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Efforts to predict interfacial residues in protein-RNA complexes have largely focused on predicting RNA-
binding residues in proteins. Computational methods for predicting protein-binding residues in RNA 
sequences, however, are a problem that has received relatively little attention to date. Although the value of 
sequence motifs for classifying and annotating protein sequences is well established, sequence motifs have 
not been widely applied to predicting interfacial residues in macromolecular complexes. Here, we propose a 
novel sequence motif-based method for “partner-specific” interfacial residue prediction. Given a specific 
protein-RNA pair, the goal is to simultaneously predict RNA binding residues in the protein sequence and 
protein-binding residues in the RNA sequence. In 5-fold cross validation experiments, our method, PS-PRIP, 
achieved 92% Specificity and 61% Sensitivity, with a Matthews correlation coefficient (MCC) of 0.58 in 
predicting RNA-binding sites in proteins. The method achieved 69% Specificity and 75% Sensitivity, but 
with a low MCC of 0.13 in predicting protein binding sites in RNAs. Similar performance results were 
obtained when PS-PRIP was tested on two independent “blind” datasets of experimentally validated protein-
RNA interactions, suggesting the method should be widely applicable and valuable for identifying potential 
interfacial residues in protein-RNA complexes for which structural information is not available. The 
PS-PRIP webserver and datasets are available at: http://pridb.gdcb.iastate.edu/PSPRIP/. 
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1.  Introduction 

Despite the important roles of protein-RNA interactions in many biological processes, 
including transcription, translation, viral replication and pathogen resistance [1-2], the 
mechanisms and regulation of protein-RNA recognition are not yet fully understood. The Protein 
Data Bank (PDB) is a valuable resource for studying protein-RNA complexes, but protein-RNA 
complexes constitute less than 1% of the total structures in the database [3]. Recently, high-
throughput (HTP) methods for identifying the in vivo targets of specific RNA binding proteins - 
and the RNA motifs they bind - have provided a wealth of information about the determinants of 
sequence recognition in protein-RNA complexes [4-6]. Data from both the PDB and HTP 
experiments have been exploited to develop several computational methods for predicting 
interfacial residues in protein-RNA complexes [reviewed in 7-10] as well as a few methods for 
predicting interaction partners in protein-RNA complexes and interaction networks [reviewed in 
11-13].   

Most computational approaches for predicting interfacial residues have focused on the protein 
side of the interface. Methods for predicting RNA-binding amino acid residues in proteins fall into 
two major classes: i) methods that use only sequence information, and ii) methods that take 
advantage of structural information, when available [8]. Only one published method [14-15] takes 
into account information regarding the RNA partner; the rest are “non-partner-specific” predictors 
of interfacial residues. Computational prediction of protein-binding ribonucleotides in RNA is a 
more difficult problem. The low per-character information content of the 4-ribonucleotide 
alphabet of unmodified RNA (i.e., ignoring modified ribonucleotides) makes this problem more 
challenging. One approach to overcoming this limitation is to expand the RNA alphabet by using 
known or predicted RNA secondary structure [16]. Another approach, taken in the current study, 
is to exploit short sequence motifs that occur in the interfaces of known protein-RNA complexes. 

Here, we report a preliminary large scale analysis of contiguous RNA sequence motifs present 
in the interfaces of protein-RNA complexes and propose a new “partner-specific” motif-based 
method to simultaneously predict RNA-binding residues in the protein component and protein-
binding ribonucleotides in the RNA component of a given protein-RNA pair. 

2.  Methods 

2.1.  Generating interfacial sequence motifs 

To generate interfacial sequence motifs with which to scan target protein and RNA sequences, 
a dataset of 1,408 protein-RNA complex structures deposited in the Protein Data Bank (PDB) as 
of September 2012 was analyzed to find short strings of amino acids or ribonucleotides, 
contiguous in the primary sequence and composed entirely of interacting residues in either the 
protein or RNA chains. The sequences of these interfacial segments were extracted as ‘n-mer 
motifs’, where n can vary between 3 and 8. No requirement was made for motifs to be bounded by 
non-interacting residues; therefore, overlapping motifs were included. Thus, a 5-mer motif 
necessarily contains two 4-mer motifs and three 3-mer motifs. 
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2.2.  Datasets for interface prediction 

To generate datasets for evaluating the utility of motifs for interface prediction, interacting 
protein and RNA chains were extracted from protein-RNA complexes in the PDB with at least 
3.5Å resolution. In one dataset, RPInt327, proteins of length < 25 amino acids and RNAs of length 
< 100 ribonucleotides were excluded. This dataset was used for training and cross-validation tests. 
The interaction information (i.e., interfacial residues) for these chains was downloaded from 
PRIDB [17]. Several additional fully independent datasets were generated to evaluate the 
performance of the classifier on RNAs of different lengths, e.g., RPInt79 (RNAs > 250 nts) and 
RPInt83 (RNAs 50-100 nts). The interfacial residues for these chains were computing using 
contact-chainID [18]. For both datasets, residues in protein and RNA chains were defined as 
interacting if any heavy atom in one chain lies within a 5Å distance cutoff of any heavy atom in 
the other chain. Based on BLASTClust results, redundant protein sequences (i.e., with ≥ 30% 
sequence identity) in complexes with similar RNA sequences (i.e., with ≥ 30% sequence identity) 
were discarded; RNA sequences in such redundant complexes were also discarded. For RPInt327, 
this resulted in a non-redundant dataset containing a total of 1,637 interacting protein-RNA pairs. 
327 pairs were kept aside for independent evaluation and 5-fold cross-validation was performed 
on the remaining 1,310 pairs. Datasets RPInt79 and RPInt83 were reserved as a fully independent 
test datasets and were not used for training or cross-validation in this study. 

2.3.  Generating a protein-RNA interface motif lookup table 

As illustrated in Figure 1, the protein-RNA interface motif lookup table consists of pairs of 
protein and RNA interfacial sequence motifs that are known to contact one another in a 
characterized protein-RNA complex. Entries in the lookup table were obtained as follows: First, 
the protein sequences in the non-redundant dataset of 1,637 protein-RNA pairs were scanned for 
interfacial sequence motifs (identified as described above) using a sliding window approach. 
Similarly, RNA sequences were scanned for interfacial sequence motifs  (Fig. 1A). Second, each 
pair of protein-RNA sequences in the training dataset of known protein-RNA complexes was 
examined to identify cases in which there exists at least one physical contact (<5Å) between a 
heavy atom in any of the amino acids and any heavy atom in any of the ribonucleotides in a 
corresponding pair of sequence motifs (Fig. 1B & C). If a physical interaction is detected, that 
particular protein-RNA sequence motif pair is added to the lookup table (Fig. 1D).  

2.4.  Motif-based prediction of interfacial residues in both RNA and protein  

After generating the protein-RNA interface motif lookup table, prediction of interfacial 
residues in a query protein-RNA pair is done in a single step. The protein and RNA sequences are 
scanned simultaneously for the presence of motif pairs in the lookup table. If any motif pair is 
present, those amino acids and ribonucleotides are marked as “interfacial” in the given query 
sequences. The remaining residues and ribonucleotides are marked as non-interfacial residues. For 
example, using the lookup table in Figure 1, if ‘TRTYR’ is found in the query protein and 
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‘UUAAU’ is found in the query RNA, the corresponding amino acids and ribonucleotides are 
predicted as interfacial residues. 

	  
Fig. 1. Generation of the protein-RNA motif lookup table. A) A sample subset of the 
protein and RNA interfacial motifs used to scan target sequences. B) The protein and 
RNA sequences of each protein-RNA pair in the training dataset are scanned with the 
interfacial motifs. For the purpose of illustration, only a small portion of the example 
sequences and a subset of the interfacial motifs (indicated in boxes) are shown. C) 
Interacting residues within a distance threshold of 5Å are identified. Only a subset of 
interactions identified in this example is shown. D) Only protein and RNA motif pairs 
that contain at least one such interaction between them are added to the protein-RNA 
motif lookup table. Of the eighteen possible protein-RNA motif pairs illustrated in this 
example, only four satisfy this criterion and are added to the lookup table. 

2.5.  Performance evaluation 

We used the following measures to evaluate the performance of motif-based prediction of 
interfacial residues on both proteins and RNAs. True Positive (TP) refers to the number of 
interfacial residues correctly identified as such by the method. False Positive (FP) refers to the 
number of non-interfacial residues misclassified as interfacial residues. False Negative (FN) refers 
to the number of interfacial residues misclassified as non-interfacial residues. True Negative (TN) 
refers to the number of non-interfacial residues correctly identified as such by the method. Note 
that here our definition of Sensitivity (true positive rate) is the same as Recall. We compute both 
Specificity (true negative rate), here as defined as in medical statistics literature, and Precision, 
which is referred to as Specificity in the machine learning literature [19]. 
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 Sensitivity(recall) =
TP

TP + FN
 (1) 

 Specificity =
TN

TN + FP
 (2) 

 Precision =
TP

TP + FP
 (3) 

 MCC =
TP ×TN − FP × FN

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )
 (4) 

3.  Results	  

3.1.  Motif-based partner-specific prediction of interfacial residues 

To evaluate whether an interface motif lookup table can be used to predict interfacial residues 
in specific protein-RNA pairs, we first performed preliminary experiments in which we tested the 
effect of varying the length of protein motifs from 4 to 6 amino acids, and the length of RNA 
motifs from 4 to 8 ribonucleotides (see Methods). As expected, using shorter motifs resulted in a 
larger number of false positive predictions, whereas using longer motifs resulted in larger number 
of false negative predictions. Based on these results, we determined that a protein motif of length 
5 provides a good balance between prediction specificity and sensitivity. Although there are 205 
different potential combinations of amino acid 5-mers, only 0.3% (11,269) of the theoretically 
possible 5-mer motifs were observed in interfaces extracted from known protein-RNA complexes 
(1,408 complexes, comprising 17,385 protein chains) in the PRIDB database [17]. 

To predict RNA-binding residues in the protein component of a given protein-RNA pair, we 
used a protein motif size of length 5 and varied the RNA motif lengths from 4 to 6. Table 1 
summarizes results obtained using a 5-fold cross validation approach, in which 80% of the data 
was used to generate the protein-RNA motif lookup table and predictions were made on the 
remaining 20% of the data. There is little difference in the Specificity or Matthews correlation 
coefficient (MCC) using RNA motifs of length 4 and 5. Although using an RNA motif of length 6 
resulted in higher Specificity (0.94), it resulted in lower Sensitivity and MCC. Using an RNA 
4-mer resulted in higher Sensitivity (0.65) compared with using 5- and 6-mers.	  

Table 1. RNA-binding residue prediction performance using 5-fold 
cross-validation on a non-redundant dataset of 1,130 protein-RNA 
pairs 

Protein 
motif length 

RNA motif 
length Specificity Sensitivity MCC 

5 4 0.90 0.65 0.58 
5 5 0.92 0.61 0.58 
5 6 0.94 0.54 0.54 
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To predict which ribonucleotides in the RNA component of a given protein-RNA pair participate 
in protein binding, we again used a protein motif size of length 5 and varied the RNA motif 
lengths from 4 to 6. Table 2 summarizes the prediction results obtained in 5-fold cross-validation 
experiments. Again, as the RNA motif size is increased, the Specificity increased, but with the 
expected decrease in Sensitivity. A high Specificity of 0.91 is obtained using an RNA motif length 
of 6, but the corresponding MCC is much lower than that obtained for RNA binding site prediction 
(Table 1].  

Table 2. Protein-binding residue prediction performance using 5-fold 
cross validation on a non-redundant dataset of 1,310 protein-RNA 
pairs 

Protein 
Motif length 

RNA motif 
length Specificity Sensitivity MCC 

5 4 0.35 0.89 0.07 
5 5 0.69 0.75 0.13 
5 6 0.91 0.55 0.21 

3.2.  Performance evaluation on independent test sets 

To more rigorously test the performance of the method, we evaluated it on several independent 
datasets of known protein-RNA pairs (See Methods). As summarized in Table 3, on the RP327 
dataset (which contains 327 protein-RNA pairs), using protein and RNA motifs of length 5, we 
obtained 92% Specificity and 64% Sensitivity in predicting RNA-binding residues. In predicting 
protein-binding ribonucleotides, the Specificity was 67% and Sensitivity was 79%.  Thus, 
performance on the independent test set was comparable to that obtained in cross-validation 
experiments. This suggests that our proposed “partner-specific” method for predicting protein-
RNA interfaces using sequence motifs, which we call PS-PRIP, should be generally applicable.  

To investigate the influence of RNA length on performance, we also evaluated the classifier on 
several additional independent datasets of complexes containing RNAs of different lengths (Table 
4 and data not shown). Although PS-PRIP performs very well on complexes containing RNAs 
longer than 250 nts, performance is poor on complexes containing shorter RNAs.	  

Table 3. Prediction performance on an independent test set of 327 
protein-RNA pairs using protein and RNA motifs of length 5. 

Prediction  Specificity Sensitivity MCC 
RNA-binding 
amino acids in 

proteins 
0.92 0.64 0.59 

Protein-binding 
nucleotides in 

RNA 
0.67 0.79 0.13 
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Table 4. Performance in predicting RNA binding residues in protein-
RNA complexes containing RNAs of different lengths 

Prediction  Specificity Sensitivity MCC 

RNAs > 250 nts  
(83 total) 0.88 0.75 0.62 

RNAs 50-100 nts 
(79 total) 0.99 0.03 

 
0.03 

 
 

3.3.  Comparison with other interface prediction methods 

Only one other published study has addressed the prediction of interfacial residues in protein 
and RNA components of protein-RNA complexes simultaneously. The catRAPID method 
proposed by Bellucci et al. [20] divides the protein and RNA sequences into a number of 
fragments and calculates interaction propensities between each pair of protein-RNA fragments. 
Because binding site prediction on a per residue basis was not reported, we could not directly 
compare our method with catRAPID. 

A method for predicting protein-binding sites in RNAs was reported by Choi and Han [14-15]. 
We have not been able to make direct performance comparisons with this method because neither 
the test dataset nor a working webserver is available, and we did not attempt to re-implement it in 
order to provide a direct comparison with our method. In an earlier report, Choi and Han also 
proposed a partner-specific RNA binding site prediction method, in which the RNA sequence is 
encoded as the sum of the normalized positions of each nucleotide (A, C, G and U) in the 
sequence [14]. When we examined the dataset used in that study, we noticed that all except one 
RNA sequence was less than 100 nucleotides in length, and approximately half of the dataset 
consists of very short RNAs (< 15 nts). Because the minimum length of the RNA used in our 
training dataset is 100 nt, and, as discussed in the next section, our method is not suitable for small 
RNAs, we did not compare PS-PRIP with Choi and Han’s method. Choi and Han reported 
prediction performance of 91% specificity and 60.7% sensitivity with a CC of 0.24 on a dataset of 
267 interacting protein-RNA pairs [14]. 

We were able to compare the performance of our partner-specific PS-PRIP method with 
existing non-partner specific sequence-based methods for predicting RNA-binding residues in 
proteins. Walia et al. [8] performed a systematic comparison of existing methods for predicting 
RNA-binding residues and showed that PSSM-based methods had the best performance among 
published sequence-based approaches. Thus, we directly compared the performance of PS-PRIP 
with RNABindRPlus [21], which combines homology-based predictions with predictions from an 
optimized SVM classifier that uses a PSSM-based approach. Because homology-based methods 
exploit existing structures and interfaces, and our independent test set was extracted from the 
PDB, we expected the homology-based method to perform very well. Homology-based methods 
fail, however, when the query sequence has no homologs in the PDB. We also compared our 
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method with the SVM component of RNABindRPlus and the results are also shown in Table 6. 
PS-PRIP has better performance in terms of Specificity (0.92), but lower Sensitivity (0.64) 
compared to RNABindRPlus. RNABindRPlus had the highest MCC (0.71); the MCCs for the 
other two methods were similar (0.59 vs 0.61). A larger difference is seen in the Precision (or 
positive prediction rate) of the two methods: PS-PRIP has higher Precision (0.80) than 
RNABindRPlus (0.76), when evaluated on this dataset. 

 
Table 6. Performance comparison of PS-PRIP and RNABindRPlus in 
predicting of RNA binding residues. 

Method Specificity Sensitivity Precision MCC 
PS-PRIP 0.92 0.64 0.80 0.59 

RNABindRPlus 0.85 0.88 0.76 0.71 
RNABindRPlus 

(SVM-only) 0.74 0.90 0.65 0.61 

4.  Discussion 

This study suggests that specific subsets of short contiguous interfacial motifs are over-
represented relative to others within the sequences of both protein and RNA components of known 
protein-RNA complexes. A large number of interfacial amino acid motifs occur only once in the 
dataset analyzed here. This may be a consequence of the criteria for generating the short RNA-
binding motifs in this study: all residues in an interfacial motif must be contiguous in sequence 
and must interact with at least one atom in a ribonucleotide within a 5 Å distance cutoff. It is 
striking that a simple lookup table of motif pairs, identified in a training set of protein-RNA 
complexes, can be used to accurately predict interfacial residues in an independent set of 
complexes. Although we have not yet directly calculated the interface propensities of these motifs 
(i.e., the over-representation of these motifs in interfacial versus non-interfacial regions of the 
protein and RNA sequences), it should be possible to improve prediction of interfacial residues by 
focusing on motifs with high interface propensity. 

The interface prediction results reported here demonstrate that an ribonucleotide motif of 
length 5, while not informative on its own, can be highly informative when used in combination 
with an amino acid motif of length 5. From the non-redundant dataset of protein-RNA complexes 
used in this study, we generated a lookup table of 55,154 protein-RNA motif pairs, comprising 
3,275 unique protein motifs and 835 unique RNA motifs. Using a non-redundant dataset is the 
appropriate way to evaluate and compare interface prediction methods, but doing so is expected to 
exclude some informative motif combinations. Thus, we created a motif lookup table without 
discarding redundant motifs. As expected, many additional protein-RNA motif pairs were 
identified:  a total of 88,994 protein-RNA motif pairs, comprising 4,035 protein motifs and 893 
RNA motifs.  

Our results indicate that binding partner information, which has been largely ignored for 
predicting interfacial residues in protein-RNA complexes, can be valuable for making “partner-
specific” interface predictions.  Figures 2 and 3 illustrate this with an example. In the E. coli 
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ribosome, the 16S rRNA in the small subunit interacts with various protein components of the 30S 
subunit, using different binding sites. Interaction of S4 and S11 proteins with a segment of the 16S  
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Fig. 2. E. coli 16S ribosomal RNA (blue) interaction with S4 ribosomal protein S4 (yellow) 
and ribosomal protein S11 (red). (PDB ID: 4GAS) 

 
	  
A.  16S rRNA interface with S4 

 
UGAUGCAGCCAUGCCGCGUGUAUGAAGAAGGCCUUCGGGUUGUAAAGUACCU 
------------+++++++++++++++++---------++++++----++++ 

 
B.  16S rRNA interface with S11 

 
UGAUGCAGCCAUGCCGCGUGUAUGAAGAAGGCCUUCGGGUUGUAAAGUACCU 
-----------------+++++-------------+++++------------ 

 
TP = True positives   FP = False positives 
TN = True negatives   FN = False negatives 

	  
Fig. 3. Partner-specific interface prediction in the E, coli 16S ribosomal RNA (PDB ID: 
4GAS). Different protein-binding residues are predicted for the same RNA sequences 
between nt 386-437 of 16S RNA when the segment is paired with two different protein 
partners. A.  Ribosomal protein S4 protein. B. Ribosomal protein S11 protein. ‘+’ 
indicates “positive/binding” and  ‘-’ indicates  “negative/non-binding” predictions.	  

ribosomal RNA (PDB 4GAS) is shown in Figure 2. In this structure, the majority of 16S rRNA 
nucleotides that bind the S4 protein are located in the region between 400 – 440 nt. In contrast, the 
region between 670 – 720 nt of 16S rRNA contains most of the S11 protein-binding residues. 
Whereas a non-partner specific method would not be able to distinguish between these, Figure 3 
shows that PS-PRIP makes distinct binding site predictions for the S4 and S11 proteins. In the 16S 

S11	  protein	  
	  S4	  protein	  

16s	  rRNA	  
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rRNA sequence between 386 – 437 nt, many S4 binding residues are correctly predicted. In the 
same region (where S11 does not bind), a few residues are incorrectly predicted as interacting with 
S11 in complexes that contain short RNAs (< 100 nts). Short RNAs, which often correspond to 
interface-containing fragments of the much longer RNAs present in native complexes, are 
common in structurally characterized protein-RNA complexes in the PDB. Thus, the likelihood 
that every ribonucleotide in such an RNA is an interfacial residue is very high compared to the 
situation for longer RNAs, in which only a small fraction of the ribonucleotides directly contact 
the bound protein(s). Because of this, we excluded RNAs <100 nts in length for generating motifs 
(see Methods), which results in a bias in our training set for RNA-protein pairs derived from 
ribosomes. In our experiments, PS-PRIP performed well on RNAs >100 nts in length (Table 3), 
but poorly when tested on RNAs < 100 nts (Table 4). Thus, PS-PRIP can be used to predict 
protein-binding sites in mRNAs, rRNAs, long non-coding RNAs and many short ncRNAs, but 
predictions on RNAs less than 100 nts are likely to be unreliable. Current work is directed at 
generating “custom” classifiers trained on datasets containing RNAs of variable length to obtain 
optimal performance on RNAs of different lengths and different functional classes (e.g., non-
ribosomal ncRNAs, including sRNAs, sncRNAs, etc.) 

In future work, we plan to evaluate the effect of incorporating predicted RNA secondary 
structure in the RNA sequence representation, which is expected to lead to better performance in 
predicting protein-binding residues in RNA [16]. In addition, we plan to test whether exploiting 
the extensively characterized resource of structural motifs in RNAs [22-23], can provide further 
improvement.  

5.  Conclusions 

We have developed a new method for predicting partner-specific interfacial residues in 
protein-RNA complexes using short sequence motifs. PS-PRIP can simultaneously predict 
interfacial residues in both the protein and RNA components of a complex, albeit with much 
greater reliability for the protein component. An RNA motif of length 5, in combination with a 
protein motif of length 5, can be used to predict interfacial residues with high specificity (0.92 for 
RNA-binding residues in proteins; 0.67 for protein-binding residues in RNA), indicating that PS-
PRIP can be a valuable tool for experimentalists who wish to target interfaces in specific protein-
RNA complexes or to perturb specific interactions in protein-RNA interaction networks.  A 
PS PRIP webserver and all training and test datasets used in this study are freely available online 
at: http://pridb.gdcb.iastate.edu/PSPRIP/.	  
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