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The human protein kinome presents one of the largest protein families that orchestrate 
functional processes in complex cellular networks, and when perturbed, can cause various 
cancers. The abundance and diversity of genetic, structural, and biochemical data underlies 
the complexity of mechanisms by which targeted and personalized drugs can combat 
mutational profiles in protein kinases. Coupled with the evolution of system biology 
approaches, genomic and proteomic technologies are rapidly identifying and charactering 
novel resistance mechanisms with the goal to inform rationale design of personalized   kinase 
drugs. Integration of experimental and computational   approaches can help to   bring these 
data into a unified conceptual framework and develop robust models for predicting the 
clinical drug resistance.  In the current study, we employ a battery of synergistic 
computational approaches that integrate genetic, evolutionary, biochemical, and structural   
data to characterize the effect of cancer mutations in protein kinases.  We provide a detailed 
structural classification and analysis of genetic signatures associated with oncogenic 
mutations. By integrating genetic and structural data, we employ network modeling to 
dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using 
biophysical simulations and analysis of protein structure networks,  we show   that 
conformational-specific  drug binding of Lapatinib may elicit resistant mutations in the EGFR  
kinase that are linked with the ligand-mediated changes in the residue interaction networks 
and   global network properties of key residues that are responsible for structural stability of 
specific functional states.  A strong network dependency on high centrality residues in the 
conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to   
a broad spectrum of mutations and the emergence of drug resistance. Our study offers a 
systems-based perspective on drug design by unravelling complex relationships between 
robustness of targeted kinase genes and binding specificity of targeted kinase drugs. We 
discuss how these approaches can exploit advances in chemical biology and network science 
to develop novel strategies for rationally tailored and robust personalized drug therapies. 

                                                             

†  This work is partly supported by funding from Chapman University. 

 

Pacific Symposium on Biocomputing 2016

45



 

 

 

1.  Background 

The era of  significant scientific breakthroughs and technological advancements in genetics 
and biology has brought to clinical settings personalized health care that has the capacity to 
detect the onset of disease at its earliest stages and preempt the progression of disease. The 
comprehensive cancer genome characterization efforts have refined our understanding of 
specified genes responsible for development and progression of tumors1. Several 
malignancies are associated with the mutation or increased expression of protein kinases, 
including lung, breast, stomach, colorectal, head and neck, and pancreatic carcinomas and 
glioblastoma2. Tumor sequencing efforts have identified a rich source of naturally occurring 
mutations with many being simple single nucleotide polymorphisms (SNPs) in protein 
kinases. A subset of these SNPs occurs in the coding regions (cSNPs) of kinases and result in 
a change in the encoded amino acid sequence (nonsynonymous coding SNP; nscSNPs).   
Genome studies  have revealed the importance of “driver” somatic alterations that activate 
crucial oncoproteins such as EGFR, BCR-ABL, and other kinase genes. Mutations in these 
protein kinases are often implicated in many cancers and exemplify the phenomenon of 
‘oncogene addiction,’  according to which the effects of driver genomic  alterations  are  
pivotal for tumor  proliferation and have a selective advantage for the formation of the 
tumor during somatic cell replication3.    Oncogene dependencies induced by genetic 
alterations in BCR-ABL, KIT, EGFR and other  kinase genes are well known and have provided 
decisive clinical proof of principle for the genomics-informed  drug discovery of kinase 
drugs4. Although tumor dependencies driven by dominant oncogenes could respond to  
targeted therapies,  clinical responses to single agents are often followed by the 
development of drug resistance. The tumor dependency concept   is especially relevant to 
understand mechanisms of acquired resistance, where resistant mutations,   seemingly 
developed due   to drug treatment,   may instead represent evolutionary selection of cell 
subpopulations which harbor preexistent somatic mutant variants   which confers a primary 
resistance to these cells and provides them with a selective advantage. The spectrum of lung 
cancer EGFR mutations can induce oncogenic transformation by leading to constitutive 
kinase activity of EGFR and confer markedly different sensitivity to EGFR inhibitors5. The 
most common reported mutations are the deletion of five exon-19 residues and   the exon-21 
substitution L858R in the catalytic domain of EGFR6. Together, these mutations correspond 
to more than 90% of the activating EGFR mutations observed in non-small-cell lung cancer 
(NSCLC). While T790M has only a modest effect on EGFR function, a tandem of T790M and 
L858R mutations can result in a dramatic enhancement of EGFR activity.  More than 200 
activating and drug resistance EGFR mutations with different clinical responses to   tyrosine 
kinase inhibitors have been reported7 and molecular mechanisms of mutation-induced 
kinase activation have been extensively discussed8.  

Gefitinib and Erlotinib are orally effective protein-kinase targeted inhibitors that are 
used in the treatment of ERBB1/EGFR-mutant lung cancer. Afatinib is another EGFR-
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targeted kinase drug approved by the FDA for the first-line treatment of patients with 
metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 (L858R) 
substitutions. Lapatinib, a small molecule tyrosine kinase inhibitor of both EGFR and 
HER2/ErbB2 is now also approved for advanced HER2-amplified breast cancer9. Structural 
and biochemical studies have characterized the inhibition of intrinsic catalytic activity of 
EGFR and HER2/Erbb2 variants by Lapatinib using a diverse array of enzymatic and cell-
based assays10,11.  Cell-based EGFR resistance mutation screens have demonstrated that 
Lapatinib produced the broadest mutation spectra of any of the EGFR-targeted drugs tested 
in in vitro system, with a number of Lapatinib-specific resistant mutations clustered around 
the selectivity pocket and the EGFR-A-loop12.  The association between EGFR mutations and 
differential drug sensitivity suggested that genetic EGFR alterations and corresponding 
changes in structural and interaction profiles of the EGFR kinase domain render tumors 
sensitive to selective inhibitors.    Oncogenic kinases can adopt different mechanisms to   
alleviate negative regulatory processes associated with their intrinsic conformational 
instability. One of them is the recruitment of unstable kinase forms to the Hsp90 system that 
protects abnormally activated kinases in cancer cells13. HSP90 stabilizes viral kinases and 
various mutated oncogenes, including oncogenic EGFR mutants that are dependent on the 
chaperoning function through direct interactions to maintain their stability14. HSP90 
inhibition reduces mutant EGFR levels and activity, suggesting a viable EGFR inhibition 
strategy. Crystallographic studies15 have   supported this mechanism by showing that the 
catalytic domains of the EGFR-L858R and EGFR-L858R/T790M oncogenic mutants can 
adopt   flexible inactive conformations that may facilitate conformational release from the 
autoinhibitory state. This may be exploited by   the Hsp90 chaperone to bind the unstable 
mutant conformations and promote an accumulation of a constitutively active form. 
According to the newly emerging paradigm, kinase inhibitors may exert their primary effect 
by “arresting” the kinase domain in the   specific inactive form, thereby depriving the Hsp90 
system from access to unstable conformational states and preventing uncontrollable 
accumulation of the active form16. 

The abundance and diversity of genetic, structural, and biochemical data underlies the 
complexity of mechanisms by which targeted and personalized kinase agents can combat 
mutational profiles in EGFR kinase.  We employ a battery of synergistic computational 
approaches that integrate genetic, biochemical, and structural   data to characterize the 
effect of cancer mutations in protein kinases. We show that binding specificity and drug 
resistance of EGFR drugs may be linked with the global network properties of key residues 
that are responsible for structural stability of specific targeted conformations. The results of 
this study offer a network-based perspective on drug design of targeted and personalized 
kinase drugs, showing how the efficiency and robustness of the interaction networks may be 
associated with kinase binding preferences and emergence of resistant mutations. 
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2.  Methods 

2.1.  Data mining  

Protein kinase sequences were obtained from Kinbase (http://kinase.com/kinbase/). 
Common SNPs were retrieved from PupaSNP and dbSNP using the Ensembl data mining tool, 
Biomart (http://www.ensembl.org/Homo_sapiens/martview). The disease causing SNPs 
were retrieved from OMIM, KinMutBase, and  HGMD databases. We used  all  kinase  gene 
entries referenced in NCBI and SwissProt database, and 7955 unique SNP entries 
corresponding to these kinase genes as they are referenced in NCBI. These unique SNP 
entries include 3722 synonymous, 3985 missense, 75 nonsense and 173 frameshift 
mutations. We have also gathered 780 OMIM variant entries from NCBI and 3542 SwissProt 
variant entries.  Cancer mutations were retrieved from OMIM   and   COSMIC databases.  
Motif-based alignments of kinase sequences to the catalytic core  were first generated by 
implementation of the Gibbs motif sampling method. This method identifies characteristic 
motifs for each individual subdomain of the kinase catalytic core, which are then used to 
generate high-confidence motif-based Markov chain Monte Carlo multiple alignments based 
on these motifs17. The  nsSNPs  were  then mapped  to the kinase catalytic domain in 
accordance with  this alignment. Cancer driver predictions were performed by using  the 
SVM approach as described in the earlier work18. 

2.2.   Somatic mutation distributions  and driver mutation hotspots in protein kinome 

Functionally important subdomains of the kinase catalytic core were  examined to determine  
the distribution of nsSNPs and  identify  structurally conserved hotspots of functionally 
important mutations.  The  number of  SNPs in each of the subdomains was calculated from 
the structure-informed multiple sequence alignment.  The expected probability E(p) of a SNP 
occurring in a kinase subdomain region was calculated separately for each SNP type. In brief, 
the average length of each region was calculated as the weighted average of the region 
length in each kinase considered, where weights correspond to the total number of SNPs 
occurring within each kinase. The probability of a SNP occurring within a particular region 
purely by chance was computed as its weighted average length over the sum of every 
region's weighted average length.  The probability (p-value) of the observed total number 
(x) of SNPs occurring within each region, where n is the total number of SNPs considered, 
was calculated using the general binomial distribution. The average length of each sub-
domain was calculated as the weighted average of the region length in each kinase 
considered, where weights correspond to the total number of SNPs occurring within each 
kinase. The probability of a SNP occurring within a particular region purely by chance was 
computed as its weighted average length divided by the sum of every region’s weighted 
average length.  The probability (p-value) of the observed total number of SNPs occurring 
within each region was then calculated using the general binomial distribution.   Cancer 
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mutant predictions and analysis were performed as described in previous studies21.  A 
support vector machine (SVM) was trained upon common SNPs (presumed neutral) and 
congenital disease causing SNPs characterized by a variety of sequence, structural, and 
phylogenetic parameters. The threshold taken for calling a SNP a driver is 0.49 for catalytic 
domain mutations, and 0.53 for all other mutations.   

2.3.  Network modeling of residue interaction networks in protein kinases 

Molecular dynamics (MD) simulations were carried out using NAMD 2.6 with the 
CHARMM27 force field19.   The binding free energies and computational alanine scanning of 
kinase-drug complexes were done  using MM-GBSA approach20.  A graph-based 
representation of proteins was used in  the protein structure network analysis,  where 
residues were considered as nodes and edges correspond to the nonbonding residue-residue 
interactions.  The pair of residues with the interaction strength ijI  greater than a user-
defined cut-off minI are connected by edges and produce a protein structure network graph 
for a given interaction strength minI .  The strength of interaction between two amino acid 
side chains is  

100
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ij

i j

n
I

N N
= ×

×
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where ijn  is number of distinct atom pairs between the side chains of amino acid residues i  
and j   that lie within a distance of 4.5 Å. iN  and jN   are the normalization factors for 
residues  i  and j   respectively21. We considered any pair of residues to be connected if  minI  
was greater than 3.0%.   A weighted network representation of the protein structure is 
adopted that   includes non-covalent connectivity of side chains and residue cross-
correlation fluctuation matrix22. In this model, the weight ijw of an edge between nodes i  

and j  is measured as log( )ij ijw C= −   where ijC  is the element of the covariance matrix 
measuring the cross-correlation residue fluctuations obtained from MD simulations.  The 
shortest paths between two residues are determined using the Floyd–Warshall algorithm.  
We computed the residue-based betweenness which is defined as the sum of the fraction of 
shortest paths between all pairs of residues that pass through residue i : 
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where jkg  denotes the number of shortest geodesics paths connecting j  and k , and ( )jkg i  is 
the number of shortest paths between residues j  and  k  passing through the node in .   
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3. Results 

3.1. Structural and functional signatures of cancer mutations in protein kinases 

Genetic variations in protein kinase genes   are widely spread across both phylogenetic and 
structural space,  and only a subset of all SNPs could be  directly mapped to the kinase 
catalytic domain (Figure 1A). We   constructed the distribution of various SNPs categories 
that could be mapped onto the 12 functional subdomains (SDs) of the kinase catalytic core  
(Figure 1B).  Structural mapping of sSNPs resulted in a uniform coverage of kinase 
subdomains,   showing only a weak preference towards SD II  which has  no obvious 
functional role in kinase regulation.  The distribution of nsSNPs    pointed to the preferential  
bias towards specific  functional regions.  Functionally important P-loop (SD I), hinge region 
(SD V), catalytic loop (SD VIB), and A-loop (SD VII) along with the P+1 loop region (SD VIII)  
are more densely populated The catalytic domain of protein kinases harbors a large number 
of SNPs falling into three major categories: common and neutral SNPs; inherited disease 
causing germline SNPs; and cancer causing SNPs. By compiling and mapping a total of 355 
common SNPs, 428 inherited disease causing SNPs, and 541 cancer associated SNPs we 
found a statistically significant enrichment of different categories of SNPs in  specific l 
regions of the catalytic domain (Figure 1C). Common nsSNPs are randomly distributed 
within the catalytic core, only sparsely populating functional segments of the catalytic core, 
such as the catalytic or  A-loops, whereas these nsSNPs more densely occupy evolutionary 
unconserved regions of the C-terminal tail. The disease-causing nsSNPs  primarily mapped 
to the regions involved in regulation and substrate binding, such as the APE-loop and the 
P+1 region, as well as the catalytic loop (Figure 1C). Cancer-associated nsSNPs tend to target 
regions directly involved in the catalytic activity that are mainly localized in the P-loop, A-
loop and catalytic loop. The distribution of kinase nsSNPs across functional kinase 
subdomains  suggested that the kinase regions that are enriched in different types of SNPs  
are markedly different  and have only a minimal overlap.  The distribution  revealed a 
preference for cancer-causing nsSNPs to  populate  primarily the A-loop (SDVII)  and the P-
loop (SD I). The functionally important for substrate and protein binding P+1 loop are 
enriched largely  in disease-associated mutations,   but not cancer-causing mutations.   These 
results  indicated that disease-associated mutations   could primarily affect the kinase 
regions involved in functional regulation, allosteric interactions and substrate binding23.  

Kinome-wide analysis of sequence and structure-based signatures of cancer mutations  
revealed that  a significant number of  cancer mutations could  fall at structurally equivalent  
positions within the catalytic core.  These structurally conserved mutations tend to cluster 
into specific mutational hotspots which may be shared by multiple kinase genes. We  
classified cancer mutation hotspots which had been identified as a frequent target of 
tumorigenic activating mutations. Cancer mutation hotspots in protein kinases are largely 
localized within the P-loop, hinge region, and A-loop (Figure 1).  
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Figure 1. The distribution of  nsSNPs   in the catalytic core (A,C). The catalytic domain was subdivided 
into 12 subdomains (B) with some subdomains corresponding to functional regions : SD I (P-loop);  
SDIII(αC-helix);  SDV (hinge region);  SDVIB (catalytic loop);    SDVII (A-loop) ;  SDVIII (P+l loop). 
(B)Structural mapping is shown for  common nsSNPs , disease-causing nsSNPs , and cancer-causing 
nsSNPs.  (D) Structural localization of  driver mutations is   mapped onto the crystal structure of the  
active EGFR (pdb entry  2J6M).  Structural annotation of cancer driver mutations is arranged 
according to their oncogenic  potential.  The higher the oncogenic potential of the  cancer drive, the 
larger the ball denoting  structural  position of the respective mutation. 

3.2  Structural  bioinformatics analysis of oncogenic kinase mutants:  distinct  structural 
signatures of  Hsp90-dependent kinase clients are associated with oncogenic potential 

Oncogenic kinase mutants may rely on the Hsp90 dependence for the maintenance of 
stability and accumulation of the constitutively active form. In particular, Hsp90 function  is 
essential to maintain high-level expression of mutant EGFR in lung cancer cells14.  We 
performed  kinome-wide structural bioinformatics analysis of chaperone-regulated kinases 
(Figure 2). The proteomics-based client annotation (Figure 2A) was compared against 
structure-based mapping of the Hsp90-Cdc37 kinase clients (Figure 2b).  Structural  coupling  
of the catalytic DFG motif and the regulatory αC-helix is recognized as central in  controlling 
kinase  activity  and   dynamic equilibrium between the inactive (DFG-out/αC-helix-in), the 
Cdk/Src-like inactive (DFG-in/αC-helix-out) and the active kinase forms (DFG-in/αC-helix-
in).  Although many of the Hsp90 kinase clients can occupy evolutionary different branches 
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of the human kinome, we found they share a common Cdk/Src- type structural arrangement 
of their inactive functional states.  The Cdk/Src-like inactive structures shared   by the Hsp90 
kinase clients are unified by a common structural   determinant   whereby the regulatory αC-
helix is moved to a αC-out conformation and forms autoinhibitory clamp with the A-loop,   
thus preventing the formation of the catalytically competent active kinase.   

 

Figure 2.   The distribution of the Hsp90-dependent protein kinase clients in the human kinome. (A)  
Kinome mapping of Hsp90-Cdc37 clients discovered in proteomic-based studies16 is depicted.  The 
kinases that are found to be downregulated by Hsp90 inhibition in the experimental profiling are 
shown in yellow (confirmed kinase clients) and red (novel kinase clients from proteomics studies16). 
(B) Structure-based mapping of the Hsp90-Cdc37 kinase clients.  The Cdk/Src kinase clients are 
marked in blue filled spheres. A high density of the Cdk/Src clients in the TK, TKL, STE, CAMK, and 
CMGC groups of the human kinome tree is highlighted by blue circles.  The second category of kinase 
clients is characterized by active structures stabilized through allosteric interactions (green spheres).   

According to our analysis, oncogenic  kinase mutations in the conserved hotspots (A-
loop),  may  perturb the constraints  keeping the αC-helix-out  in the rigid inactive position,  
and allow the A-loop to assume  an extended active  conformation (A-loop open) that is seen 
in the as  crystal structures of the EGFR-L858R   and  EGFR-L858R/T790M  mutants15. These 
Cdk/Src-like active conformations that can be adopted by oncogenic mutants are far more 
flexible and unstable. As a result, they may be sequestered by the Hsp90 to promote 
uncontrollable transformation and accumulation of the constitutatively active state for 
kinase cancer mutants. 
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3.3   Integrating genetic and structural data on oncogenic EGFR mutations: modeling of 
thermodynamic and networking signatures of targeted drug binding  

By using   MD simulations and MM-GBSA binding free energy simulations, we evaluated the 
thermodynamic effect of oncogenic EGFR mutations on different conformational states of 
EGFR (Figure 3A).  Our results showed that oncogenic mutations L747P, L747S, L858R and 
L861Q can destabilize the rigid autoinhibitory   structure that is thermodynamically 
favorable in the wild-type EGFR24. Strikingly, oncogenic mutations L747P/S, L858R and 
L861Q seemed to favor a highly flexible Cdk/Src –active conformation   and marginally 
destabilize the active conformation. As a result, EGFR mutations with a high oncogenic 
potential may destabilize the dormant autoinhibitory structure. These mutations may induce 
fast equilibrium between flexible Cdk/Src-like active conformation and active structure that 
could lead to uncontrollable activity, which is a “deadly” signature of cancer mutations. The 
major Lapatinib-resistant mutations with the high oncogenic potential occurred in the 
residues that do not directly contact ligand.  L747 is located at a loop adjacent to αC-helix; 
V765 and V769 are at or near the C-terminal portion of αC-helix, and T790is at the 
gatekeeper position in the ATP binding site.  Of the remainder, N857 is located in helix D, 
T854 forms the base of the ATP binding site, L858 and H870 are in the A-loop (Figure 3). To 
determine the thermodynamic contribution of the EGFR residues to Lapatinib binding and 
identify energetic hot spots susceptible to mutations, we performed free energy simulations 
and computational alanine scanning (Figure 3B). First, we found that only some Lapatinib-
interacting residues corresponded to cancer mutation hotspots, suggesting that escaping 
binding interactions with the drug via mutations may not be a primary mechanism that 
drives emergence of   Lapatinib-resistant mutations.   The energetic hot spots of Lapatinib 
binding that corresponded to  cancer mutation drug-resistant EGFR  sites  included L718, 
L777, L788, T790 (gate-keeper), and T854 residues.   However, the EGFR mutations of high 
oncogenic potential that can render differential sensitivity to Lapatinib such as L747, L858, 
and L861 make   fairly moderate contributions to binding energetics that could not explain 
high resistance.  These results suggested that the mechanism of Lapatinib-induced somatic 
mutations may rather be associated with the intrinsic stability of the Cdk/Src inactive EGFR 
structure that binds Lapatinib10-12.  Several hypotheses have suggested that the mechanism 
of Lapatinib-induced somatic mutations is linked with a conformation-specific mode of 
Lapatinib binding to an inactive EGFR  structure11,12 as drug resistant cancer mutations may 
stabilize the  constitutively active EGFR form and thus interfere with the drug binding. To 
test this mechanism, we evaluated organization of the residue interaction networks and 
structural stability of  EGFR states.  The stability of the inactive EGFR conformation targeted 
by Lapatinib  is  mediated by interaction networks formed by  high centrality residues  F723 
(P-loop),  αC-helix (V765, M766, and V769), the αC-β4-loop (L774), the HRD motif (H835, 
D837), DFG motif (D855, F856) and L858 (A-loop) (Figure 3C, Table 1). The central result of 
the network analysis showed that although some somatic mutations may emerge in residues 
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with medium centrality, Lapatinib-resistant cancer mutations can be developed in high 
centrality sites that determine interaction network of the specific EGFR form (Table 1). Due 
to their central position in the structural network, mutations of V765 and V769  (αC-helix) 
and L858 (A -loop) can  severely compromise  the integrity of the interaction network by 
weakening or dissolving the central autoinhibitory lock   between   the P-loop/A-loop  
interactions  holding the αC-helix  in the inactive position. Targeted mutations of   these high 
centrality sites could disrupt   allosteric coupling between functional regions, leading to the 
weakening and fragmentation of the residue interaction network.  A strong network 
dependency on high centrality residues may explain a broad spectrum of Lapatinib-resistant 
mutations that are located away from the inhibitor, near the αC-helix and in the A-loop. 
Hence,  residue centrality may be used as a metric for assessing severity of drug resistance 
mutations and differentiating between highly resistant and moderately resistant positions.   

 

Figure 3.   Structure-based network modeling of EGFR cancer mutations and drug binding. (A)  Free 
energy changes caused by oncogenic mutations in different conformational states of EGFR. (B) 
Computational alanine scanning of binding site residues in the Lapatinib-EGFR complex (pdb id 
1XKK). (C) The residue centrality profile of Lapatinib-EGFR complex (in blue). EGFR mutations are 
shown in green diamonds and Lapatinib-resistant oncogenic mutations are shown in red diamonds. 
(D) Structural mapping of EGFR cancer mutations (blue spheres) on the crystal structure of 
Lapatinib-EGFR complex (green ribbons).  Mapping of Lapatinib-resistant mutations (indicated by 
arrows) on the crystal structure of Lapatinib-EGFR complex colored according to structural stability. 
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Table 1: Structure-based network  analysis of the EGFR kinase domain and Lapatinib-EGFR complex.  
Structural region  and network centrality of  functional  EGFR residues  targeted by  cancer mutations 
and  drug resistant mutations are reported.   
 

Residue Residue# Betweenness Mutation Exon Kinase/segment/spine 
Leu 718 0.03230 L718P Exon 18 β1 strand 
Gly 719 0.05586 G719A/C/R/S Exon 19 Gly-rich P-loop 
Leu 747 0.10818 L747S/P Exon 19 β3-αC loop 
Val 765 0.07211 V765M Exon 20 αC-helix 
Val 769 0.10593 V769L Exon 20 

 
αC-helix 

His 773 0.08204 H773L Exon 20 αC-β4 loop 
Cys          775             0.06188 C775F/R/Y Exon 20 αC-β4 loop 
Arg 776 0.09576 R776S/C/H/P/L Exon 20 αC-β4 loop 
Leu 777 0.07761 L777Q/P/M Exon 20 αC-β4 loop(R-spine) 
Cys 781 0.03448 C781F Exon 20 β4 strand 
Leu 788 0.06048 L788V/I/F Exon 20 β5 strand 
Thr 790 0.12979 T790M/A Exon 20 β5 strand 

 Gly 810 0.01939 G810S/D/A Exon 20 αD-αE loop 
Asn 816 0.03781 N816K Exon 20 αE-helix 
Val 845 0.06473 V845M/A/L Exon 21 β7strand (C-spine) 

 Thr 847 0.05199 T847I/A/K Exon 21 β7strand 
Thr 854 0.07392 T854A/I/A Exon 21 β7strand 

 Leu 858 0.10864 L858R/Q/K/V/M Exon 21 Short helix/A-loop 
Lys 860 0.05991 K860T/E/I Exon21 Short helix/A-loop 
Leu 861 0.07540 L861Q/R/E/F/K/P Exon 21 Short helix/A-loop 
His 870 0.01914 H870R/N/Y Exon 21 A-loop 
Arg 889 0.06413 R889S Exon 22 A-loop 
Ile 965 0.04496 I965S/N Exon 23 αI-helix 

 
Our study suggests that binding of selective and personalized kinase agents can be linked 

with the robustness of the residue networks in kinase structures.  We have found that 
selective EGFR inhibitors  with preferential binding  to  specific inactive conformations, such 
as Lapatinib,  could be vulnerable to  a broad spectrum of resistant mutations    pointing to a 
“dark side” of  targeted agents that reflects the inherent conflict between the efficiency and 
robustness of  kinase drugs. The association of   network properties with    kinase regulation 
and drug binding suggests that residue interaction networks   may be reorganized and 
specifically tailored   through therapeutic  agents targeting high centrality residue nodes. 
Integration of genetic, biochemical and structural data in the unified framework of protein 
structure networks and systems biology may help to understand and rationally exploit  the 
complex relationships between robustness of targeted genes and binding specificity of 
personalized drugs.  
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