method first detects multiple localized keypoints
(patches) from a raw image, and then transforms those image content into local feature co-
ordinates that are invariant to translation, rotation, scale, and other imaging parameters. We
use the SIFT detection in VLFeat16 and an average of 3,500 keypoints have been captured for
each ISH image. In this study, each patch is represented by a 128-dimensional SIFT descriptor.

2.2. High-level feature construction

Based on the SIFT descriptors, we next apply sparse coding to construct high-level features.
Sparse coding has been applied in many fields such as audio processing and image recognition.
It refers to the process of using sparse linear combinations of basis vectors to reconstruct data
and learning a non-orthogonal and over-complete dictionary. We can write the sparse coding
problem as follows:

min
D,z1,...,zn

n∑
i=1

(
1

2
‖Dzi − ai‖22 + λ‖zi‖1)

s.t. ‖D·j‖2 ≤ 1, 1 ≤ j ≤ p (1)

where A = [a1, . . . ,an] ∈ Rm×n is the set of SIFT descriptors constructed from image patches,
each SIFT descriptor ai ∈ Rm is a m-dimension column vector with zero mean and unit norm,
D ∈ Rm×p is the dictionary, λ is the regularization parameter, and Z = [z1, . . . , zn] ∈ Rp×n is
the set of sparse feature representations of the original data. In addition, to prevent D from
taking arbitrarily large values, the constraint, D·j , 1 ≤ j ≤ p, restricts each column of D to be
in a unit ball.

It has been known that solving the sparse coding problem is computationally expensive,
especially when dealing with large-scale data and learning a large size of dictionary. The main
computational cost comes from the updating of sparse codes and the dictionary. In our study,
we adopt a new approach, called Stochastic Coordinate Coding (SCC), which has been shown
to be much more efficient than existing methods.12 The key idea of SCC is to alternately
update the sparse codes via a few steps of coordinate descent and update the dictionary via
second order stochastic gradient. In addition, by focusing on the non-zero components of the
sparse codes and the corresponding dictionary columns during the updating procedure, the
computational cost of sparse coding is further reduced.



In our study, the dictionary is learned from SIFT descriptors of all ISH images. The
constraint, zi ≥ 0, 1 ≤ i ≤ n, is further added to ensure the non-negativity of sparse codes. To
generate image-level features based on patch-level representations, we apply the max-pooling
operation. Max-pooling takes the strongest signal among multiple patches to represent the
image, which has been shown to be powerful in combining low-level sparse features.17

2.3. Gene-level feature pooling

Recall that a specific ISH image is obtained from particular brain spatial coordinates and
it may not be able to present the gene expression pattern over the entire brain ontology. In
order to describe expression pattern at all brain regions, we use a gene-level feature pooling.
Since it remains unclear what kind of pooling methods will perform better on those high-level
representations, both average-pooling and max-pooling are employed in our study.

3. Gene Expression Pattern Classification Methods

In this section, we introduce several regularized learning methods for gene expression pattern
classification as well as our strategies for learning from imbalanced data. In addition, we
present a structure-based multi-label classification approach for annotation.

3.1. Sparse logistic regression

We first consider the simple case: binary classification. Specifically, for a certain metric of
gene expression, we convert the original annotation task into a binary classification problem
by treating the category “undetected” as one class and all remaining categories as the other
class. We employ the regularized supervised learning methods, which have been widely used in
machine learning and bioinformatics. Let X = {xi}ni=1 ∈ Rn×p denote a p dimensional data set
with n observations, and y = {yi}ni=1 ∈ Rn×1, yi ∈ {−1, 1} be the corresponding labels. Then,
we can write the sparse logistic regression problem as follows:

min
w
L(Xw,y) + λ‖w‖1, (2)

where L(·) denotes the logistic loss, w ∈ Rp×1 is the model weight vector and λ is the l1-norm
regularization parameter. The solution of the above system will yield sparsity in w, and the
significant columns of X are determined by the corresponding non-zero entries in w. In our
study, xi is a gene-level representation (after patch-level pooling and image-level pooling) and
yi encodes the annotation of gene expression status for a specific brain region.

3.2. Multi-task sparse logistic regression

We also propose to directly solve the multi-class annotation problem via multi-task learning.
Suppose there are k classes (k = 3 or 4 in our study). We can represent the category of a
sample by a k-tuple, where yik = 1 if sample i belongs to class k and yik = −1 otherwise. Then
we can rewrite the response Y as Y = {yi}ni=1 ∈ Rn×k. We employ the following multi-task
sparse logistic regression formulation for the multi-class case:

min
W
L(XW,Y) + λ‖W‖2,1, (3)

where W ∈ Rp×k, and the i-th column of W is the model weight for the i-th task. The l2,1-
norm penalty on W results in grouped sparsity, which restricts all tasks to share a common set
of features. In this paper, we employ this multi-task model to solve the multi-class annotation
problem. The SLEP18 package is utilized to solve both Problem (2) and Problem (3).
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Fig. 2. Percentage of different categories of gene expression status at each brain level

3.3. Undersampling and majority voting

In this study, regions in the brain ontology are divided into 10 levels. Figure 2 shows the statis-
tics of annotation distribution at each brain ontology level. It can be observed that even for the
binary classification case, the data imbalance problem is particularly severe. A desired training
set should contain approximately equal numbers of observations from each category. Tradi-
tional machine learning methods may be very sensitive to imbalance issue since the models
will be biased toward the majority class of samples. To learn a better model from an imbal-
anced data set, a simple and intuitive idea is to balance the training set. Some existing studies
suggest that random undersampling method is effective in dealing with data imbalance.13 Be-
sides undersampling, model ensemble is also beneficial for learning from imbalanced data.19

Ensemble methods refer to the process of combining multiple models to improve predictive
performance. The idea of classifier ensemble is to build a prediction model by combining a
set of individual decisions from multiple classifiers.20 In this study, we employ undersampling
multiple times, combine a set of learning models, one for each undersampled data, and finally
use majority voting to infer the predictions.

3.4. Structure-based multi-label annotation over brain ontology

Annotating gene expression patterns over the brain ontology is indeed a multi-label classifi-
cation problem. In the reference atlas, the expression patterns of a single gene are recorded
based on a hierarchically organized ontology of anatomical structures. In practice, it is pos-
sible to propagate annotation to parent or child structures under a set of systematic rules.4

Rather than simply treating each individual annotation task separately, if we build all pre-
diction models together by utilizing the structure information among labels, the predictive
performance can potentially be significantly improved.14,15

In this study, we propose a novel structure-based multi-label classification approach. Sup-
pose we are given n training data points {(xi,yi)}ni=1, where xi ∈ Rp is a data point of p
features, and yi ∈ Rk is the corresponding label vector of k tasks. Let j ∈ {1, . . . , k} denote the
j-th learning task. We then divide the learning procedure into two phases. Assuming there
are t tasks (t < k) at the bottom level of the hierarchy, in the first phase, each of those tasks
is learned individually by:

ỹj = Fj(x̃), 1 ≤ j ≤ t < k, (4)

where Fj(·) denotes a learnt model by the j-th task, x̃ ∈ Rp is an arbitrary data point, and



ỹj ∈ R is the prediction of x̃ for the j-th task. The learned knowledge in (4) is then used to
learn the remaining tasks (i.e., t + 1 ≤ j ≤ k) in the second phase. Specifically, we augment
the feature set by adding the prediction probabilities learnt in the previous phase, i.e., we
denote x̃′ = [x̃, (ỹ1, . . . , ỹt)]. Annotation tasks in the second phase will be performed based on
this augmented feature set x̃′.

The tasks in the first phase can be considered as the auxiliary tasks in the second phase.21

We apply the two-stage approach in our case since the tasks are not symmetric due to the
hierarchical label structure. With the prediction probabilities from the previous learning phase,
we make use of label dependency along with the original image representations. Intuitively, if
a new learning task is related to some of the tasks learnt in the first phase, then such approach
is expected to achieve better classification accuracy. In our study, since the tasks associated
with the bottom of the label hierarchy are related to the remaining tasks in the hierarchy, the
prediction performance is expected to be improved by the two-stage learning approach. This
is confirmed in our experiments presented in the next section.

4. Experiments

We design a serial of experiments to evaluate the proposed approach for gene expression
pattern annotation on the Allen Developing Mouse Brain Atlas. Specifically, we evaluate our
approach in the following four aspects: (1) Comparison of sparse coding and bag-of-words,
(2) Comparison of different training ratios, (3) Comparison of different multi-class annotation
methods, and (4) Comparison of annotation with and without brain ontology.

4.1. Data description and experimental setup

The gene expression ISH images are obtained from the Allen Developing Mouse Brain Atlas.
Specifically, to ensure the consistency of brain ontology over different mouse developmental
stages, we focus our experiments on the four embryonic stages, namely, E11.5, E13.5, E15.5
and E18.5. The ADMBA provides approximately 2,100 genes within each stage and an average
of 15∼20 images are used for each gene to capture the expression information over the entire
3D brain. The total number of ISH images in these four stages are 142,425. We use the SIFT
method to detect local gene expression and apply sparse coding to learn sparse feature rep-
resentations for image patches. Considering the resolution of the ISH images and the number
of areas of the mouse brain ontology, a dictionary size of 2,000 is chosen, i.e., D ∈ R128×2000.
To generate gene-level representations, both max-pooling and average-pooling are used.

To evaluate the effectiveness of the proposed methods, we compare our approach with the
well-known bag-of-words (BoW) method. Specifically, the BoW is performed in two different
settings: the first approach, called non-spatial BoW, concatenates three BoW representations
of SIFT features, where each BoW is learned from the ISH images at a specific scale; the
second approach, called spatial BoW, divides the brain sagitally into seven intervals according
to the spatial coordinate of each image, and then 21 regional BoW representations are built (7
intervals × 3 scales).7 At each scale, a fixed number of 500 clusters (keywords) are constructed
from SIFT features and an extra dimension is used to count the number of zero descriptors.

R-ADMBA uses three different metrics including pattern, density and intensity, to evaluate
the gene expression pattern on each brain ontology area. As discussed in the previous section,



we consider the annotation tasks as either binary-class or multi-class classification problem.
For the simple binary-class case, the category “undetected” is treated as the negative class,
which refers to the scenario that no gene expression pattern is detected at the specific brain
area, and all remaining categories are treated as the positive class, which means some kind
of expression pattern has been detected. It is worthwhile to note that, at such a binary-
class situation, if the annotation metric “pattern” is marked as “undetected”, then metrics
“density” and “intensity” must be “undetected”, and vice versa. That is, it is possible to use
a single metric to evaluate the gene expression status at this case.

In addition, in order to balance the class distributions of training sets, random undersam-
pling are performed for 11 times. To give a baseline performance of the traditional method,
the experiment results of using Support Vector Machine (SVM) classifier22 is also reported. To
better describe the classification performance under the circumstances of data imbalance, we
use the area under the curve (AUC) of a receiver operating characteristic (ROC) curve as the
performance measure for binary-class classification. The accuracy is used as the performance
measure for the multi-class case.

4.2. Comparison of sparse coding and bag-of-words

We use the first serial of experiments to compare sparse coding with the bag-of-words method.
Specifically, we generate the training data from raw gene expression ISH images using the
following four methods: (1) SCC Average, using SCC to learn image-level representations
and average-pooling to generate gene-level features; (2) SCC Max, similar to (1) but using
max-pooling to generate gene-level features; (3) BoW nonSpatial, generating single bag-of-
words representation using all ISH images; (4) BoW Spatial, generating multiple bag-of-words
representations using ISH images from different spatial coordinates. Here we only consider
the simple binary-class situation, and the entire data set is being randomly partitioned into
training set and testing set for each annotation task using a ratio of 4:1. In addition, in
comparison with the proposed majority voting strategy, the average classification performance
of 11 times undersampling is also recorded. The overall classification performance for each
brain ontology level at different developmental stages are summarized in Figure 3.

We can observe from Figure 3 that the proposed approach achieves the highest overall
AUC of 0.9095, 0.8573, 0.8717 and 0.8903 at mouse brain developmental stages E11.5, E13.5,
E15.5 and E18.5 respectively. For the comparison of different types of image representations,
SCC Average provides the best overall performance among all four stages. Although in some
annotation tasks, BoW Spatial provides competitive performance to SCC Average, it is worth-
while to note that, the spatial BoW ensembles 21 single dictionaries and contains more than
10,000 features. Thus, spatial BoW is far more complex than SCC and involves higher com-
putational costs. We can also observe that the use of undersampling and majority voting
strategies improves the individual model by 1% ∼ 3% in terms of AUC. Moreover, in com-
parison with SVM classifier, the sparse logistic regression classifier achieves better predictive
performance. Those experimental results verify the superiority of our proposed methods.

4.3. Comparison of different training ratios

In this experiment, we compare the classification performance of using different training ratios.
More specifically, we would like to verify the robustness of the presented approach when using a
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Fig. 3. Comparison of the proposed approach and bag-of-words method. Each column bar represents the per-
formance of using sparse logistic regression classifier for a specific set of gene-level image representations. Each
dot represents the performance of using SVM classifier for a specific set of gene-level image representations.
The error bar of each column is the standard deviation of annotation performance within the correspond-
ing brain level. “Mean” group records the average performance of 11 sub-models. “Vote” group records the
performance of using majority voting.

relatively small number of samples for training. According to the first serial of experiments, we
use the SCC Average to construct features in this experiment. For each annotation task, we fix
10% of the samples as testing set and vary the ratio of training set in {50%, 60%, 70%, 80%, 90%}.
The experimental results are summarized in Figure 4.

We can observe from the figure that, at all four mouse brain developmental stages and
all brain levels, no significant difference is observed between different training ratios. We can
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Fig. 4. Classification performance (AUC) of the proposed approach of using different training ratios. Shading
of the bars from light to dark indicates training ratio from 0.5 ∼ 0.9. The error bar of each column is the
standard deviation of annotation performance within the corresponding brain level.

conclude from this experiment that our proposed approach is robust even with a low training
ratio, thus accurate models for gene expression annotation can be learned based on a relative
small number of manually annotated images.

4.4. Comparison of different multi-class annotation methods

In this experiment, we evaluate our multi-task sparse logistic regression (mcLR) approach
in the multi-class annotation situation. Data set SCC Average is employed and we use the
multi-class SVM (mcSVM) as the baseline for performance comparison. In this experiment,
80% of the samples from each class are randomly chosen as the training set, and the remain
20% of the samples are used as the testing set. We only include annotation classes if there are
more than 100 samples available for a specific class. The accuracy is used as the performance
measure and the results are reported in Table 1.

We can observe that our proposed approach using sparse logistic regression with grouped
sparsity constraint provides favourable predictive accuracy for this multi-class annotation task.
Specifically, the classification accuracy of mcLR is significantly higher than mcSVM at all
brain stages and levels. All detailed gene expression status measured by pattern, density and
intensity can be well distinguished by our classifiers. These results imply that those multiple
classes are inherently related and it is beneficial to learn four (or three) classification models
simultaneously by restricting all models to share a common set of features. We plan to explore
other multi-task learning models in our future work.23

4.5. Comparison of annotation with and without brain ontology

Recall that the expert-guided manual annotations are based on a hierarchically organized
ontology of anatomical structures. Rather than learning each task individually, it may be
beneficial to utilize the hierarchy among the labels for a joint annotation. As we can observe
from previous experiments, models learned in a lower level typically have better predictive
performance. Thus it is natural to make use of the lower-level models and label structures to
improve the prediction performance of high-level tasks.



Table 1. Classification accuracy (in percentage) of multi-class annotation.

Pattern Density Intensity Pattern Density Intensity
mcSVM mcLR mcSVM mcLR mcSVM mcLR mcSVM mcLR mcSVM mcLR mcSVM mcLR

L5 77.26 80.38 71.52 74.93 76.98 80.90 L5 73.53 80.10 67.91 73.87 70.51 76.62
L6 79.29 81.78 80.68 82.97 79.93 83.57 L6 75.80 81.79 72.87 77.76 73.35 78.40
L7 77.69 80.43 77.34 79.88 79.33 82.54 L7 72.07 77.56 72.09 77.05 73.71 78.85
L8 81.61 84.35 83.40 85.46 83.98 85.80 L8 71.83 77.03 70.82 75.02 73.90 78.35
L9 77.02 81.10 85.40 87.16 84.84 87.04 L9 78.54 82.26 81.12 84.66 80.57 84.34
L10 --- a --- --- --- --- --- L10 --- --- 85.36 87.48 83.22 86.00

L5 80.91 86.78 70.13 74.52 72.17 77.15 L5 75.41 78.93 72.73 76.18 75.22 78.96
L6 79.66 83.09 76.42 80.03 76.28 80.83 L6 83.08 87.37 76.67 79.55 78.94 82.01
L7 --- --- 74.55 78.53 75.36 80.05 L7 77.34 79.65 75.78 78.77 77.67 80.79
L8 74.97 79.79 70.93 75.36 72.83 78.23 L8 --- --- 73.79 77.48 75.89 79.58
L9 78.84 82.39 80.49 83.26 80.32 83.97 L9 79.49 81.42 79.17 81.56 80.59 83.01
L10 --- --- 86.16 87.61 87.03 88.26 L10 79.38 81.45 82.94 84.96 83.52 85.56

(
a
)
 E
1
1
.
5

(
b
)
 E
1
3
.
5

(
c
)
 E
1
5
.
5

(
d
)
 E
1
8
.
5

In this study, we compare our proposed structure-based multi-label learning (SMLL)
method with the simple individual annotation, which builds models for different tasks inde-
pendently. Again, we employ the SCC Average method to construct the data. At each brain
developmental stage, around 200 genes are randomly pre-selected as the testing set for the
annotation tasks over the entire brain ontology and the remaining genes are included in the
training set. For SMLL method, 432 tasks (regions) at level 10 (L10) are learned individually
in the first phase. The prediction probabilities of L10 tasks will be used as the additional
features in the data. In this experiment, we consider the binary-class situation and results are
summarized in Table 2.

We can observe from Table 2 that the overall annotation performance achieved by SMLL
is higher than the individual model. Improvements in terms of AUC can be observed at most
of the brain ontology levels among all developmental stages. This verifies the effectiveness of
the proposed structured-based multi-label learning approach.

5. Conclusion

In this paper, we propose an efficient computational approach to perform automated gene
expression pattern annotation on mouse brain images. The key information in spatiotemporal
in situ hybridization images is first captured by the SIFT method from local image patches.
Image-level features are then constructed via sparse coding. To generate gene-level represen-
tations, different pooling method are adopted. Regularized learning methods are employed to
build classification models for annotating gene expression pattern at different brain regions.
To utilize hierarchy information among the brain ontology, a novel structure-based multi-label
classification approach is proposed. Extensive experiments have been conducted on the atlas
and results demonstrate the effectiveness of the proposed approach. One of our future direc-
tions is to explore deep learning models to learn feature representations from ISH images. In
addition, we plan to explore other multi-task learning models to make more effective use of
the label hierarchy in the annotation.

a “—” means the experiment is not applicable for the specific brain ontology level.



Table 2. Classification performance (AUC) of structure-based multi-label annotation.

E11.5 E13.5 E15.5 E18.5
LogisticR SVM LogisticR SVM LogisticR SVM LogisticR SVM
Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL

L1 0.837 0.811 0.806 0.837 0.793 0.781 0.737 0.778 0.744 0.749 0.657 0.699 0.890 0.878 0.845 0.879
L2 0.866 0.850 0.854 0.877 0.774 0.772 0.744 0.785 0.755 0.764 0.632 0.695 0.894 0.882 0.831 0.884
L3 0.898 0.884 0.884 0.903 0.799 0.797 0.766 0.808 0.781 0.788 0.634 0.710 0.893 0.885 0.833 0.885
L4 0.941 0.941 0.932 0.951 0.868 0.874 0.843 0.873 0.796 0.803 0.665 0.709 0.891 0.890 0.852 0.888
L5 0.905 0.908 0.904 0.922 0.843 0.855 0.822 0.848 0.838 0.844 0.710 0.746 0.871 0.876 0.837 0.850
L6 0.935 0.937 0.937 0.947 0.898 0.907 0.882 0.898 0.843 0.851 0.744 0.760 0.871 0.878 0.844 0.855
L7 0.951 0.950 0.950 0.959 0.860 0.866 0.842 0.863 0.846 0.858 0.743 0.777 0.894 0.896 0.874 0.890
L8 0.980 0.982 0.980 0.984 0.932 0.937 0.905 0.932 0.835 0.841 0.810 0.836 0.894 0.896 0.863 0.882
L9 0.966 0.969 0.971 0.972 0.890 0.896 0.877 0.884 0.865 0.873 0.811 0.816 0.871 0.872 0.852 0.843
L10 0.971 --- 0.976 --- 0.906 --- 0.904 --- 0.877 --- 0.837 --- 0.896 --- 0.884 ---
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