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The discovery of driver genes is a major pursuit of cancer genomics, usually based on observing the same mutation in 
different patients. But the heterogeneity of cancer pathways plus the high background mutational frequency of tumor 
cells often cloud the distinction between less frequent drivers and innocent passenger mutations. Here, to overcome 
these disadvantages, we grouped together mutations from close kinase paralogs under the hypothesis that cognate 
mutations may functionally favor cancer cells in similar ways.  Indeed, we find that kinase paralogs often bear 
mutations to the same substituted amino acid at the same aligned positions and with a large predicted Evolutionary 
Action. Functionally, these high Evolutionary Action, non-random mutations affect known kinase motifs, but 
strikingly, they do so differently among different kinase types and cancers, consistent with differences in selective 
pressures. Taken together, these results suggest that cancer pathways may flexibly distribute a dependence on a given 
functional mutation among multiple close kinase paralogs.  The recognition of this “mutational delocalization” of 
cancer drivers among groups of paralogs is a new phenomena that may help better identify relevant mechanisms and 
therefore eventually guide personalized therapy. 
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1.  Introduction 

A major focus of recent cancer sequencing projects, such as the TCGA, is to identify causal 
driver mutations responsible for tumorigenesis (1) . To this end, many computational tools have 
been produced to predict the impact of mutations on protein function in order to screen out null 
function or low impact mutations (2). The efforts of these approaches have identified many 
proteins and mutations driving cancer progression. Unfortunately, the inherent mutational 
heterogeneity displayed within cancer often limits the statistical power of these methods so as to 
capture only the most frequent driver mutations in a large cohort of patients (3). By contrast, low 
frequency drivers or smaller patient cohorts suffer from a lack of statistical significance and are 
therefore easily missed. 

While infrequent mutations in a single gene may, at first glance, appear to indicate 
insignificance in cancer progression, this may be an oversimplification. Driver mutations in cancer 
may not only target a single gene but rather groups of genes or functional pathways, distributing 
the mutational burden across many functionally related genes (4, 5); while a single gene may lack 
significance, combining mutations across a regulatory pathway can increase the power of the 
analysis and identify gene groups driving cancer progression (3, 6). Prior studies have taken these 
groups from databases such as KEGG (7), Reactome (8), and analyses of gene association 
networks like STRING (9).  However, these approaches are not limited to functional or 
hierarchical pathways but rather could be applied to any group of proteins that share functionality 
such as, Gene Ontology terms or even groups of protein homologs sharing significant functional 
overlap.  

Further confounding the prediction of cancer drivers, single gene analyses group mutations 
regardless of their structural location and, therefore, do not account for the functional 
heterogeneity of these mutations. To account for these difference, an analysis in Colon and Breast 
Cancers grouped mutations from various genes occurring in homologous protein domains, finding 
specific domains enriched for high frequency mutations across many individual proteins (10). 
Furthermore, an analysis of disease-related mutations across all human kinases showed that these 
mutations preferentially localized in specific structural domains, affected certain residues types, 
and had conserved amino acid substitutions (11). These studies show disease-related mutations 
can preferentially occur at specific structural domains in homologous proteins, such as kinases, 
and that kinase mutations share conserved patterns of substitution. Here, we expand upon this 
work and ask whether there are mutational biases in individual positions in the context of cancer. 

For the purpose of this study, we focus on human kinases in order to better understand this 
essential protein family and how it contributes to cancer. There are over 500 human kinases 
sharing substantial homology in both the kinase structure and the catalytic mechanism (12). The 
kinase family has been further subdivided into 7 classes based on substrate specificity and 
evolutionary lineage. Kinases are ubiquitous proteins involved in a diverse array of cellular 
functions; as a result, numerous perturbations in kinase coding regions, translation, and expression 
lead to disease and cancer progression (13). Moreover, after G protein-coupled receptors, kinases 
are the second most drugged protein family (11).  While some kinases such as BRAF, EGFR, and 
PI3-kinase demonstrate a remarkably high mutation rate within cancer (14, 15), many kinases are 
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mutated at a much lower frequency making it difficult to access their influence on cancer 
progression  

Here, we hypothesize that some closely related kinases may act as a single functional group 
from the perspective of a cancer type. That is, mutations at the same (cognate) position across a 
group of kinases may have a similar functional effect and fulfill the same selective pressure, 
leading to positional enrichment of impactful mutations within the cancer. To test this possibility, 
we used kinase alignments and exomic mutations from the TCGA to group all mutations occurring 
at the same sequence position and then quantified the predicted functional impact using 
Evolutionary Action (EA).  We identified highly conserved, functionally related positions with a 
significantly increased mutation rate in a pan-cancer and pan-kinase analysis. Additionally, 
mutational differences are clear between the various kinase subclasses and additional differences 
across cancer types. This work shows a novel method that moves beyond a single gene approach 
and which suggests that functionally related homologous proteins may bear driver mutations that 
substitute for each other to support cancer progression.  

2.  Methods 

2.1.  Evolutionary Trace and Action Analysis 

To identify evolutionarily important residues, we performed Evolutionary Trace (ET) analysis 
on each of the kinase sub-families as previously described (16). ET utilizes changes in genotype 
and corresponding phenotypic divergences in the phylogenetic tree to score the evolutionary 
importance of each residue in a protein sequence. In previous work, ET has identified functional 
sites and their determinants so as to guide mutational engineering in case studies (17, 18).  

Evolutionary Action (19) builds upon ET to predict the impact a mutation has on protein 
function by multiplying the importance of the position (ET) by the magnitude of the substitution 
(evolutionary substitution odds). Prediction scores are then normalized for each individual kinase 
so the range falls between a predicted effect that is null, 0, to one that is most impactful, 100. EA 
has been repeatedly validated. It was shown to correctly predict mutation impact in multiple 
systems (e.g. P53, RecA, bacteriophage T4 lysozyme, etc.), it also outcompeted state of the art 
methods in the past 3 CAGI challenges (Critical Assessment of Genome Interpretation) (19), and 
in a clinical context, it can stratify patients with head and neck cancer based on their p53 
mutational status (28). Using this technique we score each mutations predicted impact. 

2.2.  Kinase Alignment, Mutation Acquisition and Mapping 

In order to compare mutations across all human kinases, we aligned separately each of the 7 
major subclasses from The Human Kinome project (20). These alignments were used as a 
translation tool, in order to map mutations across human kinases onto canonical protein sequences. 
Representative crystallized structures were selected for each sub-family to visualize analysis. 
Representative proteins can be found in the supplement and were manually chosen based on: 1) 
the availability of a high resolution crystal structure 2) their similarity to other proteins within that 
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class and finally 3) with a focus on longer proteins so as to limit the number of blank alignment 
positions when mapping other proteins onto the structure.  

Mutation data was acquired from the TCGA for 21 major cancer types using the 
computationally annotated calls. Chromosome positions were converted to protein position using 
ANNOVAR (21) and then were each mapped onto the representative sequence within the 
alignments. In this way we were able to measure how mutations within kinases distribute 
throughout the conserved kinase domain. 

Unless otherwise stated, all mutation numbering is in relation to the representative structure 
from TKL kinases (ACTR2B-2QLU). For visualization purposes on the structure, sphere size of 
each position was scaled based on frequency of high impact mutations (EA>40) according to the 
equation: 

 Sphere Size=2*(Frequency/Maximal Frequency)  (1) 

Initially this analysis was performed on each of the seven kinase subclasses (358 individual 
kinases total) using separate alignments and representative structures for each subclass. CK1 
kinases were dropped from the analysis due to insufficient mutations. The remaining six 
individual representative structures were then aligned and merged into a complete pan-cancer 
analysis. 

2.3.  Random Controls 

 See Supplement for additional Methods at http://mammoth.bcm.tmc.edu/GallionEtAlPSB/ 

3.  Results 

3.1.  Evolutionary Trace Identifies 
Functionally Important and 
Divergent Kinase Positions 

In order to gauge the impact of 
kinase mutations we first sought to 
identify key functional residues and 
sites in kinases. This was done using 
Evolutionary Trace (ET).  Figure 1 
shows the ET ranks from most to least 
important (red to blue) mapped onto 
the structure of ACTR2B, 2QLU 
(PDB-ID). As expected, functionally 
essential motifs, such as the 
magnesium binding DFG motif and 
the catalytic HRD motif emerge as ET 
hotspots.  ET also suggests 
functionally relevant residues 

Fig 1: Evolutionary Trace Analysis of ACTR2B (2QLU) identifies 
evolutionarily important residues corresponding to known motifs. 
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throughout the substrate pocket and allosteric sites consistent with known protein functionality. 
Positions predicted to be the least important tend to cluster near the edges of helices, the loop 
regions, and near solvent exposed positions. Repeating ET analysis on each individual class, we 
are able to identify positions important to each group. These results confirm that in kinases, ET is 
able to identify both universally important positions as well as the positions that are evolutionarily 
divergent among subfamilies correlating to divergent functionalities. 

3.2.  Kinase Mutations Demonstrate Non-Random Structural Pattern In TCGA 

To explore structural biases of kinase mutations in cancer, we next conducted a pan-cancer 
analysis of TCGA data. This analysis grouped mutations occurring at the same sequence position 
across kinase evolutionary history. This broad pan-cancer analysis identifies 77 residues with a 
statistically significant mutation rate (p-value<0.01) compared to control (See Supplementary). 
Then, in order to focus on the subset of impactful mutations and screen out low impact 
polymorphisms, we repeated the above analysis only using mutations with EA scores greater than 
40, and mapped them onto the ET analysis of ACTR2B (Figure 2A). All positions are numbered 
based on the 2QLU structure unless otherwise specified. For example, the well-known driver 
mutations from BRAF-V600 (equivalent position V344 in figure) and CHEK2-K373 (R345 in 
figure) are the most frequently mutated, high impact mutations. Other frequently mutated 
positions with high impact substitutions occur at known functional residues, such as the glycine-
rich region G199, the DFG motif D339, the HRD domain R320 and D321, and a conserved ion-
pairing residue R468. Since these mutations involve positions with large ET scores, they are likely 
to impair protein function. By contrast, and as seen in Figure 2B, there are 54 residues mutated at 
a lower rate than expected (p-value<0.01). These seldom mutated positions, shown by the small 

Fig 2: Kinase Mutation Pattern Pancancer (A) Pan-cancer mutations, with an EA>40, mapped onto ACTR2B structure where 
sphere size=frequency, color=ET importance. (B) Actual mutation frequency significantly varies from Poisson Distribution. 
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sphere size in Figure 2A fall preferentially in the solvent exposed loop regions of the kinase that 
are evolutionarily less important according to ET and thus unlikely to have much functional 
consequence. These data show that kinase mutations in cancer are not evenly distributed 
throughout the structure. Rather many mutations preferentially fall non-randomly so as to 
recurrently involve functionally important cognate positions within conserved motifs, where they 
are likely to be disruptive; conversely, in the loop regions, which are less important, mutations are 
more rare and involve positions of lesser importance. 

3.3.  Frequently Mutated Positions are Enriched for Mutations Predicted to Have a 
Significant Impact on Protein Function 

To further explore the functional consequences of these mutations, we used EA to predict the 
functional impact of each mutation on protein function. EA combines the evolutionary importance 
of the position (ET) with the likelihood of that substitution, based on all evolutionary history, in 
order to predict the impact of a mutation on protein function. We compared the EA score 
distribution of frequent positions and infrequent positions (p-value<0.01) to the distribution of all 
kinase domain mutations from the TCGA using a two-sided t-test (Figure 3A). In agreement with 
the structural and ET biases, the frequently mutated positions are predicted to have a higher impact 
on protein function (p-value=10-28) while the infrequently mutated positions are biased towards 
lower impact mutations (p-value= 10-5). These data show the frequently mutated positions from 
the TCGA are further enriched for high impact mutations, while those positions infrequently 
mutated are predicted to have little functional effect. 

3.4.  Frequently Mutated Positions Occur in Many Different Kinases at a Low Individual 
Frequency 

While these cancer somatic mutations demonstrate site specificity, we next investigated which 
individual kinases carried these mutations and whether specific proteins drove this pattern. The 
mutation frequency of each individual kinase is displayed in Figure 3B and is compared against a 
random simulation in which the same number of mutations were randomly distributed to an equal 
number of proteins. The random distribution had a mean value of 21.4 mutations per kinase while 
the experimental distribution, after dropping out the outliers BRAF and CHEK2 (550 and 160 
mutations, respectively), had a mean of 19.5. We note that the mutation rate in individual kinases 
is more variable than expected. Overall the distribution is leftward shifted compared to control 
with a select number of proteins hypermutated: 29% of kinases were mutated at a decreased 
frequency (p-value<0.05) while only 14% of kinases were significantly hypermutated (p-
value<0.05). Of the hypermutated kinases, nine were mutated at an exceptionally high rate (>50 
mutations/protein); many of these however, represent known, high frequency driver mutations 
occurring at the same location in the same kinase (e.g. BRAF, CHEK2, and EGFR). These data 
show that within cancer cells, certain kinases experience a remarkably increased mutation rate 
while the majority of the remaining kinases are hypomutated, typically with fewer that 20 SNVs 
across a pan-cancer analysis. 
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However, while this analysis recapitulates known drivers such as L858R within EGFR, it 
further identifies mutations at a single residue that individually occur at a low frequency but, taken 
as a whole, occur at a high frequency. For instance, Table 1 displays a random selection of 
mutations occurring at the Asp 
residue of the HRD domain (p-
value=2x10-4). While each 
individual mutation has a 
conserved amino acid 
transition, individual proteins 
are mutated infrequently with a 
median value of 1 and a 
maximal value of 5 mutations 
(occurring within MAP2K7). 
Of the original 54 positions 
with a p-value<0.01 only 6 are 
at least partially driven by a 
single protein (1 protein with >20% of the mutations), while all remaining positions were 
significant only through this combination. These data show that while individual mutations may 
occur at low frequency, they frequently occur at homologous structural positions with the same 
native residue and amino acid substitution. Furthermore this pattern is distributed across many 
individual kinases without a single driver protein. 

Table 1. Random sample of mutations occurring at catalytic Asp residue from  
the HRD domain. 

Fig 3: (A) High frequency mutations are significantly biased towards high impact mutations (Pvalue=5*10-28) while low 
frequency mutations are biased towards low predicted impact (Pvalue 2.5*10-05). Mean=diamond Median=red line 
Whisk=2STD (B) Observed kinase mutation rate compared to computer simulation of random mutations. BRAF and 
CHEK2 (550 and 160 mutations, respectively) not shown on plot. 
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3.5.  Individual Kinase Classes Show Unique Mutational Patterns 

Individual subclasses of kinases display marked functional and structural differences 
corresponding to their target specialization (12). To test if our conclusions held true despite these 

Fig 4: Individual kinase subclasses are frequently mutated at distinct positions (Left to Right: CMGC, TK, STE kinases).  
Sphere Size=Frequency, Color= ET importance from high to low (red to blue) for each representative kinase: ERK1, EphA5, 
PAK1 (respectively). All labels are based on ACTR2B numbering. (B) The protein mutation rate for each kinase class was 
compared against a simulated random distribution specific to the total number of mutations and proteins in each class. BRAF 
(TKL) and CHEK2 (CAMK) are not shown on their respective figures 
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differences, we repeated the above analysis for each kinase class. As an example, three of these 
classes are displayed in Figure 4A. While the general location of these residues tend to stay near 
the catalytic site, the frequently mutated positions from each class vary. Nine residues in CMGC 
kinases form a statistically significant cluster (z-score=4.58) roughly localized around and 
occurring within the HRD domain. Seven residues in TK kinases are more broadly distributed 
throughout the structure with the three most frequent near the HRD domain. Finally, STE kinases 
seem to show two distinct areas of mutation, the HRD region and the ATP-binding hinge region. 
In all three cases, similar to the pan-cancer analysis, the most frequent positions tend to occur at 
evolutionarily important residues in functional motifs with high impact mutations. In addition to 
these differences, significant positions from the pan-kinase analysis are still significant in multiple 
classes (e.g. R320 (HRD motif) and R468 (Ion pair)). These data indicate that within cancer, 
certain positions are preferentially enriched in select kinase subclasses while other positions 
demonstrate broad enrichment across many or all kinase types.  

We further note differences in the mutation frequency of proteins from each of the kinase 
classes (Figure 4B). In each class, some proteins are mutated at a significantly higher rate than 
expected. Proteins from the AGC kinase class are normally distributed with an exaggerated 
variance compared to random simulation, indicating that mutations within this class are fairly 
distributed to many proteins. Likewise, the mutation rate in CMGC and TK kinases is even more 
varied but still follow a roughly normal distribution centered around the expected mean. The 
distribution from CAMK, STE, and TKL kinases match the pan-kinase analysis with a leftward 
shifted distribution displaying many hypomutated proteins and several hypermutated proteins. As 
43% of all mutations within TKL kinases occur in BRAF, we have removed these mutations from 
this analysis. However, creating a random distribution for this class without first removing this 
outlier shifts the random distribution right (mean=30). This data shows that, in addition to 
structural differences, the individual kinase classes are mutated at different rates, with some 
classes having broadly distributed mutations to many individual proteins while other classes are 
primarily mutated in a select few proteins. 

3.6.  Kinases Further Demonstrate Cancer Type Specific Mutational Patterns 

Variances between kinase subtypes led us to next speculate that certain protein positions could 
have varying functional importance to specific cancer types as well. The above analysis was 
repeated, now grouping all kinases together and instead performing a cancer-specific analysis for 7 
cancer types within the TCGA [Breast invasive carcinoma (BRCA), Bladder Urothelial Carcinoma 
(BLCA), Colon adenocarcinoma (COAD), Head and Neck squamous cell carcinoma (HNSC), 
Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), and Stomach 
adenocarcinoma (STAD)].  The most frequently mutated position for all but BRCA and STAD 
was 345 and 346, driven by the high frequency driver mutations BRAF-V600 and CHEK2-K373 
(respectively); these mutations were then removed from this analysis in order to search for novel 
other positions. Figure 5 shows a selection of positions that were significantly mutated within 
specific cancer types. Interestingly, the analyses from LUAD and STAD resulted in clusters of 
mutations within the kinase domain. Some positions were significant in two cancer types, such as 
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L325 in LUAD and BRCA.  In agreement 
with the pan-cancer analysis, R468 was 
frequently mutated in many cancer types 
including STAD and COAD. These data 
indicate that individual cancer types are 
enriched for varying structural positions 
across many individual kinases. 

4.  Discussion 

In order to better predict driver mutations 
within cancer, computational methods have 
been extended from gene-by-gene analyses to 
consider instead groupings of mutations in 
functional pathways or subnetworks (3, 6, 
22). In this manner, driver proteins mutated 
at a low frequency due to the heterogeneity 
within cancer that are missed by a single 
gene analysis can still be identified despite their low individual frequency. Being able to predict 
these diverse infrequent drivers of cancer helps move medicine closer to personalized diagnoses 
and care. Here, as an alternate way to group genes, we explored protein homology rather than 
curated hierarchical pathways and gene interactions. Strikingly, we find that among kinases, 
mutations are structurally biased to functional motifs and evolutionarily important residues. 

Mutations providing a benefit to cancer cells become clonally enriched, as that cell proliferates 
more efficiently than others in the tumor population (5). From the pan-kinase analysis, we 
identified positions frequently mutated across many individual kinases. While the known high 
frequency driver genes were captured in this analysis, an additional 39 positions were mutated at a 
low frequency in any given kinase but were significantly mutated across the kinase family. These 
high frequency positions were preferentially biased for high impact mutations, strongly suggesting 
a significant effect on protein function. In contrast, the infrequently mutated positions all occurred 
at evolutionarily unimportant loop regions with a bias towards low impact mutations. These data 
indicate that enrichment is correlated to functional impact. Presumably, the high-impact mutations 
across many kinases provide a functional benefit within the cancer cell and are therefore enriched, 
whereas low-impact mutations, providing little benefit to the cancer cell, are lost from the 
population resulting in a low mutation rate at those positions.  

Previous work in kinases has demonstrated that identical mutations in two different kinases 
can result in the same phenotype (23, 24). For instance, mutations conferring resistance to kinase 
inhibitors in EGFR occur at the same position as drug resistance mutations in BCR-ABL, 
PDGFRA and KIT (25, 26). A systematic study of mutation locations built upon these 
observations and demonstrated the existence of ‘domain hotspots’: frequently mutated regions in 
many proteins leading to the same functional consequence (22).  In the context of this analysis of 
exomic mutations from TCGA, these frequently mutated positions, across many different kinases, 

Fig 5: Cancer types demonstrate some specificity towards 
certain mutation positions. *Occurs in STAD and COAD  
**Occurs in both LUAD and BRCA   
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with the exact same substitution strongly suggests a conserved functional mechanism driving 
enrichment: the same mutation in two different kinases likely producing a similar benefit in 
cancer. 

The kinase catalytic mechanism itself is highly conserved across all kinases and is orchestrated 
by groups of functional motifs; these same positions in all kinases are responsible for the same 
functions (12). These motifs are themselves frequently mutated at a high frequency within cancer; 
in fact, the majority of the frequently mutated positions occur at or nearby conserved motifs. 
These positions are often studied in the context of kinases enabling us to speculate on their 
functional consequences within cancer. For instance, the catalytic Asp and Arg residues of the 
HRD domain are both mutated in many diverse kinases and are furthermore mutated to the same 
types of residues (DàN and RàQ/W/H respectively) in each case. Previous characterization of 
the DàN mutations within the Drosophila Src64 kinase indicate this mutation is equivalent to a 
gene knockout (27). Cancer cells carrying this SNV would therefore experience a loss of kinase 
activity within this protein, possibly suggesting a tumor suppressing mechanism. What remains to 
be determined is how far these characterization studies can be extrapolated to other kinases. 
Further experimental studies are needed in which the same mutation is characterized in multiple 
proteins to assess how universal these conclusions are. However, given 1) the initial conserved 
function of these positions, 2) the significant enrichment of the same substitution across many 
proteins, and 3) the sizeable predicted consequence of these mutations: it becomes tantalizing to 
suggest that the same mutation in different kinases may produce the same functional benefit in 
cancer, regardless of the kinase where it occurs. 

This hypothesis is further supported by the kinase subclass and cancer type specific analyses. 
The individual kinase sub-families are evolved to phosphorylate different types of proteins (12). 
As a result, they have diverged. While the overall structure is conserved, some positions are 
specific for given target proteins and therefore differ among kinase classes. Likewise, while some 
positions are broadly mutated, the class specific analyses demonstrate appreciable differences; 
some positions are enriched in one class but do not occur in another. These variations between 
kinase classes likely stem from their functional divergence. Mutations occurring at important 
positions in one class may be beneficial, while the same position in a different class may not, 
resulting in differential enrichment. Furthermore, cancer types themselves display heterogeneity 
among their causal driver mutations (5), a heterogeneity reflected within kinase mutations as well. 
Different cancer types are enriched for different kinase positions, again suggesting that some 
positions may be preferentially beneficial for one cancer type more so than another, and therefore 
clonally enriched. When the selection pressure varies, either by differing cancer types or by the 
different kinase classes, the positions of the enriched mutations also vary. This further suggests 
that a conserved functional mechanism drives this mutational enrichment across many individual 
kinases. 

Cellular homeostasis and function is often maintained by a complex network of proteins with 
significant functional overlap and crosstalk between functional homologues. For this reason, a 
single gene approach to predicting driver mutations in cancer may be overly simplistic, therefore 
requiring a methodology to combine mutations based on functional similarity. Here, we propose 
that in addition to curated pathways, mutations can also be grouped across homologous protein 
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families. Within kinases, we have demonstrated that individual proteins are enriched for mutations 
occurring at cognate positions utilizing the same substitutions. These results suggest that the 
selection pressure within certain cancers may be specific to the mutation’s location and not 
differentiate between which kinase carries the mutation. Taken together, these data show 
individual kinases may behave in a functionally redundant manner in cancer and that a combined 
analysis of their mutations could identify individually infrequent driver mutations, previously 
missed, that occur frequently across the entire class. The conserved nature of these mutations 
allows speculation as to their predicted functional effect by extrapolating previous characterization 
studies, in a single protein, to the other kinases. Finally, while these results are specific to kinases, 
similar analyses could be broadly applicable across many protein families, thereby shifting focus 
from a ‘protein specific’ to a ‘paralog-wide, cognate position specific’ analysis of cancer driver 
mutations. 
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