

RABIX: AN OPEN-SOURCE WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND

INTEROPERABILITY OF WORKFLOW DESCRIPTIONS

GAURAV KAUSHIK†

Seven Bridges Genomics
1 Main Street, Cambridge, MA 02140, USA

Email: gaurav@sevenbridges.com

SINISA IVKOVIC
Seven Bridges Genomics

Omladinskih brigada 90g, Belgrade, Republic of Serbia
Email: sinisa.ivkovic@sevenbridges.com

 JANKO SIMONOVIC
Seven Bridges Genomics

Omladinskih brigada 90g, Belgrade, Republic of Serbia
Email: janko.simonovic@sevenbridges.com

NEBOJSA TIJANIC

Seven Bridges Genomics
Omladinskih brigada 90g, Belgrade, Republic of Serbia

Email: boysha@sevenbridges.com

BRANDI DAVIS-DUSENBERY
Seven Bridges Genomics

1 Main Street, Cambridge, MA 02140, USA
Email: brandi@sevenbridges.com

DENIZ KURAL

Seven Bridges Genomics
1 Main Street, Cambridge, MA 02140, USA

Email: deniz.kural@sevenbridges.com

As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated
rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous
groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence
of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible
framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow
engines which interpret the specification and enable additional features, such as error logging, file organization, optim izations to 1

computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix
Executora, an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of
workflow descriptions.

1This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health,
Department of Health and Human Services, under Contract No. HHSN261201400008C.
[†] Corresponding author
aThe Rabix Executor is available on GitHub: http://github.com/rabix/bunny

Pacific Symposium on Biocomputing 2017

154

mailto:gaurav@sevenbridges.com
mailto:sinisa.ivkovic@sevenbridges.com
mailto:janko.simonovic@sevenbridges.com
mailto:boysha@sevenbridges.com
mailto:brandi@sevenbridges.com
mailto:deniz.kural@sevenbridges.com
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
http://github.com/rabix/bunny
http://github.com/rabix/bunny

1. Introduction

Reproducible analyses require the sharing of data, methods, and computational resources.1 The probability of
reproducing a computational analysis is increased by methods that support replicating each analysis and the
capability to reuse code in multiple environments. In recent years, the practice of organizing data analysis via
computational workflow engines or accompanying workflow description languages has surged in popularity as
a way to support the reproducible analysis of massive genomics datasets.2,3 Robust and reliable workflow
systems share three key properties: flexibility, portability, and reproducibility. Flexibility can be defined as the
ability to gracefully handle large volumes of data with multiple formats. Adopting flexibility as a design
principle for workflows ensures that multiple versions of a workflow are not required for different datasets and
a single workflow or pipeline can be applied in many use cases. Together, these properties reduce the software
engineering burden accompanying large-scale data analysis. Portability, or the ability to execute analyses in
multiple environments, grants researchers the ability to access additional computational resources with which to
analyze their data. For example, workflows highly customized for a particular infrastructure make it challenging
to port analyses to other environments and thus scale or collaborate with other researchers. Well-designed
workflow systems must also support reproducibility in science. In the context of workflow execution,
computational reproducibility (or recomputability) can be simply defined as the ability to achieve the same
results on the same data regardless of the computing environment or when the analysis is performed.
Workflows and the languages that describe them must account for the complexity of the information being
generated from biological samples and the variation in the computational space in which they are employed.
Without flexible, portable, and reproducible workflows, the ability for massive and collaborative genomics
projects to arrive at synonymous or agreeable results is limited. 4,5

Biomedical or genomics workflows may consist of dozens of tools with hundreds of parameters to
handle a variety of use cases and data types. Workflows can be made more flexible by allowing for
transformations on inputs during execution or incorporating metadata, such as sample type or reference genome,
into the execution. They can allow for handling many use cases, such as dynamically generating the appropriate
command based on file type or size, without needing to modify the workflow description to adjust for edge
cases. Such design approaches are advantageous as they alleviate the software engineering burden and thus the
accompanying probability of error associated with executing extremely complex workflows on large volumes of
data. In addition, as the complexity of an individual workflow increases to handle a variety of use cases or
criteria, it becomes more challenging to optimally compute with it. For example, analyses may incorporate
nested workflows, business logic, memoization or the ability to restart failed workflows, or require parsing of
metadata -- all of which compound the challenges in optimizing workflow execution.

As a result of the increasing volume of biomedical data, analytical complexity, and the scale of
collaborative initiatives focused on data analysis, reliable and reproducible analysis of biomedical data has
become a significant concern. Workflow descriptions and the engines that interpret and execute them must be
able to support a plethora of computational environments and ensure reproducibility and efficiency while
operating across them. It is for this reason that we have developed the Rabix Executor (on GitHub as Project
“Bunny”)a, an open-source workflow engine designed to support computational reproducibility/recomputability
through the use of standard workflow descriptions, a software model that supports metadata integration,
provenance over file organization, the ability to reuse workflows efficiently, and which combines an array of
optimizations used separately in existing workflow execution methods. 6–12

Pacific Symposium on Biocomputing 2017

155

https://paperpile.com/c/5zLCv9/NiP6
https://paperpile.com/c/5zLCv9/pVQD+zpbX
https://paperpile.com/c/5zLCv9/78N7+5r3Q
https://paperpile.com/c/5zLCv9/lvrO+xJcb+PFsQ+6EIu+Go8Y+IYho+gKwt

For the 1.0 release of the Rabix Executor (or Rabix), we’ve focused on supporting the Common
Workflow Language (CWL), an open, community-driven specification for describing tools and workflows with
a focus on features that support reproducibility. 2 The Common Workflow Language is used to describe
individual “processes” or “applications”, which can be either a single tool or an entire workflow. Workflows
are described as a series of “steps,” each of which is a single tool or another, previously-described workflow.
Each step in the workflow has a set of “ports” which represent data elements that are either inputs or outputs of
the tool. A single port represents a specific data element that is required for execution of the tool or is the result
of its execution. For data elements that are passed between applications, there must be an output port from the
upstream application and a complementary input port on the downstream application.

CWL is designed to be extensible, so the specification may grow based on the community’s needs.
However, the software model for Rabix was designed with an abstract workflow execution model to anticipate
support for additional workflow languages or syntax used by other workflow engines.

2. Software model used by Rabix to interpret and compute workflows

The Rabix Executor allows users to execute applications described by a workflow description language. First,
the workflow description is submitted to the engine. Then, the Rabix engine interprets the workflow description
and translates it into discrete computational processes or “jobs.” Finally, the jobs are queued to a backend or
computational infrastructure, such as a local machine, cluster, or cloud instances, for scheduling and execution.
Each component of the executor (frontend, bindings, engine, queue, backend) is abstracted from each other to
enable complete modularity; Developers are able to design custom frontends (e.g. command line or graphical
user interface), bindings for the engine to parse different workflow languages, use the queuing protocol of their
choice, and submit computational jobs to different backends. This flexible software model means that Rabix can
be modified to perform data analysis on many different infrastructures as desired by the user or developer and
achieve identical results or incorporate tools described by different languages or syntaxes into a single
workflow.

3. Abstract representation of data analysis workflows in Rabix

Computational workflows are frequently understood as a directed acyclic graph (DAG) 3,13,14, a kind of finite
graph which contains no cycles and which must be traversed in a specific direction. In this representation, each
node is either an individual executable command, a “nested” workflow, or a set of commands that can be
executed in parallel. The edges in the DAG represent execution variables (data elements such as files or
parameters) which pass from upstream nodes to downstream ones.

Figure 1. Illustration of a directed acyclic graph (DAG). The DAG may be traversed from left-to-right, moving from node-to-node

along the edges that connect them.

Workflows can be described as machine-readable serialized data objects in either a general-purpose
programming language (GPL), domain-specific language (DSL), or serialized object models for workflow

Pacific Symposium on Biocomputing 2017

156

https://paperpile.com/c/5zLCv9/pVQD
https://paperpile.com/c/5zLCv9/zpbX+F96A+AKp5

description. 2,9,15 For example, an object model-based approach may describe the steps in a workflow in JSON
format with a custom syntax. This workflow description can then be parsed by an engine or executor to create
the DAG representation of the workflow. The executor may then translate the directions for workflow execution
to actionable jobs in which data is analyzed on a computational infrastructure, such as a cloud computing
instance, a high-performance computing cluster, or a personal computer.

A primary design constraint of the Rabix executor is to abstract components of a workflow to a data
model that is comprehensive enough to allow for mapping the syntax of different workflow systems, whether
they are DSLs or serialized data objects. In this way, tools and workflows from different systems can be used
together in a single workflow.

3.1. General structure of a workflow execution

There are three general steps in preparing a workflow for execution: interpretation of a machine-readable
workflow description, generation of the workflow DAG, and finally decomposition into individual jobs that can
be scheduled for execution. At the beginning of execution, a workflow engine or interpreter is provided with the
workflow description and the required inputs for execution of the workflow, such as parameters and file paths
(Fig. 2a). The workflow description object is then parsed and a DAG is created (Fig. 2b), which contains the
initial set of nodes and edges required for computation.

In addition to representing the steps in the workflow as a DAG (Fig. 2c), certain workflow ontologies
model computational jobs as a composite (tree) pattern in which there are “parent nodes” (workflows), which
can contain multiple executables or “leaf nodes” or other "parent" nodes (Fig. 2d).16–20 The Rabix engine
extends this model by generalizing “parent” nodes to include groups of jobs, such as when parallelization is
possible at that node. It is important to note that the “parent-child” terminology is also applied to relations
between individual workflow nodes by the Toil project, an executor which can also interpret Common
Workflow Language. 10 However, Rabix uses these terms to refer to computational "jobs" and "subjobs", e.g. a
“nested” workflow node is a child of a workflow and can be decomposed into an array of “subjobs”. The
engine handles the "execution" or parsing of these parent jobs, while leaves are queued for scheduling and
execution on a backend. This model allows for more efficient resolution of DAG features such as nodes in
which steps can be parallelized or are nested. It also maintains a one-to-one mapping between the internal DAG
representation and the workflow description supplied by the author.

Figure 2. The process of parsing a workflow description. A. The machine-readable document is interpreted, from which B. a DAG is
produced. From the DAG, C. subgraphs representing computational jobs that can be sent to backends for scheduling/execution and D.

a job tree is resolved, which identifies “parent” and “leaf” nodes. Each leaf represents an individual job.

4. Optimization of CWL workflows via DAG transformations

Pacific Symposium on Biocomputing 2017

157

https://paperpile.com/c/5zLCv9/6EIu+pVQD+ENPI
https://paperpile.com/c/5zLCv9/243Q+Ly8R+8wJh+WzgL+0BPj
https://paperpile.com/c/5zLCv9/Go8Y

The Rabix Executor began its development by examining how to interpret Common Workflow Language and
interoperate on different versions or earlier drafts, in a way that is extensible to future versions and other
workflow syntaxes. Rabix currently supports tools and workflows described in CWL Draft 2, Draft 3, and
version 1.0, either individually or in combination.

When a CWL workflow is represented as a DAG, applications become nodes and edges indicate the
flow of data elements between ports of linked tools. In the case of a simple workflow, there are no possible
transformations of the DAG; each node represents a single command line execution and all data elements are
simply passed from tool-to-tool as-is (Fig. 3).

Figure 3. A DAG created from a workflow described by the Common Workflow Language which contains two tools (A, B). Tools

have input and output ports, which define discrete data elements that are passed downstream along the edges of the DAG.

Additionally, CWL workflows can be designed such that data elements and the execution itself can be
transformed during runtime. Developers are given several options for describing workflows which can enhance
their utility and flexibility in handling biomedical data analysis:

1. The ability to generate “dynamic expressions” or transformations on data elements, inputs, outputs,
and other command line arguments.
2. The ability to perform “scatter/gather I/O (input/output)”, also known as vectored I/O, in which
execution of the input data can be parallelized based on specific criteria. A common genomics use case
for this is performing an analysis per chromosome, in which the set of chromosomes is delivered to a
node as an array (e.g. [1, 2, 3, X]).
3. The ability to nest workflows within workflows, which allows for rapid composition of complex
workflows and the ability to quickly reuse existing code.

4.1 Rabix uses a custom data model and port-level inspection for workflow execution

Though CWL provides a specification for how to describe the execution of tools and workflows, the exact way
in which these features are implemented is left entirely to the execution engine that is interpreting it. Therefore,
the Rabix engine has been designed to handle CWL descriptions with two optimizations:

1. Reacting to "port ready" events rather than "job done" events. “Port ready” is a state triggered by the
evaluation of data elements produced by a port, whereas “job done” refers to all ports of a node being
evaluated. In this approach, possible downstream executions are triggered if the edges leading to it are
resolved. This allows further dynamic transformations of the DAG to optimize for when all prerequisites
for downstream jobs are ready.
2. Reacting to "port ready" events from dynamically created subjobs and rewiring them to their final
destinations, possibly creating and running subjobs before their parent fully evaluated (referred to as
“look-ahead” method).

Pacific Symposium on Biocomputing 2017

158

These functionalities enable the Rabix engine to create additional edges and nodes as needed, in order to
decompose the workflow DAG as early as possible, allowing downstream jobs to be scheduled as soon as actual
prerequisites are met.

The workflow DAG is stored in three tables, Variables, Jobs, and Links, which are accessed when a port
value is updated. The Variables table contains the ports and their explicit values. The Jobs table stores each
node of the workflow and a counter for the inputs and outputs that have been evaluated at that node. The Links
table stores the edges in the DAG that is traversed.

As compared to other CWL execution models2,10, computational events are triggered by “port” events
instead of “job” events. In other words, when a port is evaluated, this triggers the executor to scan or update
these tables in the following order: Variables, Jobs, Links. Any node for which all input ports are now evaluated
is then executed.

Suppose for example, Rabix is executing the workflow in Figure 4. The engine will first parse the
workflow description as a workflow DAG with two variables (W.I, W.O; Fig. 4a), which are yet to be
evaluated. Additionally, there are two ports (#In, #Out), an input and an output. Next, the engine inspects the
contents of the workflow (Fig. 4b) and is able to see the following steps: Tool A, Tool B, each of their ports,
and the link between each step within scope.

After this, any known values are curried downstream through their links. The input for the workflow
(W.I) is curried to Tool A through the link that has been identified between the two (W.I → W.I.A). The input
job counter (#In) for Tool A is decremented to 0, thereby triggering an input event where a job (execution of
Tool A with value1) is distributed to a backend for computation. The engine now waits for an event in which
the output of Tool A (W.A.O) is reported as value.

Once the output for the job is evaluated and reported to the engine (value2), an output event is triggered.
The output port for W.A is decremented to 0, the link from W.A.O to W.B.I is traversed, and W.B.I is evaluated
as value2. This reduces the #In counter for W.B to 0 in the Jobs table and triggers a job, the execution of Tool B
with its input (Fig. 4c). The execution finally concludes until the input port counter for W reaches 0 and W.O is
evaluated (Fig. 4d).

Pacific Symposium on Biocomputing 2017

159

https://paperpile.com/c/5zLCv9/Go8Y+pVQD

Figure 4. The algorithm as it is traversed. A. The engine interprets the top-level of the workflow description and B. inspects the

contents of the workflow node and determines the DAG structure and links between each step (edges). The currying of value1 from
the workflow input to the input of Tool A triggers an input event, where a job (analysis of Tool A with its inputs) is sent to a backend
node. C. The execution continues and the engine traverses the DAG. D. The workflow is completed when the output of the final tool

(W.B.O., value3) is curried to the overall workflow output (W.O). The port counters allow the engine to track when nodes are ready to
be executed even if upstream jobs are only partially completed.

In the case where the engine is traversing a portion of the workflow that maps to a parent node beneath

the root parent node, each output update event will generate an additional output update event. This strategy
allows the engine to “look-ahead” towards future executions and apply optimizations to dynamic portions of the
DAG, as outlined in the following sections.

4.2. DAG transformations: parallelization with scatter/gather

By evaluating workflows through this port-counter and trigger system, Rabix is capable of rewiring
parallelizable nodes in the DAG when upstream jobs are only partially completed. Suppose we have a workflow
where a data file and an array are inputs for a single tool, which then produces an output file (Fig. 5a). In this
case, the tool is capable of being scattered over an array of variables (e.g. [1, 2, 3]). Normally, these executions
will be performed sequentially on a single core, or on multiple threads if the tool allows it. However, on a
workflow level, additional parallelization can be enabled by scattering the data over three separate executions of
the tool based on the values in the array (Fig. 5b), thus allowing the jobs to be distributed to separate
computational instances as needed.

Pacific Symposium on Biocomputing 2017

160

Figure 5. Graph transformations when performing parallelization. In this workflow, a function is performed on two inputs, an int and

an array of ints . B. The flattened DAG created by the engine. Each value of the array is scattered as a single process to reduce
computation time.

The advantages of the transformation approach is further demonstrated by another use case, in which

there are two sequential, parallelizable jobs (Fig. 6a). Rabix employs a “look-ahead” strategy (Fig. 6b) which
can mark downstream jobs as ready even though not all sub-jobs (leaves) are done from the upstream parent
job.

Figure 6. Graph transformations for sequential scattered nodes. A. The workflow from Fig. 5 with an additional downstream function
with an input that can be scattered. B. During execution, the engine is able to look ahead to the next stage in the workflow. If any input

is available (e.g. value of 11 returned by a tool), downstream processes which can proceed are started. C. The completed workflow.

Each node in the DAG does not need to be scheduled independently. Instead, (sub)jobs that work with
same data can be explicitly dispatched to the same backend. (Fig. 7). For example, in the case of executions
scattered across chromosome number, jobs processing the same chromosome can be distributed to the same
node to optimize cost.

Figure 7. Jobs can be grouped (grey background) for execution on a backend node from criteria set by the workflow or tool author.

Figure 7 demonstrates two possible job group assignments. In the case of Figure 7a, the first tool can be

executed simultaneously for each chunk of the data on a single backend node. Once any single job in the first
group is finished, the second group of jobs can begin execution on a second node. In the case of Figure 7b, each
chunk of data is parallelized across three nodes and the final output is gathered at the end.

Pacific Symposium on Biocomputing 2017

161

The engine is also able to send information to the backends about upcoming jobs, which allows a
backend scheduler to pre-allocate resources for them. When executing CWL workflows, both of these
optimizations are enabled through the "hints" feature.

Whether these optimizations can be used are sometimes dependent on how the workflow is constructed.
For example, a workflow author can make use of optimizations in Fig. 6 by grouping nodes that can be
scattered into a nested workflow. This optimization can be especially useful when combined with nested
workflow optimizations described in the next section, and allows for reusability of previously made workflows,
as encouraged by CWL.

4.3. Graph transformations: nested workflows

CWL developers have the ability to reuse existing code and import previously-described workflows into other
workflows. This feature means that it is possible to reuse code for additional workflows in lieu of refactoring
and potentially introducing errors that break reproducibility. However, the ability to nest workflows presents a
challenge to interpretation and optimization by the engine. If no DAG transformations are applied and nested
workflows are only executed recursively, this can lead to unnecessarily prolonged execution time and cost.

Suppose a developer has described a workflow that takes two inputs and produces two outputs from two
tools (Fig. 8a). In this workflow, one of the outputs is created by the upstream tool and one from the
downstream tool. Later, the developer wishes to reuse this workflow description in another workflow, where the
output of the upstream tool is passed to another tool for further analysis (Fig. 8b). As with sequentially scattered
tools, the engine is capable of passing values from the nested workflow, once they’re produced, to steps
downstream using the “look-ahead” strategy. Commonly, the tool outside the nested workflow is blocked from
execution until all outputs from the nested workflow are produced, leading to increased computation time and
cost.

Figure 8. Graph transformations of nested workflows to optimize total execution time. A. Workflow consisting of two tools. B.

Workflow in Fig. 8a. extended with third tool. The engine allows the downstream tool to start executing once the necessary inputs are
ready, even if the upstream workflow has yet to produce all of its outputs. No code refactoring from the workflow in 8a is required.

4.4. Benefits to Logging, Orchestration, and Computation

The model used by the Rabix engine allows for improved optimization of data analysis at the workflow level.
Further, it provides the ability to implement additional optimizations or features to enhance orchestration of jobs
and computation, regardless of whether such features are supported by a workflow description language or
specification.

Rabix keeps track of all jobs executed from the workflow and caches results. In addition, each parameter
of a job is recorded and automatically logged for the researcher. These include the explicit command line

Pacific Symposium on Biocomputing 2017

162

arguments used, the files/paths, attributes of the data, metadata attributes, and any logs associated with the
execution. In addition, a snapshot of the application is stored, along with the explicit values used in the
execution. All of this is done at the job level, allowing for granular replication of subsets of a workflow. If the
workflow contains a job that has previously been executed and the outputs are still available, the engine can
reuse them even if the job was part of a different workflow run. Importantly, even if cached results are not
available, the engine will look ahead in the DAG and may encounter cached downstream jobs which do have
these files available, and so can resume failed or modified workflow jobs. This makes the caching mechanism
comparable to declarative workflow description such as GNU Make. 8

Additional business logic outside of a workflow specification can also be implemented. For example,
CWL does not yet allow for conditional workflows, in which the entirety of DAG is not necessarily traversed
but only paths based on checkpoints during the execution. Additionally, though a DAG is acyclic, Rabix could
in principle enable loops for a tool or workflow which use iterative operations.

4.5. Caveats to Graph Transformations and Possible Solutions

An important caveat for these optimizations are external transformations in which the structure of data elements
is modified before execution and thus cannot be anticipated by the engine. For example, CWL and other
workflow description languages allow for modifications of input types before tool execution. In certain cases,
such as for a tool which can be scattered, the data type may change or the length of the array that is being
scattered cannot be known ahead of time. If the engine is unable to anticipate the length of an array that must be
scattered upon execution, it is impossible for it to re-wire the DAG before evaluation. However, such hurdles
can be overcome by allowing users to either define a mapping for individual array items or declaratively
specifying the method of combining multiple ports before scattering (cross-product or dot-product). In these
cases, the engine can still maintain its look-ahead optimizations.

4.6. Furthering reproducibility by extending CWL to execution descriptions

Workflows described using the Common Workflow Language require two objects for execution: the description
of an application and an input object specifying the explicit values of the required inputs. Recording a task that
has been previously executed is not, however, within the scope of CWL. However, an analyst may want to
reinspect a prior analysis, reuse a workflow with a specific set of parameters on new data, or reanalyze the same
data with a different workflow version. It is for these reasons that we have enabled an additional layer of task
description and annotation within Rabix, alleviating the burden of logging the workflow execution.
 Following the execution of a workflow, additional outputs and logs are produced by Rabix as a matter of
course. The explicit command line execution, an object describing the output of the execution, and a description
of the workflow execution are all recorded. From these objects, it is directly possible to reproduce a prior
analysis or reanalyze additional data with the exact same parameters as previous. Rabix allows for replication of
a previous execution or reproduction an exact workflow on new data with a single command line call. In this
way, it is possible for an analyst to not only publish a workflow but also the explicit tasks as plain text files.
These functionalities can be extended with new modules or plugins to enable a variety of use cases centered on
reproducibility.

Pacific Symposium on Biocomputing 2017

163

https://paperpile.com/c/5zLCv9/PFsQ

5. Rabix in the context of existing workflow models and engines

The primary design guideline for Rabix was to support Common Workflow Language in a way which will
allow for supporting additional workflow languages, whether they are domain-specific languages or
object-based. Further, “tools” or workflows described in different syntaxes should be interoperable such that a
single workflow may be comprised of tools and workflows from a variety of syntaxes. In effect, certain
optimizations described in Rabix above have been implemented in other systems, but not yet in a single
executor capable of supporting emerging standards.

Most of the focus in this paper was on port-level inspection, an abstract data model for tools and
workflows, and how they can enable additional optimizations when used in conjunction. However, certain
features described here are also used by existing workflow systems,6,7,10–12 most notably the support for multiple
infrastructures. Additionally, there are certain features not yet implemented in Rabix but which are seen in other
systems, such as conditional steps in a workflow, as seen in Toil. Though the Rabix model allows for
conditional operations (e.g. for, if, while), we chose to focus on features supporting reusability and
interoperability and computational optimizations for this manuscript.

6. Conclusions

The Rabix Executor is an open-source project designed to enable scalable and reproducible analysis of portable
workflows, which is available on GitHub (http://github.com/rabix/bunny). Computational reproducibility, the
ability to replicate a prior analysis or reuse prior workflows on new data, is required for accurately judging
scientific claims or enabling large-scale data analysis initiatives in which synonymous results can be
compared.4,5,21 The Rabix engine additionally aims to optimize workflow executions by intelligently interpreting
and handling complex workflows. This is achieved through a composite model in which workflows can be more
fully decomposed. Finally, additional logic can be applied to optimize for user-defined variables, such as cost or
execution time, regardless of the workflow description language being interpreted.

Pacific Symposium on Biocomputing 2017

164

https://paperpile.com/c/5zLCv9/Go8Y+IYho+xJcb+gKwt+lvrO
https://paperpile.com/c/5zLCv9/uYSf+5r3Q+78N7

References

1. Peng, R. D. Reproducible Research in Computational Science. Science 334, 1226–1227 (2011).
2. Amstutz, P. et al. Common Workflow Language v1.0. FigShare (2016).

doi:10.6084/m9.figshare.3115156.v2
3. Leipzig, J. A review of bioinformatic pipeline frameworks. Brief. Bioinform. (2016).

doi:10.1093/bib/bbw020
4. Kanwal, S., Lonie, A., Sinnott, R. O. & Anderson, C. Challenges of Large-Scale Biomedical Workflows on

the Cloud -- A Case Study on the Need for Reproducibility of Results. in 2015 IEEE 28th International
Symposium on Computer-Based Medical Systems 220–225 (IEEE). doi:10.1109/CBMS.2015.28

5. Alioto, T. S. et al. A comprehensive assessment of somatic mutation detection in cancer using
whole-genome sequencing. Nat. Commun. 6, 10001 (2015).

6. Jason P Kurs, Manuele Simi, Fabien Campagne. NextflowWorkbench: Reproducible and Reusable
Workflows for Beginners and Experts. (2016). doi:10.1101/041236

7. Cromwell: Workflow Execution Engine using WDL. Available at:
https://github.com/broadinstitute/cromwell. (Accessed: 2016)

8. GNU Make: A Program for Directing Recompilation : GNU Make Version 3.79.1 . (Free Software
Foundation, 2002).

9. Köster, J. & Rahmann, S. Snakemake--a scalable bioinformatics workflow engine. Bioinformatics 28,
2520–2522 (2012).

10. John Vivian, Arjun Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Armstrong, Adam Novak, Jacob
Pfeil, Jake Narkizian, Alden D. Deran, Audrey Musselman-Brown, Hannes Schmidt, Peter Amstutz, Brian
Craft, Mary Goldman, Kate Rosenbloom, Melissa Cline, Brian O’Connor, Megan Hanna, Chet Birger, W.
James Kent, David A. Patterson, Anthony D. Joseph, Jingchun Zhu, Sasha Zaranek, Gad Getz, David
Haussler, Benedict Paten. Rapid and efficient analysis of 20,000 RNA-seq samples with Toil. bioRxiv
(2016). doi:10.1101/062497

11. Wolstencroft, K. et al. The Taverna workflow suite: designing and executing workflows of Web Services
on the desktop, web or in the cloud. Nucleic Acids Res. 41, W557–61 (2013).

12. Goecks, J., Nekrutenko, A., Taylor, J. & Galaxy Team. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86
(2010).

13. Deelman, E. et al. Pegasus, a workflow management system for science automation. Future Gener.
Comput. Syst. 46, 17–35 (2015/5).

14. Guo, F., Yu, L., Tian, S. & Yu, J. A workflow task scheduling algorithm based on the resources’ fuzzy
clustering in cloud computing environment. Int. J. Commun. Syst. 28, 1053–1067 (2015).

15. Workflow Description Language - Specification and Implementations. Available at:
https://github.com/broadinstitute/wdl. (Accessed: 2016)

16. Belhajjame, K. et al. Using a suite of ontologies for preserving workflow-centric research objects. Web
Semantics: Science, Services and Agents on the World Wide Web 32, 16–42 (2015/5).

17. Terstyanszky, G. et al. Enabling scientific workflow sharing through coarse-grained interoperability.
Future Gener. Comput. Syst. 37, 46–59 (2014/7).

18. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented
Software with Applying Uml and Patterns:An Introduction to Object-Oriented Analysis and Design and the
Unified Process . (Addison Wesley, 2003).

19. PROVO-O: The PROV Ontology. (2013). Available at: https://www.w3.org/TR/prov-o. (Accessed: 2016)
20. Hettne, K. M. et al. Structuring research methods and data with the research object model: genomics

workflows as a case study. J. Biomed. Semantics 5, 41 (2014).
21. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible computational

research. PLoS Comput. Biol. 9, e1003285 (2013).

Pacific Symposium on Biocomputing 2017

165

http://paperpile.com/b/5zLCv9/NiP6
http://paperpile.com/b/5zLCv9/NiP6
http://paperpile.com/b/5zLCv9/NiP6
http://paperpile.com/b/5zLCv9/NiP6
http://paperpile.com/b/5zLCv9/NiP6
http://paperpile.com/b/5zLCv9/pVQD
http://paperpile.com/b/5zLCv9/pVQD
http://paperpile.com/b/5zLCv9/pVQD
http://paperpile.com/b/5zLCv9/pVQD
http://paperpile.com/b/5zLCv9/pVQD
http://paperpile.com/b/5zLCv9/pVQD
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://paperpile.com/b/5zLCv9/zpbX
http://paperpile.com/b/5zLCv9/zpbX
http://paperpile.com/b/5zLCv9/zpbX
http://paperpile.com/b/5zLCv9/zpbX
http://dx.doi.org/10.1093/bib/bbw020
http://paperpile.com/b/5zLCv9/78N7
http://paperpile.com/b/5zLCv9/78N7
http://paperpile.com/b/5zLCv9/78N7
http://paperpile.com/b/5zLCv9/78N7
http://paperpile.com/b/5zLCv9/78N7
http://dx.doi.org/10.1109/CBMS.2015.28
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/5r3Q
http://paperpile.com/b/5zLCv9/lvrO
http://paperpile.com/b/5zLCv9/lvrO
http://dx.doi.org/10.1101/041236
http://paperpile.com/b/5zLCv9/xJcb
https://github.com/broadinstitute/cromwell.
http://paperpile.com/b/5zLCv9/xJcb
http://paperpile.com/b/5zLCv9/PFsQ
http://paperpile.com/b/5zLCv9/PFsQ
http://paperpile.com/b/5zLCv9/PFsQ
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/6EIu
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://paperpile.com/b/5zLCv9/Go8Y
http://dx.doi.org/10.1101/062497
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/IYho
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/gKwt
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/F96A
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/AKp5
http://paperpile.com/b/5zLCv9/ENPI
https://github.com/broadinstitute/wdl.
http://paperpile.com/b/5zLCv9/ENPI
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/243Q
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/Ly8R
http://paperpile.com/b/5zLCv9/8wJh
http://paperpile.com/b/5zLCv9/8wJh
http://paperpile.com/b/5zLCv9/8wJh
http://paperpile.com/b/5zLCv9/8wJh
http://paperpile.com/b/5zLCv9/8wJh
http://paperpile.com/b/5zLCv9/WzgL
https://www.w3.org/TR/prov-o/#references.
http://paperpile.com/b/5zLCv9/WzgL
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/0BPj
http://paperpile.com/b/5zLCv9/uYSf
http://paperpile.com/b/5zLCv9/uYSf
http://paperpile.com/b/5zLCv9/uYSf
http://paperpile.com/b/5zLCv9/uYSf
http://paperpile.com/b/5zLCv9/uYSf
http://paperpile.com/b/5zLCv9/uYSf

