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Cancer detection from gene expression data continues to pose a challenge due to the high dimen-
sionality and complexity of these data. After decades of research there is still uncertainty in the
clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep
learning approach to cancer detection, and to the identification of genes critical for the diagnosis of
breast cancer. First, we used Stacked Denoising Autoencoder (SDAE) to deeply extract functional
features from high dimensional gene expression profiles. Next, we evaluated the performance of the
extracted representation through supervised classification models to verify the usefulness of the new
features in cancer detection. Lastly, we identified a set of highly interactive genes by analyzing the
SDAE connectivity matrices. Our results and analysis illustrate that these highly interactive genes
could be useful cancer biomarkers for the detection of breast cancer that deserve further studies.

Keywords: Cancer Detection; RNA-seq Expression; Deep Learning; Dimensionality Reduction;
Stacked Denoising Autoencoder; Classification.

1. Introduction

The analysis of gene expression data has the potential to lead to significant biological dis-
coveries. Much of the work on the identification of differentially expressed genes has focused
on the most significant changes, and may not allow recognition of more subtle patterns in
the data.1–6 Tremendous potential exists for computational methods to analyze these data
for the discovery of gene regulatory targets, disease diagnosis and drug development.7–9 How-
ever, the high dimension and noise associated with these data presents a challenge for these
tasks. Moreover, the mismatch between the large number of genes and typically small number
of samples presents the challenge of a “dimensionality curse”. Multiple algorithms have been
used to distinguish normal cells from abnormal cells using gene expression.10–13 Although there
has been a lot of research into cancer detection from gene expression data, there remains a
critical need to improve accuracy, and to identify genes that play important roles in cancer.

Machine learning methods for dimensionality reduction and classification of gene expres-
sion data have achieved some success, but there are limitations in the interpretation of the
most significant signals for classification purposes.14,15 Recently, there have been efforts to use
single-layer, nonlinear dimensionality reduction techniques to classify samples based on gene
expression data.16 In similar studies of computer vision, unsupervised deep learning methods
have been successfully applied to extract information from high dimensional image data.17
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Similarly, one can extract the meaningful part of the expression data by applying such tech-
niques, thereby enabling identification of specific subsets of genes that are useful for biologists
and physicians, with the potential to inform therapeutic strategies.

In this work, we used stacked denoising autoencoders (SDAE) to transform high-
dimensional, noisy gene expression data to a lower dimensional, meaningful representation.18

We then used the new representations to classify breast cancer samples from the healthy
control samples. We used different machine learning (ML) architectures to observe how the
new compact features can be effective for a classification task and allow the evaluation of the
performance of different models. Finally, we analyzed the lower-dimensional representations
by mapping back to the original data to discover highly relevant genes that could play critical
roles and serve as clinical biomarkers for cancer diagnosis. The performance of these methods
affirm that SDAEs could be applied to cancer detection in order to improve the classification
performance, extract both linear and nonlinear relationships in the data, and perhaps more
important, to extract a subset of relevant genes from deep models as a set of potential cancer
biomarkers. The identification of these relevant genes deserves further analysis as it potentially
can improve methods for cancer diagnosis and treatment.

2. Background

Classification and clustering of gene expression in the form of microarray or RNA-seq data
are well studied. There are various approaches for the classification of cancer cells and healthy
cells using gene expression profiles and supervised learning models. The self-organizing map
(SOM) was used to analyze leukemia cancer cells.19 A support vector machine (SVM) with a
dot product kernel has been applied to the diagnosis of ovarian, leukemia, and colon cancers.11

SVMs with nonlinear kernels (polynomial and Gaussian) were also used for classification of
breast cancer tissues from microarray data.10

Unsupervised learning techniques are capable of finding global patterns in gene expression
data. Gene clustering represents various groups of similar genes based on similar expression
patterns. Hierarchical clustering and maximal margin linear programming are examples of
this learning and they have been used to classify colon cancer cells.20,21 K-nearest neighbors
(KNN) unsupervised learning also has been applied to breast cancer data.12

Due to the large number of genes, high amount of noise in the gene expression data, and
also the complexity of biological networks, there is a need to deeply analyze the raw data
and exploit the important subsets of genes. Regarding this matter, other techniques such
as principal component analysis (PCA) have been proposed for dimensionality reduction of
expression profiles to aid clustering of the relevant genes in a context of expression profiles.22

PCA uses an orthogonal transformation to map high dimensional data to linearly uncorrelated
components.23 However, PCA reduces the dimensionality of the data linearly and it may not
extract some nonlinear relationships of the data.24 In contrast, other approaches such as kernel
PCA (KPCA) may be capable of uncovering these nonlinear relationships.25

Similarly, researchers have applied PCA to a set of combined genes of 13 data sets to obtain
the linear representation of the gene expression and then apply a autoencoder to capture
nonlinear relationships.26 Recently, a denoising autoencoder has been applied to extract a
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feature set from breast cancer data.16 Using a single autoencoder may not extract all the useful
representations from the noisy, complex, and high-dimensional expression data. However, by
reducing the dimensionality incrementally, the multi-layered architecture of an SDAE may
extract meaningful patterns in these data with reduced loss of information.27

3. Materials and Methods

We have applied a deep learning approach that extracts the important gene expression relation-
ships using SDAE. After training the SDAE, we selected a layer that has both low-dimension
and low validation error compared to other encoder stacks using a validation data set inde-
pendent of both our training and test set.28 As a result, we selected an SDAE with four layers
of dimensions of 15,000, 10,000, 2,000, and 500. Consequently we used the selected layer as
input features to the classification algorithms. The goal of our model is extracting a mapping
that possibly decodes the original data as closely as possible without losing significant gene
patterns.

We evaluated our approach for feature selection by feeding the SDAE-encoded features to
a shallow artificial neural network (ANN)29 and an SVM model.30 Furthermore, we applied a
similar approach with PCA and KPCA as a comparison.

Lastly, we used the SDAE weights from each layer to extract genes with strongly propa-
gated influence on the reduced-dimension SDAE-encoding. These selected “deeply connected
genes” (DCGs) are further tested and analyzed for pathway and Gene Ontology (GO) en-
richment. The results from our analysis showed that in fact our approach can reveal a set of
biomarkers for the purpose of cancer diagnosis. The details of our method are discussed in the
following subsections, and the work-flow of our approach is shown in Fig 1.

3.1. Gene Expression Data

For our analysis, we analyzed RNA-seq expression data from The Cancer Genome Atlas
(TCGA) database for both tumor and healthy breast samples.31 These data consist of 1097
breast cancer samples, and 113 healthy samples. To overcome the class imbalance of the
data, we used synthetic minority over-sampling technique (SMOTE) to transform data into a
more balanced representation for pre-training.32 We used the imbalanced-learn package for
this transformation of the training data.33 Furthermore, we removed all genes that had zero
expression across all samples.

3.2. Dimensionality Reduction Using Stacked Denoising Autoencoder

An autoencoder (AE) is a feedforward neural network that produces the output layer as
close as possible to its input layer using a lower dimensional representation (hidden layer).
The autoencoder consists of an encoder and a decoder. The encoder is a nonlinear function,
like a sigmoid, applied to an affine mapping of the input layer, which can be expressed as
fθ(X) = σ(Wx+b) with parameters θ = {W, b}. The matrix W is of dimensions d′×d to go from
a larger dimension of gene expression data d to a lower dimensional encoding corresponding
to d′. The bias vector b is of dimension d′. This input layer encodes the data to generate a
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Fig. 1. The pipeline representing the stacked denoising autoencoder (SDAE) model for breast cancer classi-
fication and the process of biomarkers extraction.

hidden or latent layer. The decoder takes the hidden representations from the previous layer
and decodes the data as closely as possible to the original inputs, and can be expressed as
z = gθ′(y) = σ(W ′y + b′). In our implementation, we imposed tied weights, with W ′ = W T . We
can refer to the weight matrix W and bias b as θ = {W, b} and similarly θ′ = {W ′, b′}.

A SDAE can be constructed as a series of AE mappings with parameters θ1, θ2, ..., θn
and the addition of noise to prevent overfitting.18 In order to get a good representation for
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each layer, we maximize the information gain between the input layer (modeled as a random
variable X from an unknown distribution q(X)) and its higher level stochastic representation
(random variable Y from a known distribution p(X|Y ; θ′)). For layer i, we then learned a
set of parameters θi and θ′i from a known distribution p where q(Y |X) = p(Y |X; θi) and also
q(X|Y ) = p(X|Y ; θ′i) that maximize the mutual information.18

This maximization problem corresponds to minimizing the reconstruction error of the
input layer using hidden representation. In this construction, the hidden layer contains the
compressed information of the data by ignoring useless and noisy features. In fact, the au-
toencoder extracts a set of new representations which encompass the complex relationships
between input variables. The reconstruction error of the input layer using this new represen-
tation is non-zero, but can be minimized. In practice, the weights of the model are learned
through the stochastic gradient descent (SGD) algorithm.34,35

Autoencoders extract both linear and nonlinear relationships inherent in the input data,
making them powerful and versatile. The encoder of the SDAE decreases the dimensionality of
the gene expression data stack-by-stack, which leads to reduced loss of information compared
to reducing the dimension in one step.27 In contrast, the decoder increases the dimensionality
to eventually achieve the full reconstruction of the original input as close as possible. In this
procedure, the output of one layer is the input to the next layer. For this implementation,
we used the Keras library with Theano backend running on an Nvidia Tesla K80 GPU.36

Although it is difficult to estimate the time complexity of the deep architecture of the SDAE,
with batch training and highly parallelizable implementation on GPUs, training takes a few
minutes and testing of a sample is performed in a few seconds.

It is proven in practice that pre-training the parameters in a deep architecture leads to
a better generalization on a specific task of interest.18 Greedy layer-wise pre-training is an
unsupervised approach that helps the model initialize the parameters near a good local min-
imum and convert the problem to a better form of optimization.27 Therefore, we considered
the pre-training approach as supposed to achieve smoother convergence and higher overall
performance in cancer classification. After starting with the initial parameters resulting from
the pre-training phase, we used supervised fine-tuning on the full training set to update the
parameters.

To avoid overfitting in the learning phase (both pre-training and fine-tuning) of the SDAE,
we utilized a dropout regularization factor, which is a method of randomly excluding fractions
of hidden units in the training procedure by setting them to zero. This method prevents nodes
from co-adapting too much and consequently avoids overfitting.37 For the same purpose, we
provided partially corrupted input values to the SDAE (denoising). The SDAE is robust,
and its accuracy does not change upon introducing noise at a low rate. In fact, SDAE with
denoising and dropout can find a better representation from the noisy data. Fig 2 shows the
SDAE encoded, decoded, and denoised representations on the subset of genes.

3.3. Differentially Expressed Genes

We used significantly differentially expressed genes as a comparison to our SDAE features for
cancer classification. First, we computed the log fold change comparing the median expression
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Fig. 2. SDAE representation using the enriched genes in the TCGA breast cancer. In this depiction for
illustrative purposes, the top 500 genes with median expression across cancer samples enriched above health
samples, and the top 500 genes with reduced median expression across cancer samples is shown.

in cancer tissue samples to that of healthy tissue samples. We then computed a two-tailed p-
value using a Gaussian fit, followed by a Benjamini-Hochberg (BH) correction.38 We identified
two sets of differentially expressed genes. The first, DIFFEXP0.05 was the 206 genes, 98 up-
regulated and 118 down-regulated, that were significant at an FDR of 0.05. The second set,
DIFFEXP500, contains the top 500 most significant differentially expressed genes (the same
dimension as the SDAE features) using the same 2-tailed p-values, containing 244 up-regulated
and 256 down-regulated genes.

3.4. Dimensionality Reduction Using Principal Component Analysis

As a second level of comparison, we extracted features using linear PCA to provide a baseline
for the performance of linear dimensionality reduction algorithms for our ML models. The
same reduced dimensionality of 500 was used. In addition, we used KPCA with an RBF
kernel to extract features that by default are of the same dimension as the number of training
input samples. For both PCA and KPCA we used an implementation in the scikit-learn

package.39

4. Results and Discussion

4.1. Classification Learning

In order to evaluate the effectiveness of our autoencoder-extracted features, we used two
different supervised learning models to classify cancer samples from healthy control samples.
First, we considered a single-layer ANN with input nodes directly connected to output layers
without any hidden units. If we consider the input units as X = (x1, x2, ..., xn), the output
values are calculated as y = σ(

∑
iwixi + b). Second, we considered both an SVM with a linear

kernel and with a radial basis function kernel (SVM-RBF). We applied 5-fold cross-validation
for to exhaustively split the data into train and test sets to estimate the accuracy of each
model without overfitting. In each split, the model was trained on 4 partitions and tested on
the 5th, ensuring that training and testing are performed on non-overlapping subsets.
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5. Comparison of Different Models

To assess the effectiveness of the SDAE features, we compared their performance in classi-
fication to differentially expressed genes and to principal components for different machine
learning models. The performance of the SDAE features for classification is summarized in
Table 1. The best method varies depending on the performance metric, but on these data
the SDAE features performed best on three of the five metrics we considered. The highest
accuracy was attained using SDAE features applied to SVM-RBF classification. This method
also had the highest F-measure. The highest sensitivity was found for SDAE features as well,
but using the ANN classification model. KPCA features applied to an SVM-RBF had higher
specificity and precision.

Table 1. Comparison of different feature sets using three classification learning models.

Features Model Accuracy Sensitivity Specificity Precision F-measure

SDAE
ANN
SVM

SVM-RBF

96.95
98.04
98.26

98.73
97.21
97.61

95.29
99.11
99.11

95.42
99.17
99.17

0.970
0.981
0.983

DIFFEXP500
ANN
SVM

SVM-RBF

63.04
57.83
77.391

60.56
64.06
86.69

70.76
46.43
71.29

84.58
70.42
67.08

0.704
0.618
0.755

DIFFEXP0.05
ANN
SVM

SVM-RBF

59.93
68.70
76.96

59.93
82.73
87.56

69.95
57.5
70.48

84.58
65.04
65.42

0.701
0.637
0.747

PCA
ANN
SVM

SVM-RBF

96.52
96.30
89.13

98.38
94.58
83.31

95.10
98.61
99.47

95.00
98.75
99.58

0.965
0.965
0.906

KPCA
ANN
SVM

SVM-RBF

97.39
97.17
97.32

96.02
96.38
89.92

99.10
98.20
99.52

99.17
98.33
99.58

0.975
0.973
0.943

6. Deep Feature Extraction and Deeply Connected Genes

Going beyond classification, there is potential biological significance in understanding what
subsets of genes are involved in the new feature space that makes it an effective set for the
cancer detection. Previous work on cancer detection using a single-layer autoencoder has
evaluated the importance of each hidden node.16 Here, we analyzed the importance of genes
by considering combined effect of each stack of the deep architecture. To extract these genes,
we utilized a strategy of computing the product of the weight matrices for each layer of our
SDAE. The result is a 500×G dimensional matrix W , where G is the number of genes in the
expression data, computed for an n-layer SDAE by

Pacific Symposium on Biocomputing 2017

225



6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
µ=0.000, σ=1.000

Fr
e
q
u
e
n
ci
e
s

Zscores

Fig. 3. Histogram of z-Scores from the dot product matrix of the weights connectivity of the SDAE.

W =

n∏
i=1

Wi.

Although the weights of each layer of the SDAE are computed with a nonlinear model,
the matrix W is a linearization of the compounded effect of each gene on the SDAE features.
Genes with the largest weights in W are the most strongly connected to the extracted and
highly predictive features, so we called these genes DCGs. We found that the terms of matrix
W were strongly normally distributed (Fig 3). We identified the subset of genes with the most
statistically significant impact on the encoding by fitting the distribution of these values in
W to a normal distribution, computing a p-value using this fit,and applying a BH correction
with an FDR of 0.05.

6.1. Gene Ontology

We examined the functional enrichment of the DCGs through a GO term and Panther pathway
analysis. Table 2 presents the statistically-enriched GO terms under “biological process”, and
having a Bonferroni-corrected p-value of less than 1e-10. Many of the most significant terms
are related to mitosis, suggesting a large number of genes with core functionality that is
relevant to cell proliferation. In addition, an analysis of the enrichment of Panther pathways
led to a single enriched term, p53 pathway, where we observe 10 genes when 1.34 are expected,
giving a p-value of 2.21E-04. P53 is known to be an important tumor-suppressor gene40–42 ,
and this finding suggests a role of tumor suppressor function in many of the DCGs.

6.2. Classification Learning

Finally, we used the expression of the DCGs as features for the ML models previously men-
tioned. These genes served as useful features for cancer classification, achieving 94.78% accu-
racy (Table 3). Although these features performed a few percentage points below that of the
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Table 2. Enriched GO terms associated with DCGs in breast cancer data from TCGA.

GO biological process Total Observed Expected Enrichment P-value
cell cycle process (GO:0022402) 1079 100 16.46 6.07 1.12E-45
cell cycle (GO:0007049) 1311 108 20 5.4 3.28E-45
mitotic cell cycle process (GO:1903047) 741 85 11.31 7.52 1.06E-44
mitotic cell cycle (GO:0000278) 760 85 11.6 7.33 7.33E-44
nuclear division (GO:0000280) 470 63 7.17 8.78 1.52E-35
organelle fission (GO:0048285) 492 64 7.51 8.53 1.99E-35
mitotic nuclear division (GO:0007067) 357 56 5.45 10.28 1.34E-34
cell division (GO:0051301) 477 58 7.28 7.97 3.72E-30
chromosome segregation (GO:0007059) 274 46 4.18 11 5.46E-29
sister chromatid segregation (GO:0000819) 176 36 2.69 13.41 7.62E-25
nuclear chromosome segregation (GO:0098813) 230 38 3.51 10.83 3.97E-23
mitotic cell cycle phase transition (GO:0044772) 249 35 3.8 9.21 8.10E-19
mitotic prometaphase (GO:0000236) 99 25 1.51 16.55 1.56E-18
cell cycle phase transition (GO:0044770) 255 35 3.89 9 1.72E-18
regulation of cell cycle (GO:0051726) 943 62 14.39 4.31 2.48E-18
chromosome organization (GO:0051276) 984 63 15.01 4.2 4.15E-18
DNA metabolic process (GO:0006259) 768 52 11.72 4.44 2.67E-15
organelle organization (GO:0006996) 3133 112 47.8 2.34 4.27E-15
mitotic cell cycle phase (GO:0098763) 211 29 3.22 9.01 7.67E-15
cell cycle phase (GO:0022403) 211 29 3.22 9.01 7.67E-15
biological phase (GO:0044848) 215 29 3.28 8.84 1.25E-14
sister chromatid cohesion (GO:0007062) 113 22 1.72 12.76 1.18E-13
cellular resp. to DNA damage stimu. (GO:0006974) 719 48 10.97 4.38 1.27E-13
regulation of cell cycle process (GO:0010564) 557 42 8.5 4.94 2.53E-13
mitotic sister chromatid segregation (GO:0000070) 90 20 1.37 14.56 3.01E-13
cell cycle checkpoint (GO:0000075) 196 25 2.99 8.36 1.09E-11
M phase (GO:0000279) 173 23 2.64 8.71 6.55E-11
mitotic M phase (GO:0000087) 173 23 2.64 8.71 6.55E-11
regulation of mitotic cell cycle (GO:0007346) 461 35 7.03 4.98 1.10E-10
single-organism process (GO:0044699) 12451 253 189.98 1.33 4.67E-10
DNA replication (GO:0006260) 213 24 3.25 7.38 5.74E-10
anaphase (GO:0051322) 154 21 2.35 8.94 6.13E-10
mitotic anaphase (GO:0000090) 154 21 2.35 8.94 6.13E-10
cellular component organization (GO:0016043) 5133 139 78.32 1.77 7.74E-10

SDAE features, they still have advantage of being more readily interpreted. Future work is
needed to improve the extraction of DCGs to enhance their utility as features for classification.

Table 3. Cancer classification results using deeply connected genes (DCGs).

Features Model Accuracy Sensitivity Specificity Precision F-measure

DCGs
ANN
SVM

SVM-RBF

91.74
91.74
94.78

98.13
88.80
93.04

87.15
97.50
97.5

85.83
97.25
97.20

0.913
0.927
0.951
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6.3. Conclusion

In conclusion, we have used a deep architecture, SDAE, for the extraction of meaningful
features from gene expression data that enable the classification of cancer cells. We were able
to use the weights of this model to extract genes that were also useful for cancer prediction,
and have potential as biomarkers or therapeutic targets.

One limitation of deep learning approaches is the requirement for large data sets, which
may not be available for cancer tissues. We expect that as more gene expression data becomes
available, this model will improve in performance and reveal more useful patterns. Accordingly,
deep learning models are highly scalable to large input data.

Future work is needed to analyze different types of cancer to identify cancer-specific
biomarkers. In addition, there is potential to identify cross-cancer biomarkers through the
analysis of aggregated heterogeneous cancer data.
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