
SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA

JUHO KIM

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Urbana, Illinois, 61801, USA

Email: juhokim2@illinois.edu

NATE RUSSELL

Institute of Genomic Biology, University of Illinois at Urbana-Champaign

Urbana, Illinois, 61801, USA

Email: ntrusse2@illinois.edu

JIAN PENG

Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, Illinois, 61801, USA

Email: jianpeng@illinois.edu

 Single-cell analysis can uncover the mysteries in the state of individual cells and enable us to construct new models

about the analysis of heterogeneous tissues. State-of-the-art technologies for single-cell analysis have been

developed to measure the properties of single-cells and detect hidden information. They are able to provide the

measurements of dozens of features simultaneously in each cell. However, due to the high-dimensionality,

heterogeneous complexity and sheer enormity of single-cell data, its interpretation is challenging. Thus, new

methods to overcome high-dimensionality are necessary. Here, we present a computational tool that allows efficient

visualization of high-dimensional single-cell data onto a low-dimensional (2D or 3D) space while preserving the

similarity structure between single-cells. We first construct a network that can represent the similarity structure

between the high-dimensional representations of single-cells, and then, embed this network into a low-dimensional

space through an efficient online optimization method based on the idea of negative sampling. Using this approach,

we can preserve the high-dimensional structure of single-cell data in an embedded low-dimensional space that

facilitates visual analyses of the data.

Pacific Symposium on Biocomputing 2017

623

1. Introduction

Many traditional biological experiments have been conducted on bulk-cell populations1 with an

assumption that cells in the same group share homogeneous properties. However, some evidence1-3

shows that heterogeneity can exist even within a small group of cells. The assumption based on

homogeneity of each cell group can mislead averages and does not properly explain small but critical

changes in individual cells. Each cell can have different biological properties such as cell sizes, gene

expression levels, RNA transcripts, and bio marker expressions. These variations can be very

important to answer previously unsolved questions in stem cell research, cancer biology, and

immunology. Single-cell data analysis has contributed to understand the various and important

behaviors of individual cells1-15.

The recent development of single-cell technologies has also improved the analysis to be more

reliable and reasonable. For example, mass cytometry4,16 can measure up to 60 parameters at the

same time for tens of thousands of individual cells. In addition, single-cell RNA sequencing

techniques17,18 also have been widely used, which deal with hundreds of or thousands of parameters

per cell.

Even though the advanced single-cell technologies can provide quality data, such data sets are

still difficult to analyze. Traditionally, single-cell data are analyzed in a biaxial scatter plot for two

variables at once19. However, this method requires the order of dimension squared to represent all

pairwise relationships between variables, which is computationally expensive. In addition, scatter

plots cannot capture multivariate relationships between more than two variables. Thus, new

computational methods have been developed for analyzing single-cell data. For instance, SPADE6

tries to find hierarchies of high-dimensional single-cell data showing cellular heterogeneity by

clustering of down-sampled cytometry data, constructing minimum spanning trees, and up-sampling.

However, this method considers not each cell itself but cell groups and their behaviors on average.

X-shift12 is recently developed to discover cell subsets and visualize them based on a weighted k-

nearest neighbor density estimation.

Another approach to deal with the high-dimensionality of single-cell data is to use

dimensionality reduction techniques. Some researchers applied principle component analysis

(PCA)20 to find low-dimensional projections of single-cell data21,22. Although PCA is possibly the

most popular method of dimensionality reduction, it is a linear projection method. Thus, it cannot

capture nonlinear structures in single-cell data. In order to address this issue, advanced methods

based on nonlinear dimensionality reduction have been developed. Both viSNE8 and ACCENSE10

are based on an algorithm called t-Distributed Stochastic Neighbor Embedding (t-SNE)23. viSNE

applies t-SNE to mass cytometry data and reveals biologically meaningful relationships from bone

marrow and leukemia data. ACCENSE combines the results of t-SNE with kernel-based density

estimation and finds subpopulations of given single-cell data sets. However, the runtime complexity

of t-SNE is 𝑂(𝑛2), and that of its accelerated version, Barnes-Hut-SNE24 is 𝑂(𝑛 log 𝑛) where 𝑛 is

the number of cells. Thus, both methods require excessive computational time for large-scale single-

cell data sets with hundreds of thousands or millions of cells.

Pacific Symposium on Biocomputing 2017

624

In this paper, we propose a scalable embedding-based visualization method for large-scale and

high-dimensional single-cell data based on a new graph embedding algorithm, LargeVis25. The

proposed method constructs a k-nearest neighbor (k-NN) network to find the structure of similarities

between high-dimensional single-cell data. This process is accelerated by an approximate k-NN

construction method based on random projection trees26 and neighbor exploring30. This approach

optimizes a probabilistic utility function to embed the high-dimensional single-cell data into a low-

dimensional space (2D or 3D). For efficient training, the utility function is approximated using

negative sampling28 that was introduced in word2vec28. The runtime complexity of our method is

linear with regard to the number of cells, which is faster than previous single-cell visualization tools

such as viSNE8 and ACCENSE10.

2. Methods

We propose a new approach for visualizing high-dimensional single-cell data via efficient

dimensionality reduction based on LargeVis25. The algorithm consists of two steps: constructing an

approximate k-NN network to find the similarity structure between high-dimensional single-cell

data and embedding the constructed network into a 2D or 3D space while preserving the high-

dimensional structure in an easily visualized low-dimensional space. Pairwise similarity between

single-cell data points is determined by the distance between them in their marker expression

representation space. The core assumption is that numerical proximity in the marker space is

proportional to cell similarity.

Figure 1. Outline of high-dimensional single-cell data visualization: constructing a k-nearest neighbor network and

embedding the network into a 2D space.

2.1. Notation

We denote a set of high-dimensional single-cell data as 𝒳 = {𝑥𝑖|𝑥𝑖 ∈ ℝ𝑝, 𝑖 ∈ [𝑛], 𝑝 > 3} ,

where 𝑝 is the dimension of measurements and 𝑛 is the number of cells in the data; and the

embedded representations of cells are denoted as 𝒴 = {𝑦𝑖|𝑦𝑖 ∈ ℝ2 𝑜𝑟 ℝ3, 𝑖 ∈ [𝑛]} in a low-

dimensional space.

Pacific Symposium on Biocomputing 2017

625

2.2. Construction of a k-nearest neighbor network

Constructing a k-nearest neighbor (k-NN) network is a very crucial step in many applications of

machine learning such as a distance-based similarity search, manifold learning, and topological data

analysis. Finding the exact k-NN network for large-scale single-cell data is time-consuming because

it requires 𝑂(𝑛2) time to compute all pairwise distances between all cells in the data set.

Approximate methods for constructing a k-NN network have been developed, all of which have a

tradeoff between speed and accuracy. Common approaches include locality sensitivity hashing29,

neighbor exploring methods27, and partitioning methods based on random projection trees26, k-d

trees31 and k-means trees31.

As suggested by LargeVis25, we develop a fast method to construct an approximate k-NN

network. We first partition the whole high-dimensional space into two subspaces and generate a tree

having only a root node. A set of single-cells in each partitioned subspace belongs to child nodes of

the root node. Then, for the two subspaces that each set of single-cells in the child nodes belongs to,

we partition each subspace into two sub-subspaces and generate two child nodes for each child node

of the root node. The single-cells in each sub-subspace are assigned to each generated child nodes’

child node. By continuing to partition the space iteratively, we can build a tree that assigns a group

of single-cells belonging to partitioned small subspaces to its nodes. When the number of cells in a

certain node is equal to or less than a predefined threshold, we stop the iterations. The single-cells

in each leaf node are considered to be a candidate of approximate nearest neighbors. The generated

tree is called a random projection tree.

By generating many random projection trees, we can increase the accuracy of the construction

of a k-NN network, but it is time consuming. Instead of building many random projection trees, we

use a neighbor search method in order to enhance both the accuracy and the efficiency. Specifically,

we search the neighbor 𝑗 of the neighbor of each node 𝑖 assuming that its neighbor’s neighbor is

likely to be its neighbor also30. If the number of neighbors of node 𝑖 is less than k, the method pushes

some searched neighbor’s neighbor 𝑗 into the set of nearest neighbors of the node 𝑖. By iteratively

doing this procedure, we can improve the accuracy of the construction and finally find our

approximate k-NN network. Regarding the accuracy of the k-NN network construction, one can

refer to the paper of largeVis25, which dealt with several benchmark tests for the accuracy. The k-

NN network construction process has linear time complexity because we build only a few random

projection trees and because searching a certain node’s neighbor’s neighbor requires just a few

iterations.

We then calculate the weight of each pairwise edge that represents the similarity structure of the

constructed network using the Gaussian kernel, which was also used by t-SNE23,24. The conditional

probability that the edge from data 𝑥𝑖 to 𝑥𝑗 is observed is first computed by:

𝑝𝑗|𝑖 =
exp (−‖𝑥𝑖 − 𝑥𝑗‖

2
2𝜎𝑖

2⁄)

∑ exp(−‖𝑥𝑖 − 𝑥𝑘‖2 2𝜎𝑖
2⁄)(𝑖,𝑘)∈𝐸

 𝑝𝑖|𝑖 = 0

(1)

where the parameter 𝜎𝑖 is determined by setting the perplexity, and 𝐸 is the set of all edges in the k-

NN network. To make the network symmetric, the weights are defined as:

Pacific Symposium on Biocomputing 2017

626

 𝑤𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 (2)

where 𝑛 is the number of input single-cell data. Since the number 𝑘𝑛 is much smaller than the

number of all pairs (𝑛2), the constructed k-NN network is sparse. The sparsity of the k-NN network

can make us compute 𝑤𝑖𝑗 within linear time complexity. Through the steps, our method can find the

similarity structure of high-dimensional single-cell data within linear time complexity 𝑂(𝑘𝑛).

2.3. Network embedding into a low-dimensional space

Embedding the constructed k-NN network is intended to preserve local and global network topology

such that neighbors in the network are near each other in a low-dimensional space. First, for two

nodes 𝑣𝑖 and 𝑣𝑗 , LargeVis25 defines the probability that they come from the same neighborhood, i.e.

the probability that we can observe the edge between two nodes in the k-NN network, as:

 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖, 𝑦𝑗) = 𝑓(dist(𝑦𝑖 , 𝑦𝑗))
(3)

where 𝑓 is a transformation function to map the distance between 𝑦𝑖 and 𝑦𝑗 into a probability value.

The function 𝑓 satisfies the idea that when the distance between two low-dimensional points is

small, the probability observing the connection between them is high. After considering some

candidates like a multinomial logistic model and a sigmoid function, we chose 𝑓(𝑥) =
1

1+𝛼𝑥2 (𝛼 >

0) due to its computational simplicity. The selected function 𝑓 does not require any normalization

across the data set, thus only 𝑂(𝑛) runtime is needed for objective evaluation and gradient

calculation in the embedding optimization (see below). In addition, we can control the thickness of

the tail of the function 𝑓 by controlling 𝛼. When 𝛼 becomes smaller, its tail gets thicker. When 𝛼 =

1, 𝑓 is Student’s t-distribution with degree of freedom one except a scaling factor
1

𝜋
. On the other

hand, t-SNE23 uses the Gaussian kernel 𝑝𝑖𝑗 of (1) and a t-distributed kernel 𝑞𝑖𝑗 =
(1+‖𝑦𝑖−𝑦𝑗‖

2
)−1

∑ (1+‖𝑦𝑘−𝑦𝑙‖2)−1
𝑘≠𝑙

to measure its high-dimensional and low-dimensional similarity, respectively. By minimizing the

Kullback-Leibler divergence between two similarities through gradient descent, t-SNE finds its low-

dimensional embedding. The gradient of its cost function contains the normalization term of 𝑞𝑖𝑗.

Computing the term requires 𝑂(𝑛2). To avoid inefficiency, accelerated t-SNE24 uses Barnes-Hut

algorithm32 and reduces its time complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛). Two versions of t-SNE are

more expensive than our approach.

Like LargeVis25, we chose Euclidean distance as a distance metric in a low-dimensional space

because computing Euclidean distance between embedded single-cell data is simple. In addition, we

can map each calculated distance to one of the various probability function values since the range

of Euclidean distance is [0, ∞).

To embed the high-dimensional data, we define a log likelihood utility function (4) that considers

both the probabilities of all edge connections 𝐸 of the constructed k-NN network and the

probabilities of all negative edges 𝐸𝐶 . Negative edges mean that pairwise single-cell connections

that are not observed in the k-NN network. This idea originally comes from noise-contrastive

estimation (NCE)33, which considers estimation that differentiates its observed data from noise using

nonlinear logistic regression. Using the idea of NCE, we want to discriminate the same type of cells

Pacific Symposium on Biocomputing 2017

627

from different types of cells. Specifically, by maximizing the first term of (4), we can make similar

single-cells become closer to each other in a low-dimensional space, and by maximizing the second

part of (4), we can make dissimilar single-cells move away from each other.

 𝐽 = ∑ 𝑤𝑖𝑗 log 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖 , 𝑦𝑗)

(𝑖,𝑗)∈𝐸

+ ∑ 𝛾 log(1 − 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖, 𝑦𝑗)

(𝑖,𝑗)∈𝐸𝐶

)
(4)

However, considering all negative edges is computationally expensive or even intractable when

input data are very large. Thus, instead of using all negative edges, we use the idea of negative

sampling28. This approach considers only a few samples drawn from a noise distribution. We

assumed 𝑃𝑛(𝑗) ~ 𝑑𝑗
3/4

 as the noisy distribution where 𝑑𝑗is the degree of node 𝑗, which was used in

word2vec28. By letting 𝑀 the number of negative samples, we can redefine the utility function as:

𝐽 = ∑ 𝑤𝑖𝑗 log 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖 , 𝑦𝑗)

(𝑖,𝑗)∈𝐸

+ ∑ 𝔼𝑗𝑘~𝑃𝑛(𝑗)𝛾 log(1 − 𝑝(𝑒𝑖𝑗𝑘
= 1|𝑦𝑖 , 𝑦𝑗𝑘

)

𝑀

𝑘=1

) (5)

Then, we optimized (5) by applying asynchronous stochastic gradient descent (ASGD)34. It is a

powerful optimization technique which can be efficiently parallelized and can make our algorithm

more scalable. ASGD can be used in this context because the network constructed by the first step

is sparse and there are few memory access conflicts between the threads we used. The learning rate

is determined by 𝜌𝑡 = 𝜌(1 − 𝑡/𝑇) where 𝑇 is the total number of edge samples25, and the initial

learning rate 𝜌0 is determined by considering the properties of input single-cell data. The time

complexity of each SGD step of (5) is 𝑂(𝑀). For a large number of data set, the number of SGD

iterations is usually proportional to the number of the given data set, 𝑛. Thus, the time complexity

of the optimization is 𝑂(𝑀𝑛), which is linear with respect to the number of samples.

3. Experiments and Discussion

3.1. Data and data processing

We used mass cytometry data that are provided by X-shift12. They consist of 10 data sets that contain

mice bone marrow samples stained with surface markers, and each of them has 51 parameters.

Instead of using all of them, we used 39 surface marker expressions12,35 that were utilized for mass

cytometry experiments of the immune system reference framework35. In addition, the data was

processed through noise thresholding and asinh transformation, i.e. 𝑦 = asinh(max(𝑥 − 1, 0) /5)

like X-shift12 and viSNE8 applied. The data sets also offer 24 gating annotations of each cell, which

were used to distinguish cells in visualization and compare the clustering performance of viSNE

and our method.

3.2. Experimental setting

We compared our method with viSNE8 because it is a state-of-the-art method of single-cell

visualization based on nonlinear embedding like our approach. Before implementing both

algorithms, we set the parameters of each method. viSNE is based on Barnes-Hut-SNE24, which has

two parameters: perplexity and theta that controls the tradeoff between speed and accuracy. In our

Pacific Symposium on Biocomputing 2017

628

experiments, we set the two as 30 and 0.5, respectively. Our method allows for more control and

therefore has more parameters: number of trees, number of neighbors, perplexity, number of

negative samples, rho, gamma, and alpha. We set the parameters considering our input data set. The

first three parameters are related to constructing a k-NN network. The number of trees and neighbors

can determine the shapes of a k-NN network, and perplexity is related to computing edge weights

of section 2.2. The other parameters are related to network embedding. The number of negative

samples is M of (5), rho is the initial learning rate, gamma is the weight of negative edges, and alpha

determines the thickness of the tail of 𝑓. Table 1 shows the parameters we tuned for our visualization.

Table 1. Parameters for constructing a k-NN network and for network embedding

Parameters for constructing a k-NN network

Number of trees Number of neighbors Perplexity

20 – 100 20 – 150 10 – 50

Parameters for network embedding

Number of

negative samples
Rho Gamma Alpha

5 – 10 1 – 10 1 – 10 < 1

All experiments for measuring the computation time were performed on a machine with Intel

Xeon E5-2650 CPUs running at 2.30GHz. 40 threads were used except the experiments about the

effectiveness of multiple threads.

3.3. Results

3.3.1. Visualization

Figure 2 represents the visualization for mice bone marrow replicate 7 data set12. Overall, the same

type of cells forms a dense subset. The number of a certain class of cells such as HSC in the data set

was so small that they were difficult to distinguish from other cells and to find in our visualization.

Except these cells, we can see clearly that the same type of cells gathers together and different types

of cells move away from each other in a two-dimensional space. In addition, we can find some

similar cells to stay together in Figure 2. For example, similar cell types like Intermediate Monocytes

(red) and Classical Monocytes (yellow) appear close to each other. Two types of B cells (purple and

light green) are also stay near each other.

In addition, we applied viSNE to the same data set. viSNE also represented cell subpopulations

very well. The same type of cells was grouped together, and it can clearly distinguish different types

of cells. In the experiments, our method tended to form denser and rounder clusters than viSNE but

to have more randomly scattered samples. Due to the space limit, the visualization results of viSNE

are shown through our web-based visualization tool (see section 4). We also compare our method

with other embedding methods such as PCA in the tool.

Pacific Symposium on Biocomputing 2017

629

Figure 2. Visualization of our method for bone marrow replicate 7 data set.

3.3.2. Computation time

One of the main goals of our method is to make visualization of high-dimensional single-cell data

be faster and more scalable. Thus, we compared the computation time between viSNE8 and our

method for various cases. In addition, to test the scalability and parallelizability, we measured the

effectiveness of speedup with respect to the number of threads.

To measure the computation time and evaluate the scalability with respect to the size of the data

set, we constructed 8 single-cell data sets that contained 5,000, 10,000, 25,000, 50,000, 75,000,

100,000, 250,000, and 500,000 data, respectively. For each data set, cells were uniformly sampled

from the union of 10 data sets (total number: 841,644). Each data set contained 39 parameters and

were preprocessed by noise thresholding and asinh transformation before sampling. Figure 3(a)

shows that our method was faster than viSNE for all 8 sampled data sets and our method is easier

to make scalable. The total computation time of our method consists of two computation times: one

is for constructing a k-NN network and the other is for embedding the network. Figure 3(b) shows

how much time we needed for each step.

In addition, we tested the parallelization of our method in the multi-core setting. Since our

method uses asynchronous stochastic gradient descent (ASGD)34 for training, it can be more

accelerated by using multiple threads. We measured the computation time of our method when

dealing with the union of all 10 single cell data sets with respect to the number of threads. By

increasing the number of threads from 1 to 8, we measured the effectiveness of the multiple threads

for our method. When we used 8 threads simultaneously, the speedup rate was 4.1 times faster than

single-thread implementation in Figure 3(c). The results show that our method can be easily

Pacific Symposium on Biocomputing 2017

630

parallelized and can be made more scalable through a multi-core system.

(a) (b) (c)

Figure 3. (a) Comparison of the computation time of viSNE and our method with respect to the number of single-cell

data samples. (b) Separate analysis of the computation time for constructing a k-NN network and for embedding with

regard to the number of single-cell data samples. (c) Effectiveness of the multiple threads for speedup of our method.

3.3.3. Clustering

In this section, we compared the quality of embedding by comparing the performance of clustering.

In our experiments, we first applied one of the off-the-shelf clustering algorithms, k-means

clustering20 to the embedded vectors by viSNE8 and those by our method. Next, we measured the

performance of clustering using hand-gated annotations of each cell. Specifically, we followed the

process of X-shift12 to compare the clustering result and hand-gated labels and to calculate F1-

measures. As the number of clusters changed from 2 to 100, we computed F1-measures for each

cluster that a label was assigned to by the Hungarian algorithm36. This process was applied to our

10 data sets, and we obtained an average F1-measure sum. As another performance measure, we

obtained maximum F1-measures for each data set across all the number of clusters and took a

median.

 As the input of clustering, we used the two-dimensional vectors embedded by viSNE8 and our

method. We compared an average F1-measure sum of both methods and a median of maximum F1-

measures. Figure 4(a) shows that the clustering performance of our method was better than that of

viSNE across all the number of clusters with respect to an average F1-measure sum. In addition, we

compared a median of maximum F1-measures of viSNE and our method. Our two-dimensional

embedding obtained 14.68 while viSNE obtained 13.23 as its median. Our method also

outperformed viSNE for this metric.

Since our method is developed mainly for visualization, two or three dimensional vectors are

usually used as a result of embedding. However, the algorithm can embed high-dimensional single-

cell data into another arbitrary low-dimensional space other than a two- or three-dimensional space.

The vectors embedded in a higher-dimensional space than a space for visualization can lose less

intrinsic information about original high-dimensional single-cell data. Thus, they can be used to

enhance the performance of clustering. We clustered the data by using 5-, 10-, 15- and 20-

dimensional representations obtained by our embedding.

Figure 4(b) shows that the performance of clustering was improved when we used the vectors

Pacific Symposium on Biocomputing 2017

631

with higher dimensions than two. The performances as we used 10-, 15-, and 20-dimensional vectors

are similar to each other and better than the performance as we used two- or 5-dimensional vectors.

(a) (b)

Figure 4. (a) Comparison of the clustering performance of viSNE and our method when using two-dimensional vectors

with respect to the number of clusters. (b) Comparison of the clustering performances when we changed the dimension

of our embedding.

4. Interactive Visualization

To better aide analysis, we also introduce an interactive web browser based visualization tool

featured in Figure 5. It allows researchers to examine their own data quickly by enabling

functionality like mouse-over, zoom, pan, brushing, and linking on the embedded data. Users can

color data by quantities of marker values as well as qualitative gate information. One can select

arbitrary groups of single-cell data points, tag them, and save them for downstream analysis. We

provide code, documentation, and video demonstrations to reproduce experiments and apply our

methods to new single-cell data through the linka. All code is made available under an MIT license.

Figure 5. Screen shot of web browser based visualization developed in python. The left scatter plot depicts the result of

our proposed method and on the middle, a PCA projection of the data. The right plot describes embedded expressions

a https://github.com/nate-russell/SVHD-Single-Cell

Pacific Symposium on Biocomputing 2017

632

of a specific marker with respect to a certain projection. Color assignment and data selection labeling are also available

through widgets at the bottom left. Some data statistics and the table to the right show all provided marker data and meta

data regarding the single-cell data.

5. Conclusion

In this paper, we introduced a new visualization method for large-scale and high-dimensional single-

cell data based on LargeVis25, which consists of two parts: constructing an approximate k-NN

network and embedding the constructed network into a low-dimensional space. Since the both steps

have linear time complexity, our method is scalable and readily for analyzing large-scale single-cell

data sets with hundreds of thousands or even millions of single cells. Specifically, our experiment

results showed that the proposed method is much faster than viSNE8, a state-of-the-art single-cell

visualization method. In addition, through the experiments about clustering, we showed that the

quality of our embedding is better than that of viSNE on cell identity mapping with respect to F1-

measures. We also provide a web based interactive visualization tool and all necessary code and

documentation to extend this approach to new data.

Acknowledgments

This study was supported by a Sloan Research Fellowship and a National Center for

Supercomputing Applications (NCSA) Fellowship of University of Illinois at Urbana-Champaign.

References

1. O. Stegle, S. A. Teichmann, and J. C. Marioni, Nat. Rev. Genet. 16, 133-145 (2015).

2. F. Buettner, K. N. Natarajan, F. P. Casale, V. Proserpio, A. Scialdone, F. J. Theis, S. A. Teichmann,

J. C. Marioni, and O. Stegle, Nat. Biotechnol. 33, 155-160 (2015).

3. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokhare, S. Li, M. Morse, N. J. Lennon, K. J. Livak,

T. S. Mikkelsen, and J. L. Rinn, Nat. Biotechnol. 32, 381-386 (2014).

4. O. Ornatsky, D. Bandura, V. Baranov, M. Nitz, M. A. Winnik, and S. Tanner, J. Immunol.

Methods. 361, 1-20 (2010).

5. S. C. Bendall, E. F. Simonds, P. Qiu, E. D. Amir, P. O. Krutzik, R. Finck, R. V. Bruggner, R.

Melamed, A. Trejo, O. I. Ornatsky, R. S. Balderas, S. K. Plevritis, K. Sachs, D. Pe’er, S. D.

Tanner, and G. P. Nolan, Science. 332, 687-696 (2011).

6. P. Qiu, E. F. Simonds, S. C. Bendall, K. D. Gibbs Jr, R. V. Bruggner, M. D. Linderman, K. Sachs,

G. P. Nolan, and S. K. Plevritis, Nat. Biotechnol. 29, 886-891 (2011).

7. S. C. Bendall, G. P. Nolan, M. Roederer, P. K. Chattopadhyay, Cell. 33, 323-332 (2012).

8. E.-A. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine, S. C. Bendall, D. K.

Shenfeld, S. Krishnaswamy, G. P. Nolan, and D. Pe'er, Nat. Biotechnol. 31, 545-552 (2013).

9. S. C. Bendall, K. L. Davis, E.-A. D. Amir, M. D. Tadmor, E. F. Simonds, T. J. Chen, D. K.

Shenfeld, G. P. Nolan, and D. Pe’er, Cell. 157, 714-725 (2014).

10. K. Shekhar, P. Brodin, M. M. Davis, and A. K. Chakraborty, Proc Natl Acad Sci. 111, 202-207

(2014).

11. M. Setty, M. D. Tadmor, S. Reich-Zeliger, O. Angel, T. M. Salame, P. Kathail, K. Choi, S. C.

Pacific Symposium on Biocomputing 2017

633

Bendall, N. Friedman, and D. Pe’er, Nat. Biotechnol. 34, 637-645 (2016).

12. N. Samusik, Z. Good, M. H. Spitzer, K. L. Davis, and G. P. Nolan, Nat. Methods. 13, 493- 496

(2016).

13. B. Anchang, T. D. P. Hart, S. C. Bendall, P. Qiu, Z. Bjornson, M. Linderman, G. P. Nolan, and

S. K. Plevritis, Nat. Protocols. 11, 1264-1279 (2016).

14. A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill,

B. V. Nahed, W. T. Curry, R. L. Martuza, D. N. Louis, O. Rozenblatt-Rosen, M. L. Suvà, A.

Regev, and B. E. Bernstein, Science. 344, 1396-1401 (2014).

15. Q. Deng, D. Ramskold, B. Reinius, and R. Sandberg, Science. 343, 193-196 (2014).

16. D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S.

Vorobiev, J. E. Dick, and S. D. Tanner, Anal. Chem. 81, 6813-6822 (2009).

17. F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B. B. Tuch,

A. Siddiqui, K. Lao, and M. A. Surani, Nat. Methods. 6, 377-382 (2009).

18. C. Trapnell, Genome Res. 25, 1491-1498 (2015).

19. L. A. Herzenberg, J. Tung, W. A. Moore, and D. R. Parks, Nat. Immunol. 7, 681-685 (2006).

20. C. Bishop, Springer. (2006).

21. H. C. Fan, G. K. Fu, and S. P. A. Fodor, Science. 347. 1258367 (2015).

22. D. A. Lawson, N. R. Bhakta, K. Kessenbrock, K. D. Prummel, Y. Yu, K. Takai, A. Zhou, H.

Eyob, S. Balakrishnan, C. Wang, P. Yaswen, A. Goga, and Z. Werb, Nat. 526, 131-135 (2015).

23. L. J. P. van der Maaten, and G. E. Hinton, J. Mach. Learn. Res. 9, 2579-2605 (2008).

24. L. J. P. van der Maaten, J. Mach. Learn. Res. 15, 3221-3245 (2014).

25. J. Tang, J. Liu, M. Zhang, and Q. Mei, Proc. 25th Int. Conf. WWW. (2016).

26. S. Dasgupta and Y. Freund, Proc. 40th ACM STOC. 537-546 (2008).

27. W. Dong, M. Charikar, and K. Li, Proc. 20th Int. Conf. WWW. 577-586 (2011).

28. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Proc. 26th Adv. NIPS. 3111-3119

(2013).

29. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, Proc. 20th ACM SoCG. 253-262 (2004).

30. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, Proc. 24th Int. Conf. WWW. 1067-

1077 (2015).

31. M. Muja and D. G. Lowe, IEEE Trans Pattern Anal Mach Intell. 36, 2227-2240 (2014).

32. J. Barnes and P. Hut, Nat. 324, 446-449 (1986).

33. M. U. Gutmann and A. Hyvarinen, J. Mach. Learn. Res. 13, 307-361 (2012).

34. B. Recht, C. Re, S. Wright, and F. Niu, Proc. 24th Adv. NIPS. 693-701 (2011).

35. M. H. Spitzer, P. F. Gherardini, G. K. Fragiadakis, N. Bhattacharya, R. T. Yuan, A. N. Hotson,

R. Finck, Y. Carmi, E. R. Zunder, W. J. Fantl, S. C. Bendall, E. G. Engleman, G. P. Nolan,

Science. 349, 1259425 (2015).

36. J. Munkres, J. Soc. Ind. Appl. Math. 5, 32-38 (1957).

Pacific Symposium on Biocomputing 2017

634

