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Given the diverse molecular pathways involved in tumorigenesis, identifying subgroups among cancer 

patients is crucial in precision medicine. While most targeted therapies rely on DNA mutation status in 

tumors, responses to such therapies vary due to the many molecular processes involved in propagating DNA 

changes to proteins (which constitute the usual drug targets). Though RNA expressions have been 

extensively used to categorize tumors, identifying clinically important subgroups remains challenging given 

the difficulty of discerning subgroups within all possible RNA-RNA networks. It is thus essential to 

incorporate multiple types of data. Recently, RNA was found to regulate other RNA through a common 

microRNA (miR). These regulating and regulated RNAs are referred to as competing endogenous RNAs 

(ceRNAs). However, global correlations between mRNA and miR expressions across all samples have not 

reliably yielded ceRNAs. In this study, we developed a ceRNA-based method to identify subgroups of cancer 

patients combining DNA copy number variation, mRNA expression, and microRNA (miR) expression data 

with biological knowledge. Clinical data is used to validate identified subgroups and ceRNAs. Since ceRNAs 

are causal, ceRNA-based subgroups may present clinical relevance. Using lung adenocarcinoma data from 

The Cancer Genome Atlas (TCGA) as an example, we focused on EGFR amplification status, since a 

targeted therapy for EGFR exists. We hypothesized that global correlations between mRNA and miR 

expressions across all patients would not reveal important subgroups and that clustering of potential ceRNAs 

might define molecular pathway-relevant subgroups. Using experimentally validated miR-target pairs, we 

identified EGFR and MET as potential ceRNAs for miR-133b in lung adenocarcinoma. The EGFR-MET up 

and miR-133b down subgroup showed a higher death rate than the EGFR-MET down and miR-133b up 

subgroup. Although transactivation between MET and EGFR has been identified previously, our result is the 

first to propose ceRNA as one of its underlying mechanisms. Furthermore, since MET amplification was 

seen in the case of resistance to EGFR-targeted therapy, the EGFR-MET up and miR-133b down subgroup 

may fall into the drug non-response group and thus preclude EGFR target therapy. 

* These authors contributed equally to this work. 
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1.  Introduction 

Lung cancer accounts for more deaths than any other cancers, with a 5-year survival rate of 10% 

[1]. Several gene mutations have been shown to play a role in lung adenocarcinoma (LUAD), 

including KRAS and EGFR [2]. Multiple drugs have been developed to target EGFR proteins and 

are actively used for those with EGFR mutation cancers. However, some patients do not respond 

to the targeted therapy and many initially responded patients develop resistance to such drugs. 

Since diverse molecular pathways are associated with any mutated genes, additional information 

other than DNA mutation is needed to properly identify which subgroup will benefit from the 

targeted therapy. 

Though mRNA expression data have been used to categorize tumors, correlations across 

mRNA expression data alone are often difficult to decipher within high dimensional data. 

Moreover, the most correlated genes or samples often do not provide clinically useful insight. To 

increase the signals, other types of data such as DNA methylation, microRNA (miR) expression, 

proteomics, and metabolic data have been incorporated with mRNA expression. In terms of RNA 

levels, mRNA and miR expression correlations have been heavily mined. However, the lack of 

known miR targets and excessive false positive target predictions hinder the computational search 

for significant miR-target gene networks. Worse, since miR effects on most target genes are small 

in degree, in vitro experimental confirmation is difficult, although the effects may contribute to 

long term clinical outcomes. Usual mRNA-miR expression analyses calculate correlations among 

RNAs for all samples. 

 Studies have recently demonstrated that RNAs can compete with one another for the same 

regulating miRNAs [3]. One of the earliest of these studies, focused on expression of PTEN, 

hypothesized that expression levels of “competing endogenous” RNAs (ceRNAs) affected PTEN 

expression. When siRNAs were used to deplete these RNAs, PTEN expression levels also 

decreased. Decreased ceRNA levels resulted in fewer miRNAs (which target both the ceRNA and 

PTEN) being “used-up” in regulation. This frees more of these miRNAs to target PTEN, thereby 

decreasing its expression. Overall, a decrease in expression of a ceRNA results in a corresponding 

decrease in PTEN. The same study also demonstrated that an increase in expression of a ceRNA 

corresponded with an increase in PTEN. This is likely applicable not just to PTEN but to other 

genes, such as a gene and a similar pseudogene or two genes regulated by the same miRNA. Note 

that ceRNA by definition entails causality whereas usual mRNA-miR expression results are 

correlative. RNA expression changes cause other RNA expression changes through miR 

manipulation. 

This RNA-RNA regulation inspired two lines of investigation: biochemical inquiry to identify 

individual ceRNA pairs [4-6] and bioinformatics research to identify global RNA-RNA networks 

using RNA expression data along with miR-target predictions [7,8]. Ideal conditions for miRs and 

ceRNAs have also been explored [9,10]. However, global ceRNA networks are difficult to discern 

due to imprecise miR target prediction and because, again, the miR effect on one target gene is 

usually small. Such small degree changes are difficult to identify from multi-layer RNA-RNA 

regulations of diverse samples though ceRNAs have been associated with diseases and have the 

potential to uncover disease progression [11]. 
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The Cancer Genome Atlas (TCGA) [12] provides a large amount of various types of data from 

multiple cancers, enabling new ways of data analysis. For example, LUAD data include the 

mRNA and miRNA (miR) expressions of 551 patients that could provide insight into multiple 

biological processes within tumors. This large mass of patient data allows for identification of 

subgroups based upon very specific traits. 

In this study, the concept of ceRNAs was utilized to identify a subgroup related to DNA 

mutations. We focused on patients with amplified EGFR to identify those who could benefit from 

EGFR targeted therapy, analyzing multiple datasets including copy number variation (CNV), 

RNAseq, and miRNAseq from TCGA in order to find the EGFR amplification signature. RNA 

and miR interactions were then identified using a database of experimentally validated miR-target 

genes from miRTarBase [13]. Our findings suggest that miR-133b, which targets EGFR, is 

downregulated due to high mRNA expression for EGFR caused by its DNA amplification, which 

in turn leads to the upregulation of MET, another gene targeted by miR-133b. In short, EGFR 

amplification is linked to MET mRNA upregulation through miR-133b, which targets both EGFR 

and MET in a manner reminiscent of the ceRNA interactions mentioned above. To our knowledge, 

our research is the first to identify disease subgroups based upon ceRNA interactions, an approach 

with potential application to other gene mutations or in other types of cancers. 

2.  Methods 

Most research into downstream effects of DNA mutations has focused on protein functions. Here 

we propose using the ceRNA concept to analyze downstream events of DNA mutation to 

complement conventional protein-centric biology and to identify RNA-RNA networks (Fig. 1). 

 

Fig. 1. Underlying biological concepts in mRNA expressions related to DNA mutations. (A) Protein-centric 

concept. A DNA mutation leads to protein expression changes, resulting in other mRNA changes through 

signaling pathways. These downstream mRNAs are RNAs of interest. (B) ceRNA concept. If DNA mutation leads 

to ceRNA upregulation, the “used-up” miRs would fail to regulate the ceRNA pair and thus increase mRNA 

expression. Similarly, if ceRNA is downregulated, the pairing ceRNA would be downregulated. miR expression 

data and miR target information are needed to elucidate this process. 
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2.1.  Overview of data analysis pipeline 

Fig. 2 shows the overall data analysis pipeline to identify subgroups related to a certain DNA 

amplification [deletion]. Including DNA information may reveal DNA mutation-related ceRNAs, 

reducing the search space for ceRNA networks. The overall process requires downloading copy 

number variation (CNV), mRNAseq, miRseq, and clinical data from TCGA and miR-target pairs 

with strong experimental evidence from miRTarBase. 

 

Fig. 2. Overall data analysis process to identify ceRNA-based subgroups. Here an example of amplified CNV 

genes is shown, with only upregulated mRNAs for clarity. 

2.2.  TCGA CNV data analysis 

We downloaded CNV data of all LUAD tumor samples from TCGA and translated chromosome 

locations to gene-level information using TCGA-Assembler [14]. Overall tumor characteristics 

were assessed by average CNV values of each gene in chromosome seven (EGFR location) for all 

tumor samples. Individual tumors’ EGFR CNV values were then sorted to determine if the sample 

number of the EGFR group was adequate. We used DNA copy numbers greater than 3 to define 

the EGFR amplified group (EGFR amp) and defined the control group as having a copy number 

between 1.97 and 2.03, yielding a sample size similar to that of EGFR amp. The corresponding 

log2(CNV/2) for the amp and the control groups is 0.58 and -0.02 to 0.02, respectively. 
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2.3.  TCGA mRNA and miRNA expression data analysis 

To analyze mRNA expression data, rsem.genes.normalized_results files for RNASeqV2 data of all 

samples were downloaded using TCGA-Assembler. Data for the EGFR amp and control groups 

were then extracted. Some patients did not have available rsem-normalized RNAseq data or 

miRseq data, and were removed from any further analysis. After confirmation of normalization 

across samples, a student t-test was conducted to compare the amp and the control group data. 

To analyze miR expressions, isoform.quantification files for miRNAseq data were 

downloaded from the TCGA Data Matrix and converted to mature miR values. These individual 

files were then combined to make a matrix file for all patients. The R code for this function can be 

found in GitHub (https://github.com/rptashkin/TCGA_miRNASeq_matrix). Upper quartile 

normalization was applied for student t-test analysis between the amp and control groups, upon 

which the miRNAs with p-values < 0.05 were separated into up- and downregulated groups. 

2.4.  Validated miR target finding 

To see if the miRNAs and genes had potential interactions, data from miRTarBase, a database of 

miRNA-target interactions, were used. The upregulated genes and downregulated miRNAs were 

compared to the miR-target pairs with strong experimental evidence to search for any pairs. 

2.5.  Subgroup determination and validation 

A heatmap of potential ceRNAs and miRNAs of interest was used to determine the subgroups 

formed. The patients were clustered using Pearson correlation, and subgroups were determined 

based on the clustering trees where the mRNA and miRNA expressions of all patients within the 

trees exhibit negative correlations between miR-targets and positive correlations between 

ceRNAs. A survival graph was prepared using R and the death rate differences between the groups 

were tested using student t-test. 

3.  Results 

3.1.  EGFR-amplified patients with lung adenocarcinoma 

The average CNV of genes on chromosome seven from 551 LUAD tumor samples was calculated 

to assess overall CNV signatures across the entire chromosome (Fig. 2A). One of the two peaks in 

chr7 corresponds to the EGFR location, confirming the existence of EGFR amplification in these 

tumor samples strong enough for analysis. To understand the EGFR CNV status of individual 

patients’ tumors, we sorted 551 tumor samples in terms of EGFR CNV values (Fig. 2B). The 

number of tumors with amplified EGFR copy numbers is much more than that with reduced copy 

numbers; some tumors showed distinctively amplified EGFR. Using the CNV cutoff value of 

three, there were a total 50 patients in the EGFR amp group and 56 patients in the control group. 
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Fig. 3. CNV data for LUAD patients. (A) Average log2(CNV) values of genes on chromosome 7 for all patients, 

ordered by chromosome position. (B) EGFR values for the 551 tumor samples. 

3.2.  RNA and miRNA expression analysis 

After we downloaded the rsem-normalized data from TCGA, we confirmed the normalization 

status using box plots. Using the patient lists in the EGFR amp and control groups identified from 

CNV data, mRNA expression data were extracted and organized for each group. We used 

isoform.quantification data to obtain mature miR reads for miR expression data analysis. The 

isoform data were translated to mature miR names and all reads corresponding to the same mature 

miRs were combined. All EGFR amp and control group patient miR data were merged into a 

matrix file. Upper quartile normalization was used for miR data and box plots of data before and 

after normalization were compared to ensure the normalization status. We used only those samples 

having both mRNA and miR data for further analysis, leaving 42 amp and 35 control patients. 

Student t-test was used to identify differently-expressed genes between the two groups of 

patient samples since the sample number is large. A heatmap of mRNAs with student t-test p-

value < 0.0001 (for visual purpose) is shown in Fig. 4A and that of miRs with p-value < 0.05 in 

Fig. 4B, together with the EGFR amp and control ID labels on top of each heatmap. The 

unsupervised hierarchical clustering of mRNA expressions identified two large groups: one mostly 

control and the other mostly amp group. Additionally, the amp group displays a greater number of 

upregulated genes than does the control group. The mRNA expression of EGFR (p-value of 1.62 x 

10-6), is excluded in this heatmap. The miR clustering also identified two large groups: one with 

all amp and the other generally with control samples. 
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Fig. 4. Hierarchical clustering of mRNA (A) and miRNA expression (B). ID above the heatmap represents the 

amp group in red and the control in blue. The patient IDs for each group can be found below the heatmap. 

3.3.  Identifying miR-target RNA pairs 

We used all mRNAs and miRs with p-values less than 0.05 to find experimentally validated miR-

target pairs, since such pairs are still highly limited. To ensure miR-target pair validity, we only 

used pairs found through strong experimental evidence from miRTarBase. Strong evidence 

includes validating with a reporter assay, a western blot analysis, or qPCR experiments. Also, 
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since we are looking into direct downstream events of EGFR amplification, only upregulated 

mRNAs and downregulated miRs in EGFR amp groups were considered. 

 

Fig. 5. Validated miRNA-RNA target pairs. The validated target pairs from upregulated mRNAs and 

downregulated miRNAs with p < 0.05. 

A total 19 miR-target pairs were identified in the up-mRNAs and down-miR groups, including 

4 miRNAs and 19 genes (Fig. 5). One of these pairs included EGFR, a known target of miR-133b. 

Interestingly, previous studies found miR-133 mediating ceRNAs of mRNA pairs, making miR-

133b a good candidate mediator for ceRNAs. Eight other miR-133b targets were found in the 

upregulated mRNAs, with p < 0.05, some possibly functioning as ceRNAs for EGFR through 

miR-133b in certain patient tumors.  

Among them, we decided to focus on MET, given its well-established EGFR and MET 

crosstalk [15,16], particularly related to drug resistance [17]. The fold changes of EGFR, MET, 

and miR-133b between EGFR amp and control groups are 6.68, 1.79, and 0.318, respectively; and 

corresponding p-values for MET and miR-133b are 0.0065 and 0.00085. To exclude other ways of 

increasing MET mRNA expressions in our dataset, we confirmed that 1) MET copy numbers did 

not vary in the EGFR amp groups; 2) the expression values of ETS1/2, PAX3, and TCF4, known 

transcription factors of MET [18], are not upregulated; and 3) ERBB3, known to activate MET 

[19], is not activated in the EGFR amp groups. 

3.4.  Subgroup identification 

To identify patients with potential EGFR-miR-133b-MET interactions, unsupervised hierarchical 

clustering with only miR-133b, EGFR, and MET were calculated using Pearson correlation 

distance (Fig. 6A). With a tree cutting of four groups, a subgroup featuring high EGFR-MET and 

low miR-133g (24 patients) and another subgroup with low EGFR-MET and high miR-133b (24 

patients) were identified (boxed in Fig. 6A). Overall Pearson correlation coefficients between 
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EGFR and MET, EGFR and miR-133b, and MET and miR-133b for all 77 patients are 0.082, -

0.030, and 0.082, respectively, unlikely to be identified by global RNA-RNA network analysis of 

all patients. The correlation coefficients across these 48 patients became 0.22, -0.24, and -0.23, 

respectively. 

To validate these two subgroups, we downloaded patient clinical data from TCGA. As seen in 

the survival curve (Fig. 6B), these two groups presented different survival rates (student t-test p-

value 0.016). Given the known EGFR-MET transactivation, we wondered if subgrouping may also 

emerge using EGFR and MET expressions alone. We could not see a clear pattern in the clustered 

heatmap using Pearson correlation distance method, but two clusters showed up using the 

Euclidean method. The p-value of survival rate differences between these groups was 0.15. 

Therefore, subgroups identified from EGFR-miR-133b-MET expression data presented stronger 

clinical implications. 

 

 

Fig. 6. Subgroup selection and survival curve. (A) Clustered heatmap of EGFR, MET, and miR-133b. The two 

boxes show the subgroups made through clustering. These subgroups have high miR-133b, low EGFR, and low 

MET or low miR-133b, high EGFR, and high MET. (B) Survival curves for the subgroups. 
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4.  Discussion 

EGFR is one of the more common mutations in lung adenocarcinoma and there exist targeted 

therapy options for those with this mutation. These currently include drugs such as gefitinib and 

erlotinib [20]. Though these therapies work well for many patients initially, most patients 

encounter drug resistance. Of the tumors that develop resistance to these drugs, around 20% have 

MET amplification [21]. 

MET, like EGFR, is a growth factor receptor that leads to several signaling cascades including 

those within the RAS-ERK pathway, which is often targeted by cancer drugs. When functioning 

normally, MET is essential to such processes as angiogenesis, wound healing, and liver 

regeneration [22]. 

Since there is a correlation between MET amplification and drug resistance to an EGFR-

targeted therapy, studies have focused on transactivation of EGFR and MET [16-18] though their 

mechanism has not been cleared elucidated. On the other hand, searching for ceRNA pairs as 

signature components of DNA level changes, we identified MET as a potential ceRNA for EGFR, 

suggesting ceRNA as one such mechanism. For a certain subgroup of patients, EGFR and MET 

were upregulated while their shared regulating miRNA was downregulated. This would fit well 

with the ceRNA concept, leading to the hypothesis that EGFR CNV amplification “uses up” the 

regulatory miR-133b, which is then less likely to regulate MET so that EGFR indirectly 

upregulates MET. Since MET upregulation may be due to MET amplification, we also checked 

MET CNV values for both the amp and control groups. We found no MET amplification in these 

groups, confirming that the MET RNA upregulation was not due to DNA amplification. 

While we have not biochemically confirmed MET and EGFR to be ceRNAs, EGFR-miR-

133b-MET expression clustering could provide subgroups with significantly different survival 

rates. Since such survival rate difference was not found in groups considering only EGFR-MET 

expressions, identifying patients with ceRNA function was essential. On the other hand, an EGFR-

MET ceRNA pair could have not been found without considering subgroups. Using our method of 

utilizing multiple-level data consisting of DNA copy number, mRNA expression, and miR 

expression together with biological information, we may find more clinically relevant potential 

ceRNA pairs as well as subgroups worthy of pursuit. 

Our method can be automated by changing tree distance cutoff values (Pearson correlation 

distance) in identifying other ceRNAs and related subgroups, which can be validated with survival 

rates. However, overfitting using survival rate should not be done. Since we started from EGFR 

CNV-amplified patients, we hypothesized EGFR as the causal mRNA, fit well with ceRNA 

concept. This kind of biological knowledge is essential to our method. 
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