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A major contributor to the scientific reproducibility crisis has been that the results from homoge-
neous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort
gene expression analysis has helped to increase reproducibility by aggregating data from diverse
populations into a single analysis. To make the multi-cohort analysis process more feasible, we have
assembled an analysis pipeline which implements rigorously studied meta-analysis best practices.
We have compiled and made publicly available the results of our own multi-cohort gene expression
analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive
web application. As a result, we have made both the process of and the results from multi-cohort
gene expression analysis more approachable for non-technical users.

Keywords: Multi-cohort Analysis; Meta-Analysis; Gene Expression; Reproducibility; Web Applica-
tion; Software

1. Introduction

Prior to translation of the results of a biological experiment into clinical practice, they must
be replicated and validated in multiple independent cohorts. However, the majority of findings
fail to validate, leading to a ’reproducibility crisis’ in science.1,2 One of the factors in this lack
of reproducibility is that traditional, single cohort studies do not represent the heterogeneity
observed in the real world patient population.3 As a result, observed and reported effects are
often specific to a population subset instead of generalizable across the population.

More than two million publicly available gene expression microarrays present novel op-
portunities to incorporate the real-world heterogeneity observed in patient populations into
analysis.4,5 However, the biological (tissue, treatment, demographics) and technical (experi-
mental protocol, microarray) heterogeneity present in such data poses a daunting challenge
for their integration and reuse. Consequently, many tools, which allow reuse of these data, are
unable to combine evidence across multiple data sets and place that burden on the end user,
leading to under-utilization of these datasets.6,7

Previously, we have described a novel multi-cohort analysis framework for integrating mul-
tiple heterogeneous datasets to identify robust and reproducible signatures by leveraging the
biological and technical heterogeneity in these datasets. We have repeatedly demonstrated
the utility of our framework for identifying novel diagnostic and prognostic biomarkers, drug
targets, and repurposing FDA-approved drugs in diverse diseases, including organ transplan-
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tation, cancer, infection, and neurodegenerative diseases.8–16 In each of these analyses, we
analyzed more than a thousand human samples from more than 10 independent cohorts to
generate and validate data-driven hypotheses. Many of these results also been further vali-
dated in experimental settings.8,11,16 These results have further demonstrated the ability of our
framework to create ”Big Data” by combining multiple smaller studies that are collectively
representative of the real word patient population heterogeneity.

We recently published a systematic comparison of gene expression meta-analysis to evalu-
ate existing tools, including GeneMeta, MAMA, MetaDE, ExAtlas, rmeta, and metafor,17–21

and described best practice guidelines for gene expression meta-analysis.22 While these exist-
ing packages perform both generic and gene expression meta-analysis, none provide coverage
of the entire gene expression meta-analysis workflow: downloading data from public reposi-
tories, rigorously implementing gene expression meta-analysis best practices, and providing
visualizations of the final results.

2. Multi-Cohort Gene Expression Analysis with MetaIntegrator

Despite its demonstrated utility in identifying robust, reproducible, and biologically as well
as clinically relevant disease signatures, our multi-cohort analysis framework has previously
required manual dataset download, pipeline set up, and visualization generation. To lower
this barrier to entry, we have developed MetaIntegrator, an R package that automates most
of the multi-cohort analysis framework. Our package guides the user from data download to
execution of statistical analysis to evaluation of the results [Figure 1].

2.1. Data Processing

The first step in the multi-cohort analysis is downloading the requisite experimental informa-
tion, notably the class labels (case or control), the gene expression data, and any interesting
phenotypic information about the samples. Since we have found that most users will download
data from the NCBI’s Gene Expression Omnibus (GEO), we have integrated an automatic
downloading and processing of GEO data into our analysis pipeline. MetaIntegrator will au-
tomatically download the expression data and all available annotations, perform sanity checks
that the data have been appropriately normalized, and compile the data into the MetaInte-
grator object format.

2.2. Multi-cohort Analysis

2.2.1. Combining effect sizes

Our meta-analysis approach computes an Hedges g effect size for each gene in each dataset
defined as:

g = J
X̄1 − X̄0√

(n1−1)S2
1+(n0−1)S2

0

n1+n0−2

(1)

where X̄1 and X̄0 are the average expression for cases and controls, S1 and S0 are the standard
deviations for cases and controls, and n1 and n0 are the number of cases and controls.8,23 J is
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Fig. 1. Gene expression meta-analysis workflow with MetaIntegrator utility functions.

the Hedges’ g correction factor, which is computed as:

J = 1 − 3

4df − 1
(2)

where df are the degrees of freedom.
To pool these effect sizes across datasets, the summary effect size gs is computed using a

random effect model as:

gs =

∑n
i Wigi∑n
i Wi

(3)

where n is the number of studies, gi is the Hedges’ g of that gene within dataset i, Wi is a
weight equal to 1/(Vi + T 2), Vi is the variance of that gene within a given dataset i, and T 2 is
the inter-dataset variation as estimated by the DerSimonian-Laird method.23,24 The standard
error for the summary effect size is SEgs =

√
1∑n
i Wi

. Given gs and SEgs , we calculate a p-value
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based on a standard normal distribution and perform a Benjamini-Hochberg FDR correction
for multiple hypothesis testing across all genes.25

2.2.2. Heterogeneity of effect size

We calculate Cochrane’s Q value for evaluating heterogeneity of effect size estimates between
studies:

Q =

n∑
i=1

Wi (gi − gs)
2 (4)

where Wi, gi, and gs are the same as above.23 The p-value of Cochrane’s Q is calcu-
lated against a chi-squared distribution and adjusted for multiple hypothesis testing using the
Benjamini-Hochberg FDR method across all genes.25 A statistically significant Cochrane’s Q
indicates significant heterogeneity of effect sizes between studies.

2.2.3. Combining p-values

We use Fisher’s method for combining p-values across studies.26 We calculate the log sum of
p-values that each gene is up-regulated as:

Fup = −2

n∑
i=1

log(pi) (5)

where n is the number of studies and pi is the t-test p-value that the gene of interest is
up-regulated in study i. Similarly, we calculate Fdown as the log-sum of p-values that each gene
is down-regulated.

For each gene, we calculate the p-value of Fup and Fdown under a chi-squared distribution
and perform a Benjamini-Hochberg FDR correction across all genes.25

2.3. Signature Selection

Once meta-analysis is performed, a subset of genes must be identified as the disease signature.
MetaIntegrator allows the user to identify these genes by varying the filtering parameters
based on gene effect size, effect size false discovery rate, Fisher’s method false discovery rate,
heterogeneity of effect size, and the number of studies in which the gene was present. In
order to avoid disproportionate influence of a single study, MetaIntegrator allows the user
only include genes which were similarly significant across all leave-one-dataset-out analyses.
By varying these criterion, the user may control whether they identify a larger set of genes,
which may be ideal for understanding molecular pathogenesis and identifying drug targets, or
a smaller set of genes, which may be optimal developing a parsimonious clinical diagnostic.

For users that are particularly interested in developing a powerful diagnostic, we have
integrated forward and backward search, which reduce gene set size to optimize the area
under the receiver operating characteristic curve on the training data.10
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2.4. Score Calculation

For a set of signature genes, a signature score can be computed for every sample, i, as:

Si =

( ∏
gene∈pos

xi(gene)

) 1

‖pos‖

−

( ∏
gene∈neg

xi(gene)

) 1

‖neg‖

(6)

where pos and neg are the sets of positive and negative genes, respectively, and xi(gene)

is the expression of any particular gene in sample i (a positive score indicates an association
with cases and a negative score with controls). This score Si is normalized to a z-score to
center the samples for each study around zero.

2.5. Visualization

With scores calculated for each sample, we are able to visualize comparisons of cases vs. con-
trols, regression of continuous variables against the score, and consistency of gene expression
across datasets. Some of the built in visualizations, in counter-clockwise order from Figure 1:

• Forest plots. Examine the effect sizes and standard errors for a single gene across
studies, including the summary effect size.

• Regression plots. Evaluate the relationship of the signature score with continuous
variables like clinical severity and time.

• Heatmap plots. Observe consistency of differential expression for all signature genes
across studies.

• Violin plots. Compare signature scores across categorical variables like disease sub-
types, treatment protocols, and demographic groups.

• ROC plots. Evaluate classification performance for signature score on a single dataset
in terms of specificity and sensitivity.

3. Data-Driven Biological Hypotheses with MetaSignature

We have created MetaSignature (http://metasignature.stanford.edu), a web application
which empowers researchers to generate data-driven hypotheses by enabling access to the re-
sults of our multi-cohort gene expression analysis framework. We focused on enabling intuitive
data access for researchers with specific interest in either a disease, a gene, or several genes,
while requiring little or no analytic background.

3.1. Data

Thus far, we have aggregated 615 gene expression studies composed of more than 35,000
human samples with approximately 1.5 billion data points from 103 diseases, a number which
we will continue to grow. For each disease, we applied our multi-cohort analysis approach to
compute the gene expression differences between the manually curated cases and controls. To
perform these multi-cohort analyses, we searched for relevant studies in GEO, identified cases
and controls in every study, and calculated disease effect sizes using the MetaIntegrator R
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Fig. 2. Diagram of the MetaSignature web application.

package. We stored the multi-cohort analysis results in a MySQL database for rapid retrieval.
As more studies are incorporated into our database, we recalculate the disease summary effect
sizes.

3.2. Gene-centric Analysis

For researchers that are interested in the expression of a particular gene, MetaSignature pro-
vides visualizations that allow researchers to quickly identify the diseases in which specified
gene is most differentially expressed [Figure 2a], study-level data of the gene expression in
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particular diseases [Figure 2b], and cell type-specific gene expression patterns [Figure 2c].
For instance, consider a researcher who has developed a drug, such as atorvastatin, that

effectively reduces plasma levels of CXCL10, and seeks to identify the most promising clinical
applications. Using MetaSignature, she determines CXCL10 is significantly up-regulated in
transplant rejection [Figure 2a]. A drilldown further identifies eight separate studies that have
measured CXCL10 in transplant rejection, indicating a highly positive effect size in all except
one of these studies [Figure 2b]. The researcher further observes that CXCL10 is up-regulated
in monocytes, compared to other immune cell types. [Figure 2c]. Taken together, these findings
would motivate a clinical investigation of the use of a CXCL10 inhibitor, such as atorvastatin,
in monocytes of patients at risk for transplant rejection. We have already verified this data-
driven hypothesis in mouse models and patient electronic health records, where, in both cases,
atorvastatin increases graft survival.8

Beyond single gene analysis, MetaSignature empowers users to examine gene sets in terms
of correlation of those genes based on their disease effect sizes [Figure 2e] and correlation of
diseases based on expression of that set of genes [similar to Figure 2f]. These visualizations
enable dissection of positively- and negatively-correlated members of gene families.

3.3. Disease-centric Analysis

If a researcher is more interested in a particular disease, then MetaSignature enables identifica-
tion of genes that are most up- or down-regulated in that disease [Figure 2d] and exploration
of that disease’s relationship to other diseases based on gene expression [Figure 2f]. When
we compute disease-disease correlation based on gene expression data, we observe clustering
patterns that map to established disease categories.

To follow our example from the gene-centric analysis, consider a researcher who is inter-
ested in improving transplant rejection outcomes. To gain a global understanding of transplant
rejection, the researcher observes that transplant rejection falls into a cluster of inflamma-
tory diseases, including discoid lupus, Crohn’s disease, and interstitial cystitis [Figure 2f]. By
examining the transplant rejection expression data in MetaSignature, he or she would rec-
ognize that CXCL10, a chemokine important in inflammatory response, is one of the most
up-regulated genes in transplant rejection [Figure 2d].27 After verifying that this observation
is consistent across studies [Figure 2b], the researcher identifies that CXCL10 is a reasonable
target for therapeutic inhibition in transplant rejection. Looking at other genes which are
up- and down-regulated in transplant rejection, he or she recognizes that CXCL10 expression
is in a positively correlated with several other genes, including TRAF2 and CD38 [Figure
2e]. Collectively from these observations, the researcher has learned that transplant rejection
is related to inflammatory diseases, which is consistent with the observed up-regulation of
CXCL10, an inflammatory chemokine. As noted in the gene-centric analysis above, we have
observed increased graft survival through administration of atorvastatin.8

4. Discussion

The reproducibility crisis in biomedical research has led to erroneous conclusions and wasted
resources. Here, we present a vertically integrated platform that can both assist with gene
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expression multi-cohort analysis (MetaIntegrator) and provide aggregated results for users
who wish to rapidly test hypotheses (MetaSignature). By leveraging the growing public data
available for study, this new resource can drastically reduce the time and effort for biologi-
cal hypothesis testing across numerous studies and diseases. While many software packages
exist for similar analyses,17–21 ours offers simple, custom software for plotting and analysis,
automated downloading of data from GEO, and integration to the MetaSignature database.

Our package is complementary to the recently published OMiCC platform, which enables
curation and meta-analysis of GEO studies.28 OMiCC relies on the RankProd package for
performing meta-analysis using rank-based statistics for identifying differentially expressed
genes.29 While others have provided thorough comparisons of the different meta-analysis meth-
ods, the most notable difference between RankProd and MetaIntegrator is that rank-based
statistics fail to produce a summary effect size across multiple studies.30,31 By leveraging our
MetaIntegrator package, OMiCC could produce differential gene expression profiles across
multiple studies instead of internal to single studies.

Although MetaIntegrator is currently applicable to microarray gene expression data, we
plan to expand the MetaIntegrator package to handle the count data which is generated
by RNAseq experiments. Additionally, we intend to enable download from additional data
repositories including ArrayExpress and, once RNAseq processing is implemented, Sequence
Read Archive.?,5

Our work promises to increase reproducibility of research for both data analysts and wet
lab researchers. For data analysts, we have made multi-cohort gene expression analysis pub-
licly available through a straightforward R package. By performing integrative, multi-cohort
analyses, these analysts will generate more reproducible results. For wet lab researchers, we
are empowering data-driven hypotheses prior to experimentation. Rather than performing
broad assays to identify disease related genes, researchers can focus on performing targeted
experiments on genes which are reproducible across cohorts.

5. Package and Source Code Distribution

The MetaIntegrator R package, including an introductory vignette, may be installed using the
following command in R:

install.packages("MetaIntegrator")

The source code for MetaIntegrator is available at:
https://cran.rstudio.com/web/packages/MetaIntegrator/

MetaSignature was developed using R and Shiny and is hosted at:
http://metasignature.stanford.edu/
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