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With continued rapid growth in the number and quality of fully sequenced and accurately 
annotated bacterial genomes, we have unprecedented opportunities to understand 
metabolic diversity. We selected 101 diverse and representative completely sequenced 
bacteria and implemented a manual curation effort to identify 846 unique metabolic 
variants present in these bacteria. The presence or absence of these variants act as a 
metabolic signature for each of the bacteria, which can then be used to understand 
similarities and differences between and across bacterial groups. We propose a novel and 
robust method of summarizing metabolic diversity using metabolic signatures and use this 
method to generate a metabolic tree, clustering metabolically similar organisms. Resulting 
analysis of the metabolic tree confirms strong associations with well-established biological 
results along with direct insight into particular metabolic variants which are most predictive 
of metabolic diversity. The positive results of this manual curation effort and novel method 
development suggest that future work is needed to further expand the set of bacteria to 
which this approach is applied and use the resulting tree to test broad questions about 
metabolic diversity and complexity across the bacterial tree of life. 
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1.  Introduction 

The metabolism of an organism relies on thousands of biochemical reactions, which comprise a 
network that allows the cell to grow, reproduce, and respond to changing environmental 
conditions. The set of metabolic reactions are defined by the genes the organism carries and dictate 
the metabolic properties of the organism. Developing an understanding of the metabolic reactions 
possible by an organism begins to coalesce into a coherent picture of the metabolic capability of 
the cell. With thousands of annotated genome sequences of microbial organisms available, it is 
now possible to analyze not only the metabolic properties of individual organisms, but also the 
patterns that are seen in metabolic networks across organisms. This includes analyses of the 
evolution of specific metabolic pathways [e.g., 1,2], analyses based on network topology and 
properties [e.g., 3–6], analyses of simulated metabolic networks [e.g., 7,8], and combinations of 
flux balance analysis based modeling of metabolic networks within the context of phylogenies  [9–
11]. Such analyses can lead to a deeper understanding of the metabolic landscape represented by 
microbial diversity. Further, sequence-based taxonomic surveys and metagenomic analyses of 
diverse environments are beginning to allow the systematic exploration of relationships between 
microbial diversity, functional diversity and environment [12–16]. 

Accurate annotation of sequenced genomes is foundational to downstream analyses of 
genomes and metagenome communities. We have reviewed [17] the rapid and accurate subsystem 
approach to genome annotation implemented in the SEED [18] and RAST [19] frameworks. 
Achieving highly accurate automated annotations of genomes in RAST is predicated upon a core 
set of manually curated subsystems in which an expert has catalogued the functional elements of 
a biological process (e.g., a metabolic pathway) and assigned genes to those functional elements 
for a large set of sequenced microbes. This ensures high quality annotation of each subsystem and 
the propagation of knowledge captured in the subsystem to all existing and newly sequenced 
genomes. One outcome of the subsystems approach is the declaration and discovery of metabolic 
variants, which are defined as different forms or combinations of forms of a functioning metabolic 
process [17,20,21]. By identifying patterns of genes comprising a variant, one can quickly assign 
an organism to a particular variant based on the pattern of genes found during the annotation 
process. Thus, an organism is assigned a variant code for each subsystem, which yields an 
abstraction of the metabolic capabilities and the forms of those metabolic functions. Further, a 
catalogue of functional variants that exist for a particular subsystem captures the diversity with 
which that biological process is performed among sequenced microbes. Such a catalogue 
represents a rich data set through which we can gain insight into the complexity and diversity of 
microbial metabolism. 

To enable these types of inquiries and to provide consistent descriptions of metabolic variants 
among sequenced microbes, we selected a representative set of 101 microbial genomes that were 
used to manually define and annotate metabolic variants in 139 distinct subsystems covering much 
of known metabolism. We used this resource to (i.) generate a metabolic signature for each of the 
101 organisms comprised of assigned variants for each of the 139 subsystems and (ii.) conduct 
comparative analyses of metabolic signatures of this diverse set of microbes. These variants and 
their definitions yield a set of high-confidence metabolic subsystems that have been used to aid 
the automated generation of genome-scale metabolic reconstructions [22], provide a framework 
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for automated recognition and propagation of variants to newly sequenced genomes, and allow for 
comparative studies of metabolic variation observed in sequenced microbes.  

2. Results 

2.1		Defining	Metabolic	Variants	for	Sequenced	Bacteria		

A metabolic variant can be described as a particular version of a metabolic process performed by 
an organism [21]. We will use the synthesis of isoprenoids (terpenoids) to illustrate the concept of 
metabolic variants and how particular variants are assigned to an organism. Isoprenoids (e.g., 
chlorophyll and cholesterol) are found in all organisms and are essential to survival. Key 
isoprenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are 
produced via two known biosynthetic pathways, the so-called mevalonate and non-mevalonate 
(DOXP) pathways [1]. The reactions in each pathway are catalyzed by non-homologous proteins, 
and represent two distinct routes to IPP and DMAPP for organisms. In considering the simplest 
case of defining metabolic variants for this metabolic process, each of these routes represent 
separate variants – alternative ways to accomplish the same function of producing precursors to 
isoprenoids. A third variant exists in the case of an organism containing the necessary genes for 
both of these pathways. A fourth variant indicates absence of this function through known 
metabolic pathways in an organism. For each variant (defined in this case as A, B, C and -1, 
respectively), the possible patterns of metabolic steps involved in each variant is generated, and a 
brief verbal description of the variant is given. Assignment of any one organism to a known variant 
of the pathway is accomplished by identifying genes in the organism’s genome that encode 
functions corresponding to the area of metabolism and matching the pattern of metabolic steps the 
organism is predicted to be capable of to one of the defined variants (see Supplemental Figure 1 
for additional details). 

We have implemented the approach of identifying variants, defining variants, and assigning 
variants to organisms in the framework of SEED subsystems [18]. This represents a significant, 
multi-year manual curation effort on the part of SEED annotators through the capture of known 
metabolic diversity described in the literature and the analysis of patterns seen in sequenced 
microbial genomes. We chose a set of 101 bacterial genomes, representing 14 bacterial divisions, 
and 139 subsystems in the SEED that maximized our coverage of metabolism represented in major 
metabolic databases (e.g., KEGG) and that facilitated the automated generation of metabolic 
models for bacteria [22]. We characterized a total of 846 metabolic variants in these subsystems 
that our set of organisms are capable of based on known information of each subsystem and the 
annotated function of genes in each genome. The outcome of this curation effort is a metabolic 
variant catalogue comprising descriptions of naturally occurring variations of central and 
intermediate metabolism for a phylogenetically diverse group of bacteria. Supplemental Figure 2 
and Supplemental Files 1-4 give detailed information on the organisms and variants selected and 
defined. 
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2.2  Analyses of Bacterial Metabolic Signatures 

In order to gain a more thorough understanding of metabolic diversity and how metabolic functions 
are distributed throughout Bacteria, we devised a measure of the metabolic distance, DFM, between 
two organisms based on the curated metabolic variant catalogue. For a given organism i, it is 
possible to summarize the metabolic capabilities as a binary vector, vi, of 846 0’s and 1’s, 
representing the absence and presence, respectively, of each of the 846 metabolic variants. In 
effect, v is a metabolic signature (or barcode) describing the metabolic capabilities of an organism. 
DFM measures the metabolic distance between two given organisms i and j by comparing the 
similarity of vi and vj to the likelihood of observing the similarity between the two vectors by 
chance. We utilized complete linkage hierarchical clustering of all pairwise DFM of organisms in 
our dataset to produce a dendrogram summarizing the relationships of the organisms based on 
metabolic distances (Figure 1). We used a false discovery rate (FDR) of 1 x 10-15 to identify 5 
distinct clusters of organisms (Clusters A through E in Figure 1). Each cluster represents a group 
of organisms with highly similar metabolic signatures. To assess the face validity of the resulting 
metabolic signature tree, we sought to confirm that the ordering seen in the tree met reasonable 
biological expectations. For instance, one would expect that closely related organism pairs are 
likely to be closely paired on the dendrogram – E. coli and Salmonella are nearest neighbors in the 
tree as are two representatives of the genus Shewanella. Furthermore, the four oxygenic 
photosynthetic organisms in the set form a tight cluster (FDR <1 x 10-60, Supplemental Figure 3a, 
organism names colored green). These observations, and many others not detailed here (for 
example, Supplemental Figures 3b and 3c), indicate that the metabolic distance metric reveals 
biologically meaningful patterns and gave us confidence that we could use the tree to address 
additional biological questions of interest. 

2.3  Contribution of Organism Characteristics to Bacterial Metabolic Signatures 

To provide a quantitative estimate of the ability of organism characteristics to explain the 
clustering observed in the metabolic signature tree, we produced a data set capturing 19 
characteristics for each of the 101 organisms, covering attributes such as phylogenetic grouping, 
environment classification, and oxygen utilization (Supplemental File 1). We performed a multiple 
regression analysis, using the 19 phenotypic characteristics to predict metabolic distance. The 
variables in our data set were able to explain 50% of the variance of metabolic distance (r2 = 0.50). 
The top four characteristics contributing to the clustering are genome size, metabolic mode, host 
association, and ability to survive in an intracellular environment, uniquely explaining 19.7%, 
9.6%, 7.5% and 7.2% of the overall variation in metabolic distance, respectively. All other 
characteristics contribute to ~5% or less of the overall r2. Phylogenetic distance ranked 11th of the 
19 characteristics, indicating that only a small fraction of the metabolic distance variance could be 
attributed to phylogeny. A phylogenetic tree of the organisms in this study annotated with 
metabolic signature cluster membership shows the clear mixing of related organisms throughout 
the 5 clusters (Supplemental Figure 2). A follow-up analysis which removed 14 organisms with 
small genomes (Cluster B), showed that there is a slight decrease in the ability to explain the overall 
variation in metabolic distance (r2 = 0.48) with the 19 phenotypes combined, and less predictive  
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Figure 1. Metabolic Signature Tree from complete linkage hierarchical clustering of DFM of organisms. 
Five clusters corresponding to an FDR of 1 x 10-15 are highlighted by shading – Clusters A-E; pink, blue, 
green, orange and yellow, respectively. Subclusters C1 and C2 are indicated by black bars. Organism 
names are colored according to phylogenetic classification: Actionomycetes, Tan; Firmicutes, Gray; 
Cyanobacteria, Green; Bacteroides/Chloribi, Blue; Other, Black; Proteobacteria: Alpha, Red; Beta, Purple; 
Delta, Orange; Epsilon, Brown; Gamma, Pink. 
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ability of genome size (from 19.7% to 6.7%). Full results are provided in Supplemental Figures 4a 
and 4b.  

2.4  Specific Phenotypes Associated with Individual Clusters 

In addition to characterizing the influence of phenotype on the global topology of the metabolic 
tree, it is possible to associate specific phenotypic characteristics with individual clusters of 
organisms in the metabolic tree. We assessed the distribution of each phenotypic characteristic 
within a cluster and compared this to the distribution of that phenotypic character in the other 
clusters to yield a statistical measure of the differential distribution of any one phenotypic trait 
among clusters (see Methods). Each of the clusters is characterized by a particular set of 
phenotypes as summarized in Table 1 that are over or underrepresented at a conservative measure 
of statistical confidence (p < 0.0006). As expected, the phenotypic characters with the lowest p-
values for each cluster correspond to initial observations seen with the overlay of phenotypic 
characters on the metabolic tree, while providing more specificity to the observations and 
highlighting characters that may not be otherwise apparent. Cluster A consists completely of Gram 
negative organisms that also tend to have large genomes (5.2 Mb vs 3.1 Mb average for entire 
dataset). All organisms are phylogenetically related, being members of the α, β, and γ 
Proteobacteria. However, these taxonomic groups are not identified as statistically significant due 
to the broad distribution of other members of these taxonomic groups throughout the clusters (i.e, 
B and E). This result is consistent with the diverse habitats and lifestyles associated with 
Proteobacteria. Cluster B contains organisms that tend to have small genome sizes, are classified 
as intracellular and obligate host associated, and have a low GC%. Obligate intracellular parasites 
tend to have smaller genomes as they require fewer genes due to obtaining resources from the host 
cell and smaller genomes tend to have lower GC content to facilitate evolution through an 
increased mutation rate. Cluster C consists of organisms that tend to be in the phylum Firmicutes, 
families Bacillales or Lactobacillales, are Gram positive, and are anaerobic. Cluster D contains an 
over-representation of Actinomycetes, Gram positive bacteria, and sporulating bacteria. Cluster E 
contains many phylogenetically unrelated organisms, a majority of organisms that have preferred 
metabolic modes other than chemoheterotrophy, and also contains a disproportionate number of 
Gram negative bacteria. 

2.5  Metabolic Variants Associated with Specific Clusters 

As a complementary approach to exploring organism characteristics associated with specific 
clusters, it is also possible to explore whether particular metabolic variants are over- or under-
represented in the specific metabolic clusters. As an example, we observed that Cluster C could be 
divided into two subgroups, C1 and C2. The organisms in Cluster C1 are low-GC Gram positive 
organisms in the phylum Firmicutes with the exception of Fusobacterium; the subcluster can be 
further divided by the oxygen requirement characteristic – the organisms in class Clostridia and 
Fusobacterium are all obligate anaerobes, whereas the organisms in class Bacilli are facultative 
(Figure 1, Supplemental File 1). We hypothesized that there should be specific metabolic variants 
(likely related to respiratory systems) that would distinguish these two groups. To investigate this 
and similar hypotheses, we used an approach that compared the frequencies of metabolic variants 
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in two groups of organisms (e.g., subgroups of Cluster C1) to highlight those variants that were 
the most different between the groups (see Methods for details). In the case of Cluster C1, there 
 

Table 1. Over- and under-representation of characteristics by cluster 

are 12 metabolic variants that are unequally distributed between anaerobic and facultative 
organisms (p-value ≤ 0.05) within the cluster (Supplemental File 5). These 12 variants represent 7 
unique subsystems associated with the synthesis of cofactors, vitamins, and isoprenoids. Three of 
these subsystems are associated with respiratory functions (heme and siroheme biosynthesis, sulfur 
related anaerobic respiratory reductases, and sodium translocating oxidoreductases). There is 
differential distribution between the anaerobic (4 of 5) and facultative (0 of 6) cluster members for 
the presence of sulfur reductases. Likewise, 4 of 5 anaerobic cluster members have an operon of 
rnf like genes encoding putative electron transport complexes associated with nitrogen fixation, 

Cluster Characteristic* 
Present Inside 
Cluster 

Present 
Outside 
Cluster p-value 

A 
Genome Size Mean = 5.2 Mean = 3.1 5.88 x10-6 
Gram Stain Negative 23/23 (100%) 43/78 (55%) 1.22 x10-5 
Gram Stain Positive 0/23 (0%) 26/78 (33%) 6.79 x10-4 

B 

Genome Size Mean = 1.1 Mean = 4 3.71 x10-24 
Intracellular Survival - Obligate Intracellular 8/14 (57%) 0/87 (0%) 1.49 x10-8 
Free Living/Host Associated - Obligate Host Association 12/14 (86%) 10/87 (11%) 3.96 x10-8 
Host Type - Arthropod/Insect 8/14 (57%) 2/87 (2%) 5.94 x10-7 
GC Content 35.5 51.6 1.47 x10-5 
Free Living/Host Associated - Free Living 0/14 (0%) 50/87 (57%) 4.35 x10-5 
Intracellular Survival - Not Applicable 0/14 (0%) 50/87 (57%) 4.35 x10-5 
Habitat Outside Host - Soil 0/14 (0%) 38/87 (44%) 8.39 x10-4 

C 

Taxonomic Class - Mixed Firmicutes 10/17 (59%) 7/84 (8%) 1.17 x10-5 
Gram Stain - Positive 12/17 (71%) 14/84 (17%) 2.25 x10-5 
Oxygen Requirement - Aerobe 1/17 (6%) 47/84 (56%) 1.09 x10-4 
GC Content Mean = 39.5 Mean = 51.4 1.24 x10-4 
Oxygen Requirement - Anaerobe 9/17 (53%) 8/84 (1%) 1.44 x10-4 
Gram Stain - Negative 4/17 (24%) 62/84 (74%) 1.47 x10-4 
Bacillales, Lactobacillales 6/17 (35%) 3/84 (4%) 5.98 x10-4 

D 

Taxonomic Class - Actinomycetes 8/18 (44%) 2/83 (2%) 7.96x10-6 
Gram Stain - Positive 12/18 (67%) 14/83 (17%) 5.73 x10-5 
Sporulation - Sporulating 8/18 (44%) 5/83 (6%) 1.67 x10-4 
Gram Stain - Negative 5/18 (28%) 61/83 (73%) 5.86 x10-4 
Sporulation - Nonsporulating 10/18 (56%) 76/83 (92%) 6.77 x10-4 

E 
Prefered Metabolic Mode - Chemoorganoheterotroph 14/29 (48%) 69/72 (96%) 1.29 x10-7 
Prefered Metabolic Mode - Photolithoautotroph 6/29 (21%) 0/72 (0%) 3.75 x10-4 
Gram Stain - Positive 1/29 (3%) 25/72 (35%) 7.92 x10-4 

*Genome Size given as average number of megabases in group; GC Content given as average percentage 
in group 
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whereas none of the facultative cluster members have this operon, which is consistent with the 
classical differentiation of Clostridia from Bacilli organisms in the low-GC Gram positive group. 

3. Discussion 

We have described a novel approach to examining the metabolic relationships among bacterial 
genomes that focuses on the collection of metabolic variants associated with an organism. The 
vector of metabolic variants succinctly describes the organism’s metabolic capabilities and allows 
for statistical comparison of vectors between organisms that is scalable to thousands of genomes. 
In the current study, we have provided a proof of concept with a phylogenetically diverse set of 
101 bacterial genomes, comprising 846 variants and covering much of known metabolism. The 
variant definitions are the result of a targeted manual curation effort in the framework of the SEED 
database [18], which breaks down bacterial metabolism into subsystems (defined as collections of 
functional roles necessary to perform a cellular function). In this study, 139 subsystems were 
individually examined to define the possible metabolic variants. The outcome of the manual 
curation effort is a set of curated metabolic variants that can be rapidly assigned to bacterial 
genomes and used to compare the metabolic capabilities present in the genomes. 

Many of the approaches to understanding the breadth, conservation and evolution of metabolic 
networks found in the bacterial domain have focused on properties of network architecture such 
as scale, network path length, network motifs, centrality, modularity and connectedness [3,4,23]. 
Common themes are observed in that metabolic networks have been shown to be scale-free and 
highly modular for most organisms. It has been shown that the complexity of a metabolic network 
can be associated with particular lifestyles/habitats. For example, obligate symbionts that 
experience relatively stable environments have less complex networks than organisms that are 
free-living and exposed to many environments. These approaches are highly granular in that they 
connect networks on the level of individual reactions, compounds and enzymes. An extension to 
network based approaches was introduced by Mazurie et al. [5] that compares higher level 
functional units called networks of interacting pathways. These were used to classify organisms 
into phenotypic categories. They observed similar trends with respect to the nature of the networks 
as seen with other network-based approaches and were able to assign functional pathways to 
organisms of particular phenotypes. For instance, free-living and host-associated organisms 
differed with respect to frequency of observed carbohydrate and energy metabolism pathways; 
motile and non-motile organisms differed with respect to xenobiotic degradation pathways. More 
recently, Pearcy et al. [6] introduced a method that produced vectors for an organism whose 
elements described individual network motifs. They analyzed 3 and 4 node motifs that are 
abstractions of specific compound and reaction connections and identified network motifs that 
were enriched for organisms with different habitats/lifestyles, such as aerobic/facultative vs. 
anaerobic. By looking at the reactions and compounds that made up the enriched motifs, it was 
possible to identify specific metabolites associated with the different lifestyles. Patterns such as 
these supported the assertion that environmental conditions shape the properties of metabolic 
networks that occur in organisms. In a departure from analyzing network properties, Poot-
Hernandez et al. [24] calculated linear enzymatic step sequences (ESS) found in metabolic maps 
in KEGG and defined core and peripheral metabolic pathways for 40 gamma proteobacteria 
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species. An analysis of the relationships of ESS vectors among organisms was not conducted. 
Mithani et al. [4] analyzed the presence/absence of enzymatic reactions in pathways of 
Pseudomonas species based on KEGG map reaction mining. They found interesting patterns of 
gains and losses associated with niche specific adaptations to host association. Their approach is 
limited by the restriction to KEGG maps and boundary effects (reactions that appear in more than 
one map do not get connected). Further, the authors noted that other information such as genome 
context could improve understanding of evolutionary processes. The approach that we describe 
here is fundamentally different than those employed to date in that the unit being analyzed – 
variants associated with an organism – is non-network based; implicitly incorporates genome 
context, paralogs, isoenzymes and non-orthologous replacements through manual curation; and 
allows for coverage of metabolic capabilities across the modular nature of networks and their 
representation as disconnected metabolic maps. Further, each variant represents a functioning 
biological process, allowing the succinct assertion of organism capabilities (both positive and 
negative attribution). The analysis of variant vectors and the patterns observed therein give rise to 
clusters of metabolic forms comprised of the organisms and their individual variants. It is then 
possible to attribute the influence of phenotypic characters and phylogenetic relationships to these 
clusters through standard statistical approaches. It would be instructive to map individual variants 
to data types analyzed previously (e.g., networks of interacting pathways, individual network 
motifs, and ESS) to enable systematic comparison of each of these approaches to the variant 
approach. 

We identified five main clusters of metabolically related organisms in our analysis (A-E in Fig. 
1), each of which share some phenotypic traits (Table 1). We also described a complementary 
approach to evaluate which variants are most differentially distributed between clusters on the tree. 
These analyses yield patterns that are consistent with the approaches mentioned above. For 
instance, Cluster B is comprised of organisms that are host-associated and found in relatively stable 
environments; the 144 variants that are significantly differentially distributed (p < 0.05) include 
the absence of functions in amino acid, purine and pyrimidine, and vitamin/co-factor biosynthesis 
pathways (Supplemental File 5). There are other cases where there are hints at what drives the 
members of a cluster together in metabolic space (e.g., Neisseria, Pelagibacter, Xylella, Leptospira 
– amino acid usage; Gluconobacter, Desulfovibrio, Carboxydothermus – extreme environments), 
but the current sampling of 101 organisms limits the statistical analysis of small clusters such as 
these. 

These types of problems will become tractable with the inclusion of new genomes that begin 
to fill out metabolic signature clusters. Importantly, the fundamental structure of the dendrogram 
will not change as new genomes are added given a constant set of defined variants (e.g., Cluster B 
will continue to contain organisms with small genomes/symbionts, Cluster C will contain most 
low GC Gram positive organisms, Cluster D will contain high GC organisms, and Cluster E will 
likely expand and subdivide as representation of metabolically diverse organisms increases). 
Organisms that do not follow these expectations may yield insight into novel combinations of 
metabolic capabilities; the current metabolic clusters represent a framework of hypotheses about 
relationships between suites of metabolic variants associated with any one organism. In contrast, 
as additional metabolic variants are identified, curated and assigned, the nature of the metabolic 
clusters may change. In short, as more well-annotated genomes are included, the statistical power 
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for this type of analysis increases, enhancing our ability to examine the metabolic relationships 
between organisms and what factors impact these metabolic commonalities.  

The proof of concept described in this work serves as a foundation for identifying metabolic 
signatures for all sequenced bacteria and associating those signatures with specific organism 
characteristics and metabolic variants. Analyses of correlations between metabolic variants 
observed across bacterial life will enhance our understanding of the nature of the metabolic space 
occupied by diverse organisms. 

4.  Methods 

4.1  Organisms and Features 

The 101 organisms chosen were representatives of 14 phylogenetic divisions of eubacteria (Supp 
Fig. 2), which provides a reasonable coverage of sequenced microbial diversity with complete 
genomes. Each of the 101 organisms were classified on 19 different phenotypic features based on 
information already present in the SEED and via literature review. The features considered here 
and summary statistics are provided as Supplemental File 1. In order to generate maximum 
likelihood phylogenetic distances for each pair of organisms, we selected a representative 16S 
rRNA sequence of each organism from the Silva SSU Reference Set Release 106 using the ARB 
environment  [25]. RaxML 7.0.4  [26] was then used to generate a set of maximum likelihood 
pairwise distances. Pairwise phylogenetic distances are included as Supplemental File 2. 

4.2  Creating a Metabolic Distance Measure 

We calculated a measure of metabolic distance, DFM, between organisms based on the vector vi, 
where i is the ith organism, of 0’s and 1’s, indicating the presence/absence of the 846 subsystem 
variants. In general, the metabolic distance between organisms i and j, will be a function that 
measures the dissimilarity of vectors vi and vj. While there are numerous options for measuring 
dissimilarity or similarity between two vectors (e.g., Euclidean distance, Pearson correlation), we 
chose to use a novel method based on Fisher’s exact test because of its robustness to the widely 
varying numbers of 0’s and 1’s observed in vector v, along with its ability to directly integrate a 
measure of statistical confidence into the distance measure, making DFM an indirect measurement 
of the likelihood of two organisms possessing the observed degree of overlap in metabolism ‘by 
chance.’ To generate DFM, first, for each of the 5050 (101 ∗ 100/2) pairs of organisms, a 2x2 cross 
tabulation table was created and a Fisher’s exact test p-value was generated. The Fisher’s exact 
test p-value (that is, the likelihood of observing pattern of metabolic consistency by chance) acts 
as a measure of metabolic similarity and is available for all pairs of organisms in Supplemental 
File 6. We transformed p-values using: DFM=300+ln(p) to yield a metric of metabolic distance, 
DFM, which is always greater than 0 in our dataset.  

4.3  Statistical Analyses 

Four main statistical analyses were performed on DFM. First, hierarchical clustering with complete 
linkage was conducted on the 101 organisms using DFM as computed between all 5050 pairs of 
organisms. A dendrogram was created and phenotypic features were overlaid on it to aid in 
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interpretation of subsequent analyses. Clusters of interest on the dendrogram were determined 
using a false discovery rate (FDR) based on the Fisher’s exact test p-values. Second, a multiple 
regression analysis was conducted to investigate the extent to which the metabolic distance, DFM, 
could be explained by the 19 phenotype features. We used a dataset comprising 19 phenotype 
features and metabolic distance for each of the 5050 pairs of organisms (supplemental file #2). 
Models regressed metabolic distance on each of the 19 phenotype features. Third, we conducted 
analyses designed to answer the question “Which phenotypes explain why this cluster (on the 
dendrogram) exists?” After ‘cutting’ the dendrogram by looking at all of the mutually exclusive 
clusters for which all pairs of organisms within the cluster have a certain level of association, we 
wish to compare two mutually exclusive clusters of organisms to attempt to identify phenotypic 
differences in the clusters which are likely candidates for why the organisms separated into two 
mutually exclusive clusters. For categorical phenotypes, a Fisher’s exact test is conducted which 
compares the proportion of organisms in cluster #1 with the phenotypic characteristic to the 
proportion of organisms in cluster #2 with the characteristic. For quantitative phenotypes, a two-
sample t-test is used. Full results for all phenotypes and clusters A, B, C, D, E1 and E2 are provided 
in Supplemental File 7. Lastly, we conducted the same analysis as just described to answer the 
question “Which metabolic variants associate with specific clusters?” by using the Fisher’s exact 
test approach on mutually exclusive clusters, evaluating association between metabolic variants 
and cluster memberships. Unless otherwise indicated, all analyses were conducted using R 
(www.r-project.org). 

Supplemental Files 

All supplemental files are available online at the following URL: 
http://homepages.dordt.edu/ntintle/metsig.zip  
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