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Osteoarthritis (OA) significantly compromises the life quality of affected individuals and imposes
a substantial economic burden on our society. Unfortunately the pathogenesis of the disease is till
poorly understood and no effective medications have been developed. OA is a complex disease that
involves both genetic and environmental influences. To elucidate the complex interlinked structure
of metabolic processes associated with OA, we developed a differential correlation network approach
to detecting the interconnection of metabolite pairs whose relationships are significantly altered due
to the diseased process. Through topological analysis of such a differential network, we identified key
metabolites that played an important role in governing the connectivity and information flow of the
network. Identification of these key metabolites suggests the association of their underlying cellular
processes with OA and may help elucidate the pathogenesis of the disease and the development of
novel targeted therapies.
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1. Introduction

Osteoarthritis (OA) is the most common form of arthritis. It causes a substantial morbidity
and disability in the elderly populations, and imposes a great economic burden on our soci-
ety.1,2 Despite high prevalence and societal impact, there is no medication that can cure it,
or reverse or halt the disease progression, partly because that its pathogenesis is still unclear
and there is no reliable method that can be used for early OA diagnosis.

Recent developments in the field of metabolomics provide an array of new tools for the
study of OA. A large number of small-molecule metabolites from body fluids or tissues can be
quantitatively detected simultaneously, which promises an immense potential for early diagno-
sis, therapy monitoring and understanding the pathogenesis of complex diseases.3 Metabolites
are intermediate and end products of various cellular processes and their levels of concentra-
tion serve as a good indicator of a sequence of biological systems in response to genetic and
environmental influences.

In the reported studies on metabolomics analysis of OA case-control population data, the
mostly adopted methodology is to test and identify metabolites that are significantly associ-
ated with the disease class using principal component analysis (PCA),4,5 partial least square
discriminant analysis (PLS),6,7 or other individual testing techniques, and then to deduce
their likely biological interrelationship with OA. Testing correlations of the concentrations of
metabolites has not seen wide adoption likely due to the limited availability of methodologies.
However, these correlations likely exist because metabolites are intermediate or end products
of interconnected cellular processes. Analyzing their correlations provides an avenue captur-
ing the relationships of their represented cellular processes and biological reactions associated
with OA, and thus holds a great potential in OA metabolomics research.

Meanwhile, many biological systems are increasingly viewed and analyzed as highly com-
plex networks of interlinked molecular or cellular entities or metabolites,8 and network science
has been applied to capture the interactome maps of gene-gene or protein-protein interac-
tions9–13 as well as transcriptional and metabolic data.14–16

The interaction maps of proteins, genes, metabolites or diseases can reveal the overall
physical and functional landscape of a biological system, and these networks have been mostly
generated under a particular static condition. More recently, differential network analysis
has been promoted as a powerful framework for analyzing biological interaction maps when
biological systems are considered undergoing differential changes that are dependent on the
environment, tissue type, disease state, development or speciation.17,18

Recent interaction mapping studies have demonstrated the power of differential correlation
analysis for elucidating the re-wiring of the interaction architecture of fundamental biologi-
cal responses in adaptation to changing conditions.19–25 Analyzing the rewiring of biological
networks across disease conditions provides a unique insight into the dynamic response of
a biological system. Instead of looking at the absolute properties of a system, differential
network analysis emphasizes on the characteristics that are the most affected by genetic or
environmental influences.

In this study, we proposed a differential network approach to analyzing the metabolomics
population-based data of OA. We used differential analysis to quantify the variation of pair-
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wise correlation of metabolites across case and control populations, and used networks to
characterize the global interconnecting structure of such differentially correlated metabolites.
Our methodology is distinct from most existing metabolomics analyses of OA in that we in-
vestigated the correlations of metabolite concentrations, and more importantly the variations
of such correlations by comparing different disease status, to help elucidate the underlying
biological processes specifically associated with the pathogenesis of OA. Using topological
analysis of such a differential correlation network, we identified key metabolites and subse-
quently their represented cellular processes that may play an important role in the clinical
development of OA. Our findings could be very helpful in designing novel and more targeted
therapies for OA.

2. Methods

2.1. Osteoarthritis metabolomics data

In the current study, we used a two-stage case-control design with a discovery phase and a
validation phase. For both phases, knee OA patients were selected from the Newfoundland
Osteoarthritis Study (NFOAS) initiated in 2011.26 The NFOAS aimed at identifying novel
genetic, epigenetic, and biochemical markers for OA. The NFOAS recruited OA patients who
underwent a total knee replacement surgery due to primary OA between November 2011
and December 2013 at the St. Clare’s Mercy Hospital and Health Science Centre General
Hospital in St. John’s, the capital city of Newfoundland and Labrador (NL), Canada. Healthy
controls for both phases were selected from the CODING study (The Complex Diseases in
the Newfoundland population: Environment and Genetics), where participants were adult
volunteers.27

Both cases and controls were from the same source population of Newfoundland and
Labrador. Knee OA diagnosis was made based on the American College of Rheumatology
clinical criteria for classification of idiopathic OA of the knee28 and the judgment of the at-
tending orthopedic surgeons. Controls were individuals without self-reported family doctor
diagnosed knee OA based on their medical information collected by a self-administered ques-
tionnaire. We collected 64 OA cases and 45 healthy controls in the discovery phase and 72
cases and 76 controls in the replication phase.

Blood samples were collected after at least 8 hour fasting and plasma was separated from
blood using the standard protocol. Metabolic profiling was performed on plasma using the
Waters XEVO TQ MS system (Waters Limited, Mississauga, Ontario, Canada) coupled with
Biocrates AbsoluteIDQ p180 kit, which measures 186 metabolites including 90 glycerophos-
pholipids, 40 acylcarnitines (1 free carnitine), 21 amino acids, 19 biogenic amines, 15 sphin-
golipids and 1 hexose (above 90 percent is glucose). The details of the 186 metabolites and
the metabolic profiling method were described in the previous publication.29 Over 90% of the
metabolites (167/186) were successfully determined in each sample.

Age and BMI are known factors correlated with OA. Therefore, the residual of a linear
regression using attributes age and BMI was applied to remove any partial correlations as a
result of those two factors, and to adjust the data for our metabolomics differential correlation
analysis of OA.
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2.2. Differential analysis of metabolite correlations

Metabolite concentrations in plasma may be correlated as a result of their represented biolog-
ical processes, and the correlation may change in different phenotypic or disease conditions.
Such a dynamic correlation was quantified by a differential correlation statistic in our study.

The correlation of a pair of metabolites was calculated using Pearson’s correlation coef-
ficient r in the two phenotypically distinguished samples, i.e. cases and controls. The corre-
lation coefficients rcase and rcontrol were then used to compute the change of the correlation
between two metabolites across two different disease classes. Specifically, for metabolites i and
j, their differential correlation rdiff(i, j) is calculated as the normalized difference of Fisher’s
z-transformations of rcase(i, j) and rcontrol(i, j),

rdiff(i, j) =

√
ncase − 3

2
× zcase(i, j) −

√
ncontrol − 3

2
× zcontrol(i, j), (1)

where z is the Fisher’s z-transformation of correlation coefficient r,

zcase(i, j) =
1

2
ln
[1 + rcase(i, j)

1 − rcase(i, j)

]
, zcontrol(i, j) =

1

2
ln
[1 + rcontrol(i, j)

1 − rcontrol(i, j)

]
. (2)

We used ncase and ncontrol to denote the total numbers of samples in cases and controls. This
differential correlation statistic captures the change of the normalized correlation across two
distinguishing conditions, and we used it to test if two metabolites are differentially corre-
lated by comparing diseased and healthy populations. Note that rdiff describes the change of
correlations by subtracting the correlation in controls from that in cases, and can take either
positive or negative values.

The significance levels of differential correlations were assessed using a 1000-fold permu-
tation test. For each permutation, we randomly shuffled the disease status of all samples
combining both cases and controls to remove the association among metabolite correlations
and the disease outcome. By repeating this process 1000 times, we were able to generate a
null distribution under the assumption that the pairwise correlations of metabolites were not
statistically distinguishing in cases and in controls. Then for each pair of metabolites, the
significance (p-value) of their differential correlation was estimated as the proportion of per-
muted differential correlations that were greater than the observed value calculated using the
original real data.

2.3. Differential correlation network

Network is a powerful tool to characterize the properties of entities and their complex rela-
tionships. In this study, we used networks to represent the global structure of differentially
correlated metabolites by comparing OA cases and healthy controls.

Pairs of metabolites that had significant differential correlations were included to build the
network. In such a differential correlation network, each node stood for a metabolite, and edges
linking two metabolites represented the significant differential correlations between them. The
differential correlation of a metabolite pair could be either positive or negative, meaning that
their correlation in cases are significantly stronger than their correlation in controls or vice
versa.
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Fig. 1. Comparison of pairwise metabolite correlations (red for positive; blue for negative) in case and control
populations. Only significant correlations (Pearson’s correlation coefficient p-value cutoff 0.05 with Bonferroni
multiple-testing correction) were included in this comparison. (A) For the total of 6599 (= 1346 + 5252 + 1)
pairs of positively correlated metabolites in cases, the majority of them were also found positively correlated
in controls. (B) For the total of 145 (= 92 + 28 + 25) pairs of negatively correlated metabolites in cases, a
third of them were found positively correlated in controls and another third of them were found negatively
correlated in controls.

3. Results

3.1. Metabolite correlations in case and control populations

The pairwise Pearson’s correlations of 167 metabolites were calculated in both case and control
samples in the discovery dataset. Of all 13,861 pairs, the majority of them were positively
correlated in both cases and controls. We used a p-value threshold 0.05 and Bonferroni multiple-
testing correction to define the statistical significance of pairwise correlations.

About 80% of the positively correlated pairs in cases were found also positively correlated
in controls (Fig. 1A), and a similar link was observed for negatively correlated pairs as well
(Fig. 1B). This large overlapping of metabolite correlations from the two phenotypic condi-
tions suggests that the majority of the observed correlations were a result of “housekeeping”
biological reactions and were not related to the disease of OA.

3.2. Differentially correlated metabolites

We calculated the differential correlations of all pairs of metabolites by comparing their corre-
lations in cases and controls as described in the section of Methods. By subtracting correlations
in controls from correlations in cases, metabolite pairs that were differentially correlated across
these two conditions were magnified, while the persistent correlations in both conditions were
removed. This differential correlation method allowed us to focus on the dynamic correlations
that were specifically associated with the disease.

In the discovery dataset, 232 pairs of metabolites had significant positive differential cor-
relations and 1060 pairs had significant negative differential correlations (permutation testing
p < 0.05). The strongest and most significant pair of metabolites that has a positive differential
correlation is Ala and Sarcosine (rdiff = 9.33, p < 0.001), and that has a negative differential
correlation is lysoPCaC24:0 and PCaaC40:2 (rdiff = −5.40, p < 0.001). Fig. 2A shows a scatter
plotting of all the pairs of metabolites with their correlations in the case population (x-axis)
and the control population (y-axis). In addition, positive and negative differential correla-
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Fig. 2. (A) Scatter of metabolite pair correlations in cases (x axis) and controls (y axis) and identification of
significant (p-value cutoff 0.05 using a 1000-fold permutation test) pairs with positive differential correlations
(red) and with negative differential correlations (blue). (B) Distribution of all pairwise differential correlations,
with a mean value of −0.283 (black dashed line). The means of significant differential correlations are also shown
using dashed lines. The average significant positive correlations was 3.820 (red) and the average significant
negative correlations was −2.589 (blue).

tions were shown as colored points. They represented the metabolite pairs whose correlations
significantly changed across the two phenotypic conditions.

The distribution of the differential correlations of all metabolite pairs is shown in Fig. 2B.
It follows a normal distribution approximately with a mean of −0.283. The shift of this distri-
bution towards the negative values explained the observation that there were more significant
negative differential correlations (1060 pairs) than positive ones (232 pairs). However, positive
differential correlation distribution has a longer tail towards larger values, and the mean of
significant positive differential correlations, i.e. 3.820, was greater than the absolute of the
mean of negative ones, i.e. −2.589.

3.3. Differential correlation network of OA

We applied differential correlation analysis to both the discovery and replication datasets. We
used the set of metabolite pairs that were significantly differentially correlated (permutation
testing significance cutoff p < 0.05) in both datasets to build the differential correlation network
of OA.

A total of 100 pairwise differential correlations were statistically significant in both
datasets, including 71 metabolites. The network was comprised of four connected components
and the largest component included 63 metabolites and 95 edges (Fig. 3). The remaining three
components had only two or four nodes and were not included in the network visualization.

As seen in the figure, the majority of metabolite pairs were negatively differentially cor-
related, denoted by blue edges in the graph. Positive differential correlations, however, were
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Fig. 3. The differential correlation network by comparing the discovery and replication data. Only pairs
of metabolites that have significant differential correlations in both datasets are shown. There is one major
connected component of the network, which has 63 nodes and 95 edges. The network is visualized using the
force-directed layout with a closer node layout distance representing a stronger pairwise correlation. Edge
width is proportional to the corresponding correlation strength and edge color codes for positive (red) and
negative (blue) differential correlations. This network visualization was generated using Cytoscape.30

less observed and clustered together in sub-structures of the network. The node degree of this
network had a mean of 3.02 and a heavy-tail distribution (inset of Fig. 3), showing that the
majority of nodes have a very low degree but a few of them were considerably more connected
than the others. This property suggests the robustness of connectivity and information flow
in the network.

3.4. Identification of key metabolites in the osteoarthritis differential
correlation network

In network science, the importance of an individual node in a network is captured by measuring
its centrality. Besides the most commonly used centrality measure, node degree, there are more
sophisticated metrics on node importance that characterize not only the number of connections
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Fig. 4. Node importance characterized by (A) betweenness centrality and (B) closeness centrality in relation
to node degree. Key nodes, either with high degrees, or high betweenness/closeness, or both, are identified
and labeled with their represented metabolite names.

a node has, but also on how important those connections are in the global structure of an
entire network. Betweenness centrality quantifies the number of times a node v is part of the
shortest path between any pair of nodes,31 represented as

∑
s6=v 6=t∈V

σst(v)
σst

, where σst is the
total number of shortest paths from node s to node t and σst(v) is the number of those paths
that pass through node v. Betweenness captures how important a given node acts on the
connectivity of all other pairs of nodes. Closeness centrality is defined as 1∑

s6=v
dvs

, where dvs

is the distance between nodes v and s.32,33 This metric describes how easily a given node can
reach all other nodes in a network. In the context of differential correlation networks, those
centrality measures were used to identify key metabolites that play an essential role in the
global interconnected structure.

Nodes with high degrees are usually referred to as “hubs” since they have more connections
than the rest of the nodes in the network, and nodes with high betweenness or closeness are
often referred to as “bottlenecks” since they are crucial in controlling the information flow in
the network. Fig. 4 shows metabolites that are hubs, or bottlenecks, or both. The betweenness
and closeness centralities are shown in relation to node degrees in the figure. The same set of
11 metabolites were identified as key nodes in both centrality measures (Fig. 4A and B).

4. Discussion

Identification of metabolic markers associated with OA holds a great potential to better un-
derstand the cellular processes in response to genetic and environmental influences that lead
to the clinical outcome of the disease. The identified metabolites and their represented cellular
processes will in turn help us to develop targeted therapies for OA. In this study, we developed
a differential network approach to characterizing the variations of metabolite correlations in
relation to different phenotypic conditions.
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In our methodology, we used networks to represent the global inter-connected structure of
metabolites that showed significant correlation variations in case and control populations. By
exploring the topological properties of such a differential correlation network, we identified a
set of key metabolites for modulating connectivity and information flow in the network, and
thus hypothesized the association of their represented cellular processes with the disease.

When metabolite correlations were analyzed separately in cases and controls, we saw a
large overlap of correlated metabolite pairs (Fig. 1), an observation indicating that most of
the metabolite associations are not specifically related to OA. The differential analysis took a
unique route by subtracting correlation coefficient of a metabolite pair in controls from that
in cases, such that all the persistent pairwise correlations across the two phenotypic classes
were removed and the pairs with significant variations were magnified. These differentially
correlated metabolites are expected to provide useful insights into the underlying biologi-
cal processes of the clinical development of OA. We observed considerably more significant
negative differential correlations than positive ones (Fig. 2), which indicates that important
biological processes might be compromised in OA patients.

By comparing the independent discovery and replication datasets, we built a differential
correlation network of metabolites associated to OA (Fig. 3) The network included 63 metabo-
lites and 95 pairwise differential correlations. The majority of the differential correlations
were negative while the positive ones were clustered together around certain metabolites. The
metabolites that have positive differential correlations are mainly coming from the same class
of acylcarnitines, e.g. C18, C10, C10:2, C8, C5-OH(C3-DC-M), C12 and C16:1-OH; C18:2 and
C16; C6:1, C16-OH and C16:1. From the view point of physiology function, the relationship
between these metabolites is more likely a parallel relation rather than a causality.

The node degrees of this differential network had a heavy tail distribution (Fig. 3 inset),
which suggests a robust property of connectivity and information flow subject to random
perturbations. That is, random removal of nodes will have a very limited impact on the
global connectivity of the network, a property that has been found in many biological sys-
tems including metabolic networks,14 protein-protein interaction networks,34 gene-regulatory
networks8 and gene-gene interaction networks.35 In the context of OA metabolite differential
correlation networks, this robustness property indicates the complexity of the molecular and
cellular processes underlying the pathogenesis of OA.

Topological analysis on the node importance using centrality measures revealed a set of
key metabolites that play an essential role modulating the connectivity and information flow
in the network (Fig. 4). They were identified as “hubs”, i.e. nodes that connect to many
other nodes, and “bottlenecks”, i.e. nodes that are located on major information flow paths in
the network. Identification of these key metabolites may provide important insights into the
pathogenesis of OA. Based on the node centrality measures, the metabolites in the network
can be roughly classified into three categories. The hub-and-bottleneck metabolites Ac-Orn
and Arg with their close neighbors Ala and Orn comprise the core of the network. On the
network peripheral, metabolites are mostly glycerophospholipids (PC and LysoPC). Between
the core and peripheral of the network is where acylcarnitines mixed with glycerophospholipids
are located.

Pacific Symposium on Biocomputing 2016

128



Ac-Orn, Arg, Ala and Orn have a close relationship with urea cycle in the body. Previ-
ous studies have proposed that urea cycle disorders may be related to the OA pathogene-
sis.36,37 Glycerophospholipids form the essential lipid bilayer of all biological membranes and
are closely involved in signal transduction, regulation of membrane trafficking and many other
membrane-related phenomena.38,39 It has been suggested that alterations in phospholipid com-
position and concentrations are associated with the development of OA.40

Acylcarnitines are related to energy metabolism. Carnitine and its acyl esters acylcarnitines
are essential compounds for the metabolism of fatty acids. Carnitine can assist in the transport
and metabolism of fatty acyl-CoA from the cytosol to the mitochondrial matrix, where the
enzymes of oxidation are located and fatty acids are oxidized as a major source of energy.
Acylcarnitine abnormal have been detected in obesity, type-2 diabetes, and cardiovascular
diseases.41,42

The clustering of metabolites in the differential correlation network based on their central-
ities and the observation of urea cycle related metabolites locating on the core cluster of the
network suggest that urea cycle abnormality may be a driving cause for metabolic disorders
and may have a significant influence on OA development.
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