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The use of posterior probabilities to summarize genotype uncertainty is pervasive across genotype, 
sequencing and imputation platforms. Prior work in many contexts has shown the utility of incorporating 
genotype uncertainty (posterior probabilities) in downstream statistical tests. Typical approaches to 
incorporating genotype uncertainty when testing Hardy-Weinberg equilibrium tend to lack calibration in the 
type I error rate, especially as genotype uncertainty increases. We propose a new approach in the spirit of 
genomic control that properly calibrates the type I error rate, while yielding improved power to detect 
deviations from Hardy-Weinberg Equilibrium. We demonstrate the improved performance of our method on 
both simulated and real genotypes. 
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1.  Introduction 

With recent advances in high-throughput gene sequencing technologies, it is now possible to 

obtain measurements on millions of single nucleotide variants (SNVs) throughout the human 

genome.  Large scale genetic data sets, whether from microarray, sequencing or imputation, 

contain genotype uncertainty which, if unaccounted for in downstream analyses, can significantly 

decrease power to detect disease-variant associations [1,2] if the uncertainty is not associated with 

the phenotype, or affect the corresponding type I error rate [3,4] if the uncertainty is associated 

with the phenotype. To minimize the impact of genotype uncertainty, a standard pre-processing 

step in most studies is to remove markers that are not in Hardy-Weinberg Equilibrium (HWE), 

since genotyping errors due to factors like DNA contamination and allelic dropout can cause 

deviation from HWE [5,6]. 

The standard approach to testing HWE uses a 𝜒𝐺𝑂𝐹
2  test whereby observed genotype 

frequencies at a variant site are used to obtain maximum likelihood estimates (MLEs) of the minor 

allele frequency (MAF; f) at the site. A one degree of freedom 𝜒𝐺𝑂𝐹
2  statistic is then computed to 

test the null hypothesis that the observed genotype frequencies follow HWE, namely 

(1 − 𝑓)2, 2𝑓(1 − 𝑓) and 𝑓2 for the major homozygote, heterozygote and minor homozygote, 

respectively. While this version of the test is the most straightforward and widely used, alternatives 

exist including methods for testing HWE in datasets with excess correlation between subject 

genotypes [7,8], missing genotypes [9] and those that account for covariates [10].  

Recently, another alternative HWE testing approach was proposed, 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  [6], which extends 

the standard 𝜒𝐺𝑂𝐹
2  approach to allow for the incorporation of genotype uncertainty. The method 

has widespread application since for all common genotyping technologies (SNP microarray 

technology [11], imputation [12] and next-generation sequencing technology [13,14]), 

probabilistic genotypes are obtained as part of the standard genotype calling pipeline. Such 

probabilistic genotypes typically take the form of a vector of three posterior probabilities for each 

individual at each variant site, representing the posterior probability that the individual is actually 

each of the three possible genotypes. While standard analysis techniques typically “call” genotypes 

by summarizing the posterior probability by a single discrete genotype (e.g., mode posterior 

probability), researchers are increasingly using alternative approaches. For example, researchers 

may use of the entire vector of posterior probabilities or they may use the expected genotype 

(dosage) [15]. The simulation results of Zheng et al. [15], which were recently made rigorous [16], 

demonstrate substantial power loss from the use of the modal genotype in many realistic situations 

and approximately equivalent power from use of the dosage or the entire vector of posterior 

probabilities in case-control tests of genetic association. These results underscore the importance 

of considering HWE testing methods, which incorporate genotype uncertainty via the underlying 

posterior probabilities. 

The traditional 𝜒𝐺𝑂𝐹
2  makes the key assumption that genotype counts are non-negative 

integers at each variant site, an assumption that is violated with the inclusion of probabilistic calls. 

A recently proposed alternative approach, 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 , allows for the incorporation of probabilistic 

genotypes. However, 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  has been shown to be overly conservative (empirical type I error 
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rate less than nominal) as uncertainty at the variant site increases [6]. In this manuscript, we explore 

reasons for the conservative nature of 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  and propose an alternative approach to HWE 

testing which incorporates genotype uncertainty while maintaining the type I error rate at nominal 

levels. We then evaluate the type I error and power of the new approach across a variety of realistic 

HWE and non-HWE settings to identify powerful and robust HWE tests for probabilistic 

genotypes. Finally, we implement the new method on a real data set illustrating its improved ability 

to maintain the type I error rate, while improving power to detect variants not in HWE. 

2.  Methods 

2.1. Notation 

To facilitate the presentation and evaluation of existing and novel approaches to testing for HWE 

while incorporating genotype uncertainty, we start by defining some basic notation we will use 

throughout the manuscript. Genotypes for a given individual 𝑖 can be represented as a vector of 

three posterior probabilities, 𝛼𝑖 ≜ (𝛼𝑖0, 𝛼𝑖1, 𝛼𝑖2), where 𝛼𝑖𝑘 is the posterior probability that 

individual 𝑖 has 𝑘 minor alleles, 𝑘 = 0,1,2 at a variant site of interest. The vector of posterior 

probabilities, 𝛼𝑖, suggests that the true minor allele count for individual 𝑖, denoted 𝑥𝑖 ∈ 0,1,2 , can 

be modeled as being a single random draw from a multinomial distribution with probabilities 

indicated by 𝛼𝑖. We assume that 𝛼𝑖 is available for each individual.  

2.2. Existing approaches to incorporating genotype uncertainty 

The most straightforward and widely used approach to manage genotype uncertainty is to 

summarize the vector of posterior probabilities 𝛼𝑖 with the modal genotype, namely, 𝑚𝑖 ≜
arg max

𝑘
(𝛼𝑖) in place of the individuals true genotype. When the modal genotype is used as the 

true genotype, a standard 𝜒2 goodness of fit test can be used to test for HWE (𝜒𝑀𝑜𝑑𝑒
2 ). However, 

when using such a method we expect an increase in the type I error rate and/or decrease in power 

due to the introduction of genotype errors caused by ignoring the genotype uncertainty represented 

in the posterior probabilities vector [2,6]. For example, if 𝛼𝑖0 = 0.95 (the mode), we “call” the 

individual as having no rare alleles and, thus, there is a 5% chance we are incorrect. 

A recently proposed test for HWE, 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 , utilizes the entire vector of posterior 

probabilities [6]. This method starts by computing three, non-discrete, genotype counts based on 

𝛼𝑖: 𝐴0
∗ = ∑ 𝛼𝑖0

𝑁
𝑖=1 , 𝐴1

∗ = ∑ 𝛼𝑖1
𝑁
𝑖=1 , and 𝐴2

∗ = ∑ 𝛼𝑖2
𝑁
𝑖=1 , where N is the total sample size and we use 

𝐴∗  to represent genotype counts computed by summing the posterior probabilities across the 

sample. This approach applies a standard 𝜒2 goodness of fit test as follows 

 

 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 = 𝜒𝐺𝑂𝐹

2 (𝐴∗) = 𝑁 [
|
𝐴0

∗

𝑁
−(1−�̂�)2|−𝑐/𝑁

(1−�̂�)2 +
|
𝐴1

∗

𝑁
−2(1−�̂�)�̂�|−𝑐/𝑁

2(1−�̂�)�̂�
+

|
𝐴2

∗

𝑁
−(�̂�)2|−𝑐/𝑁

(�̂�)2 ] (1) 

 

where c is a continuity correction, e.g. 0.5 [17], and where the maximum likelihood estimate 

(MLE) of the minor allele frequency (MAF), 𝑓, at the site is estimated as 
𝐴1

∗  +𝟐𝐴2
∗  

𝟐𝑵
. The test uses as 

its null hypothesis that the variant site is in HWE, and as the alternative hypothesis that the variant 
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site is not in HWE. This approach uses a central 𝜒2  distribution with a single degree of freedom 

as the null distribution for 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 .  

2.3. Direct likelihood approach 

As shown via simulation in prior work [6], and confirmed in our simulations (see Results), the 

𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  test has an overly conservative type I error rate, which becomes more pronounced as 

genotype uncertainty increases. We now argue that the reason for this overly conservative type I 

error rate is due to a change in the covariance structure of the genotypes when using probabilistic 

genotypes (𝛼𝑖). In particular, the 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  test assumes that each individual genotype occurs 

according to a multinomial distribution.  However, this is no longer the case when observed 

genotype counts are obtained by summing over the posterior probability vectors [18].  Thus, the 

covariance structure assumed by the 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  test is not true in practice when using probabilistic 

genotypes. In situations where the alternative covariance structure due to probabilistic genotypes 

can be explicitly modeled or otherwise controlled for, likelihood based approaches to testing with 

uncertain genotypes are possible [15,18]. However, that is not the case for HWE testing, as we 

explain in the following paragraph. 

In particular, in order to develop a likelihood ratio test you must have an explicit expression 

for the likelihood function of the population genotype frequencies, 𝐺0, 𝐺1, 𝑎𝑛𝑑 𝐺2. Here the 

likelihood function can be written as 𝐿(𝐺0, 𝐺1, 𝐺2; 𝛼1, … , 𝛼𝑁) = 𝑃(𝛼1, … , 𝛼𝑁|𝐺0, 𝐺1, 𝐺2) =
𝑃(𝛼1, … , 𝛼𝑁|𝑔1, … , 𝑔𝑁 , 𝐺0, 𝐺1, 𝐺2)𝑃(𝑔1, … , 𝑔𝑁|𝐺0, 𝐺1, 𝐺2), where 𝑔𝑖 indicates the true genotype 

of individual i. Thus, you must have knowledge of the true uncertainty mechanism, 

𝑃(𝛼1, … , 𝛼𝑁|𝑔1, … , 𝑔𝑁 , 𝐺0, 𝐺1, 𝐺2) in order to develop a likelihood ratio test based on the posterior 

probabilities alone. Because explicit knowledge of the true uncertainty mechanism is unlikely, a 

likelihood approach to HWE testing using 𝛼1, … , 𝛼𝑁 will not be possible without making 

unwarranted assumptions.  

2.4. Alternative approach 

Because of the overly conservative nature of existing approaches and the limitations we describe 

above when deriving an explicit likelihood approach, we present an alternative strategy: a post-

hoc empirical correction in the spirit of genomic-control. Genomic control [19] is a widely-utilized 

post-hoc correction factor in genome-wide association studies. When systematic inflation of SNP-

association statistics occurs in the data, which can occur due to population stratification or 

differential genotyping errors, dividing the distribution of observed chi-squared statistics by the 

median observed chi-squared statistic properly controls the empirical type I error rate. Essentially, 

this approach assumes that when testing thousands of variant sites for association with the 

phenotype, the vast majority of sites will not be associated with the phenotype. Thus, the observed 

distribution of test statistics, aside from the extreme upper-tail, can, in essence, be used as its own 

null distribution.  

 To extend the notion of genomic control to HWE testing, we argue that in most real testing 

situations, the majority of variant sites in a sample of many thousands of variants will be in HWE. 

Thus, we propose computing 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑗
2  from 𝐴∗ as shown above for all variants of interest,  
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j=1,…,m, where m is large. Then the measure of inflation/deflation in the null distribution of test 

statistics is computed as  �̂� =
𝑚𝑒𝑑𝑖𝑎𝑛(𝜒𝐺𝑂𝐹,1

2 ,𝜒𝐺𝑂𝐹,2
2 ,…,𝜒𝐺𝑂𝐹,𝑚

2 )

𝑚𝑒𝑑𝑖𝑎𝑛(𝜒1
2)

, where 𝑚𝑒𝑑𝑖𝑎𝑛(𝜒1
2) = 0.455 [19]. The 

genomic control-like test statistic for HWE is then computed as 𝜒𝐺𝐶,𝑗
2 =

𝜒𝐺𝑂𝐹,𝑗
2

�̂�
 for all j=1,…,m. We 

consider four different versions of 𝜒𝐺𝐶
2 : 𝜒𝐺𝐶,𝑜𝑣𝑒𝑟𝑎𝑙𝑙

2 , 𝜒𝐺𝐶,𝑀𝐴𝐹
2 , 𝜒𝐺𝐶,𝑟2

2  and 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 , where �̂� is 

computed on different subsets of the data. Overall indicates that �̂�  is computed across all m SNPs 

in the set. MAF indicates that �̂�  is computed separately by MAF group (0.05-0.10, 0.1-0.2, 0.2-

0.3, 0.3-0.4, 0.4-0.5). 𝑟2 indicates that �̂�  is computed separately by 𝑟2 group (0-0.5, 0.5-0.75, 

0.75-0.85, 0.85-0.95 and 0.95-1), where 𝑟2 is a measure of genotype uncertainty- see next section 

for details. And, 𝑀𝐴𝐹, 𝑟2 computes �̂� in groups defined by both MAF and 𝑟2 (25 separate groups). 

 

2.5. Simulation  

We simulated genotype data in order to explore the performance of our proposed new approach 

under a wide variety of situations. We simulated approximately 850,000 SNPs where HWE was 

maintained (HWE SNPs). To ensure that the characteristics of this simulation reflected both a 

realistic allele frequency distribution as well as genotype uncertainty, we randomly sampled (f, r2) 

pairs with replacement from a large dataset of genotypes from the FUSION study [20] that were 

imputed using MaCH [12].  For each (f, r2) pair, we then simulated the ‘real’ genotypes of 10,000 

individuals according to the specified allele frequency, f, assuming the population was in Hardy-

Weinberg Equilibrium (HWE) ((1 − 𝑓)2, 2𝑓(1 − 𝑓), 𝑓2). To model genotype uncertainty at the 

appropriate level, r2, we drew from one of the following Dirichlet distributions conditional on the 

true genotype [16]. 

If 𝑔𝑖 = 2 then  𝛼𝑖 = (𝛼𝑖0, 𝛼𝑖1, 𝛼𝑖2) ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎𝑞2, 2𝑎𝑞(1 − 𝑞), 𝑎(1 − 𝑞)2) 

If 𝑔𝑖 = 1 then  𝛼𝑖 = (𝛼𝑖0, 𝛼𝑖1, 𝛼𝑖2) ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎𝑞(1 − 𝑞), 𝑎(1 − 𝑞)2 + 𝑎𝑞2, 𝑎𝑞(1 − 𝑞)) 

If 𝑔𝑖 = 0 then  𝛼𝑖 = (𝛼𝑖0, 𝛼𝑖1, 𝛼𝑖2) ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎(1 − 𝑞)2, 2𝑎𝑞(1 − 𝑞), 𝑎𝑞2) 

for 𝑎 > 0 and 0 < 𝑞 < 1, where a and q are chosen to yield a desired r2 value. This model is 

chosen to simulate symmetric noise in posterior probabilities while maintaining HWE. Further 

details are available in Appendix #1 and elsewhere [16]. In short, parameter q is the “average” 

amount of error. For example, if q=0.05 (5% noise/error level in posterior probabilities), then for 

the major homozygote, 𝑔𝑖 = 2, 𝐸(𝛼𝑖) = (𝛼𝑖0, 𝛼𝑖1, 𝛼𝑖2) = (0.9025, 0.0.95, 0.0025) and, likewise, if 

there is no noise/error (q=0), then 𝛼𝑖 = (0,0,1). Parameter a is the variation in the error from 

person to person. For example, as a increases, then 𝑉𝑎𝑟(𝛼𝑖) also increases, and so for very small 

values of a (e.g., a=0.01), there is virtually no variation in the values of 𝛼𝑖 from person to person. 

 We also simulated three sets, each with approximately 75,000 SNPs, that were not in HWE 

(non-HWE SNPs). To do this we randomly sampled two SNPs (i and j) that were in HWE from 

the set of 850,000 SNPs described above, keeping track of the difference in the allele frequencies 

of the two SNPs, di,j=fi-fj. We then randomly sampled n(1-k) individuals from SNP i and nk 

individuals from SNP j, combining the individuals into a single sample of n individuals. We used 

values of k=0.1, 0.3 and 0.5, and continued to use a total sample size of 10,000. Thus, the resulting 

sample is not in HWE because the observed genotype frequencies were generated from two 

subpopulations with different allele frequencies. 
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 The three resulting sets of 75,000 simulated SNP genotypes were analyzed using (a) a 

standard HWE test on the simulated ‘real’ genotypes (𝜒𝑇𝑟𝑢𝑒
2 ), (b) chi-squared on the modal 

genotype 𝜒𝑀𝑜𝑑𝑒
2 , (c) the approach utilizing posterior probabilities (𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2 ) and (d) four different 

GC-like approaches (𝜒𝐺𝐶
2 ; see previous section for details). For the purposes of the GC-like 

approach we combined random subsets of 25,000 non-HWE SNPs with the 850,000 HWE SNPs 

and applied the adjustment, keeping the total proportion of non-HWE SNPs in the set below 3%.  

Type I error rates were computed on the 850,000 HWE SNPs as the proportion of SNPs 

that were detected to be ‘not in HWE’ at a particular significance level and for a particular 

combination of MAF and r2 levels. Power was computed as the fraction of non-HWE SNPs with 

a p-value less than the significance level in 300 separate groups created by values of k (0.1, 0.2, 

0.5), difference in MAF between the two SNPs being mixed together (0.1, 0.1-0.2, 0.2-0.3 or >0.3), 

observed MAF of the combined variant (0.05-0.10, 0.10-0.20, 0.20-0.30, 0.30-0.40 and 0.40-0.50) 

and observed r2 of the combined variant (0-0.50, 0.50-0.75, 0.75-0.85, 0.85-0.95 and 0.95-1.0). 

We examined significance levels of 0.01, 1x10-3, and 1x10-5. We computed power and type I error 

rates across a variety of subsets of the variants including minor allele frequency, genotype 

uncertainty (r2), and deviation from HWE. 

 

2.6. Real data analysis - FUSION 

As a proof of concept, we ran 𝜒𝑀𝑜𝑑𝑒
2 , 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2  and 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  on 29,361 SNPs imputed with 

MaCH from chromosome 21 of the FUSION study (n=2456) [20]. We also created 2,377 new 

variants based on the 29,361 imputed variants, which were out of Hardy-Weinberg equilibrium. 

These 2,377 new variants were created by first randomly selecting two variants with differences 

in minor allele frequency of between 0.1 and 0.2 and r-squared values between 0.75 and 0.85. A 

new variant is created by randomly selecting 10% of the genotypes from one of the variants and 

90% from the other.  All three Hardy-Weinberg equilibrium tests (𝜒𝑀𝑜𝑑𝑒
2 , 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2  and 

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 ) were also applied to the 2,377 new non-HWE variants as well. We used a significance 

level of 1x10-5 on the 29,361 real and 2,377 new FUSION variants. 

 

3. Results 

3.1. Type I error simulation 

 Table 1 gives the overall type I error rates at 

three different significance levels for each of the 

six methods applied to posterior probabilities on 

SNPs in HWE, along with the significance level  

 when using the true genotypes. As expected, use 

of the true genotypes yields type I error rates at 

the significance level. Overall, 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  yielded 

the most conservative type I error rates, while 𝜒𝑀𝑜𝑑𝑒
2   yielded anti-conservative type I error rates. 

The 𝜒𝐺𝐶
2  corrected approaches tended to yield approximately correct type I error rates, with the 

version which adjusts statistics both within MAF and r2 (𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 ) bins providing the best Type 

I error control. A logistic regression model predicting the type I error rate 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  test across all 

Table 1. Overall type I error rates 

Method Significance level 

0.01 0.001 1x10-5 

𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  0.0067 0.00057 3.5x10-6 

𝜒𝑀𝑜𝑑𝑒
2  0.0134 0.00166 2.6x10-5 

𝜒𝐺𝐶,𝑜𝑣𝑒𝑟𝑎𝑙𝑙
2  0.0112 0.00127 2.2x10-5 

𝜒𝐺𝐶,𝑀𝐴𝐹
2  0.0112 0.00128 2.3x10-5 

𝜒𝐺𝐶,𝑟2
2  0.0104 0.0011 1.3x10-5 

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  0.0101 0.00105 1.2x10-5 

𝜒𝑇𝑟𝑢𝑒
2  0.0099 0.00097 8.1x10-6 
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850,000 SNPs indicates that both MAF and r2, as well as an interaction term between MAF and 

r2, are significant predictors of the type I error rate, which further supports the necessity to use 

both bins for both MAF and r2 when correcting statistics as is done by  𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 .  

 The patterns observed in Table 1 remain true across all MAF and r2 subgroups as shown 

in Supplemental Table 1. In particular we also see that 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  is the most conservative for less 

well imputed SNPs, though even well imputed SNPs are treated anti-conservatively by 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  

(8.5x10-3 for r2>0.95). In contrast, 𝜒𝑀𝑜𝑑𝑒
2   is the most anti-conservative for less well imputed SNPs, 

with some inflation of the type I error rate for moderately well imputed SNPs (e.g., 0.85<r2<0.95). 

𝜒𝑀𝑜𝑑𝑒
2  only controls the type I error rate for extremely well imputed SNPs  

 (r2>0.95). 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  controls the Type I error rate across MAF and r2 strata. While Supplemental 

Table 1 only shows results for a significance level 

of 0.01, patterns remain the same across other more 

stringent significance levels (e.g., 0.001, 1x10-5, 

detailed results not shown). Figure 1 illustrates the 

anti-conservative performance of 𝜒𝑀𝑜𝑑𝑒
2 , the 

conservative performance of 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  and good 

control of the type I error rate by 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  

 

Power simulation 

 To understand the power of the different 

approaches for HWE testing, we considered 300 

combinations of average minor allele frequency 

across SNPs i and j, observed r2, difference in minor 

allele frequency and k (proportion of individuals 

from SNP i; where 1-k is the proportion of 

individuals are from SNP j) across 225,000 SNPs 

which are a mixture of two different allele 

frequencies. One-hundred twenty-two of the settings 

yielded 100% power when using all methods, and 

another 40 combinations yielded no SNPs, and so 

these 162 settings are eliminated from further consideration. Due to the fact that 𝜒𝑀𝑜𝑑𝑒
2  has an 

inflated Type I error rate, we do not consider it in the following comparative analysis of the power 

of the different methods. Across these 162 settings the median number of SNPs per group was 490 

(Min=5; Q1=182; Q3=1708; Max=4353), with only three settings having less than 20 SNPs. 

 Across the 138 remaining combinations of settings,  

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 had higher power than 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2  122 times, by an average of 0.038 (SD=0.039). 

Across the 16 times that𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  yielded higher power than 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2

2 , the average power gain 

was only 0.0029 (SD=0.0024). Table 2 illustrates a subset of 138 simulation settings, illustrating 

that  𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  consistently yields higher power than 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2  for all but the most certain 

SNPs, when performance is comparable. Largest gains in power were for the least certain  

 

Figure 1. Type I error rate for three 
different HWE testing methods across 
different uncertainty levels. Type I 
error rate is shown across different r2 
settings for three different HWE testing 
approaches at the 1% significance level. 
SNPs in the low minor allele frequency 
range are depicted (MAF between 0.05 
and 0.1) 
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Table 2. Power1 by MAF and r2 

MAF r2 

Number of 

variants 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2

2  𝜒𝑇𝑟𝑢𝑒
2  

0.05-0.1 

0-0.50 

122 0.91 0.98 1 

0.5-0.75 

265 0.82 0.94 0.98 

0.75-0.85 

166 0.79 0.84 0.98 

0.85-0.95 

480 0.86 0.87 0.99 

0.95-1.0 

695 0.85 0.85 0.99 

0.1-0.2 

0-0.50 

123 0.67 0.84 0.86 

0.5-0.75 

382 0.65 0.78 0.85 

0.75-0.85 

441 0.66 0.76 0.82 

0.85-0.95 

1411 0.62 0.65 0.82 

0.95-1.0 

2561 0.62 0.61 0.81 

0.2-0.3 

0-0.50 

152 0.53 0.66 0.7 

0.5-0.75 

365 0.52 0.58 0.7 

0.75-0.85 

489 0.56 0.67 0.74 

0.85-0.95 

2029 0.53 0.57 0.72 

0.95-1.0 

4217 0.52 0.51 0.7 

0.3-0.4 

0-0.50 

81 0.43 0.51 0.57 

0.5-0.75 

209 0.39 0.46 0.52 

0.75-0.85 

277 0.4 0.52 0.58 

0.85-0.95 

1324 0.36 0.41 0.54 

0.95-1.0 

3321 0.38 0.38 0.53 

MAF>0.4 

0-0.50 

25 0.32 0.32 0.44 

0.5-0.75 

87 0.29 0.36 0.55 

0.75-0.85 

160 0.33 0.43 0.48 

0.85-0.95 

629 0.37 0.41 0.51 

0.95-1.0 

1649 0.38 0.38 0.52 

1. At the 1% significance level and when the observed SNP is a mix of two subgroups of individuals with a difference of 

between 0.10 and 0.20 in minor allele frequency between the two subgroups, and 10% of the individual are from one 

subgroup and 90% from the other (k=0.1). 
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SNPs, with overall higher power for all 

methods with lower MAF. Figure 2 

illustrates this relative gain in power. 

Supplementary Table 1 gives the full 

power results for all 300 settings. 

 

Real data example  

When applying the three HWE testing 

methods to the 29,361 imputed 

FUSION SNPs, 237 variants were 

determined to be out of HWE by 𝜒𝑀𝑜𝑑𝑒
2 , 

none by 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  and two by 

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  at a significance level of 1x10-

5. While true HWE status for these 

variants is unknown, these results suggest 

an inflated type I error rate for the 𝜒𝑀𝑜𝑑𝑒
2  

test. When we applied the 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  and 

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  tests to the 2,377 non-HWE 

variants, the power was always higher for 

the 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  test (see Table 3). 

 

4. Discussion 

We have proposed a new way to 

incorporate posterior probabilities in tests 

of HWE that provides a well-calibrated and 

more powerful way to incorporate 

genotype uncertainty. While it is common 

to use the modal posterior genotype, this 

approach inflates the type I error rate by failing to incorporate genotype uncertainty---treating 

uncertain genotypes as if they are error-free. Furthermore, another recent approach which 

explicitly incorporates posterior probabilities yields an overly conservative test (deflated type I 

error rate), due to an overestimation of the covariance of the posterior probability genotypes. Our 

approach applies a post-hoc correction to adjust the test statistic, yielding a calibrated type I error 

rate and improved power.  

The proposed approach is approximately the same as other approaches when genotype 

uncertainty is low, but shows increasing benefit as genotype uncertainty increases. This result is 

in line with the fact that the genotype covariance estimates are increasingly biased when using 

𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  as genotype uncertainty increases. While it is common practice to simply drop markers 

with very high genotype uncertainty from analyses we’ve demonstrated that this may not be 

Figure 2 Power for two different approaches to HWE 
testing across different uncertainty levels 
Power is illustrated across different r2 settings for two 
different HWE testing approaches at the 1% significance 
level, with a horizontal line at the power of a test using the 
real genotypes. Power for SNPs with MAF between 0.1 and 
0.2 are depicted, when the observed SNP is a mix of two 
subgroups of individuals where the difference in MAF 
between the two subgroups is between 0.1 and 0.2, and 
the 10% of the individuals are from one subgroup and 
90% from the other. 

Table 3. Power to detect pseudo variants 

not in Hardy-Weinberg Equilibrium from 

the FUSION study 

Observed 

MAF 

Number of 

variants 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2

2  

0.05-0.10 375 5.3% 8.0% 

0.10-0.20 731 28.6% 29.7% 

0.20-0.3 412 28.9% 30.8% 

0.3-0.4 385 26.8% 32.2% 

0.4-0.5 374 2.9% 5.9% 

Overall 2277 20.3% 22.8% 
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necessary when using our approach. Furthermore, even if practitioners wish to drop markers with 

high genotype uncertainty (e.g., r2<0.5), we’ve demonstrated that our approach to HWE testing 

still outperforms other HWE testing procedures for markers with modest genotype uncertainty 

(0.5<r2<0.95). Importantly, recent work has shown that simply screening for HWE using r2 is not 

sufficient, and that HWE testing is still necessary [21]. 

While the proposed approach performs well relative to the existing approaches by applying 

a post-hoc correction, a more explicit approach may also be possible. Preliminary exploration of 

such methods by our group has taken two separate paths to date. First, we considered multiple 

imputation by creating many, equally likely, versions of each individual’s genotype according to 

the vector of calibrated posterior genotype probabilities and then computing the standard chi-

squared GOF test on each multiply-imputed dataset. Methods for computing significance from a 

set of multiply-imputed datasets are standard [22–24], but may not be well-calibrated [25]. A lack 

of calibration was our experience for this application (detailed results not shown). A second 

approach is a Bayesian approach using the posterior probabilities for each individual’s genotype 

explicitly. Evaluation of this method across a wide-range of simulation settings showed 

performance comparable to the 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2  method and, thus, not as good as 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2

2  in many 

cases (detailed results not shown). 

 We now make some important notes and comments on limitations of the 

𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2 approach. While not considered here, the authors of the 𝜒𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2  approach also 

considered an exact test for small sample sizes. Future work is needed to evaluate the performance 

of the post-hoc correction strategy for small sample size situations (e.g., rare variants), though, in 

principle, there is no reason to believe that an approach in this same spirit is likely to perform well. 

A key assumption of 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  is that a relative small proportion of all markers overall will not 

be in HWE. In rare cases where a very large proportion of markers are out of HWE, the 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  

approach may, in fact, be overly conservative by applying a correction factor based on markers 

not in HWE. However, these cases should be rare as a substantial portion of the markers in the 

correction set would need to be out of HWE in order to impact the median observed statistic and, 

hence, the lambda, in a practically significant way. However, since 𝜒𝐺𝐶,𝑀𝐴𝐹,𝑟2
2  computes a separate 

adjustment for many different MAF, r2 ‘bins,’ an aggregation of markers not in HWE in any bin 

could impact results. Finally, the size and quantity of MAF, r2 bins selected in this study showed 

good performance, but may need adjustment in practice based on the MAF distribution, r2 (or other 

uncertainty metric) distribution and number of variants. Care should be taken to ensure all bins 

have sufficient markers (generally recommended to be at least 100, but less may be fine) and 

examination of �̂� values within each bin is recommended. Future work may wish to explore the 

potential for a robust, continuous correction strategy. 

Supplemental Files 

All supplemental and appendix files are available online at the following URL: 

http://homepages.dordt.edu/ntintle/hwe.zip  
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