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DNA methylation has emerged as promising epigenetic markers for disease diagnosis. Both the dif-
ferential mean (DM) and differential variability (DV) in methylation have been shown to contribute
to transcriptional aberration and disease pathogenesis. The presence of confounding factors in large
scale EWAS may affect the methylation values and hamper accurate marker discovery. In this paper,
we propose a flexible framework called methylDMV which allows for confounding factors adjustment
and enables simultaneous characterization and identification of CpGs exhibiting DM only, DV only
and both DM and DV. The proposed framework also allows for prioritization and selection of can-
didate features to be included in the prediction algorithm. We illustrate the utility of methylDMV in
several TCGA datasets. An R package methylDMV implementing our proposed method is available
at http://www.ams.sunysb.edu/~pfkuan/softwares.html#methylDMV.
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1. Introduction

DNA methylation is an important hallmark of genomic imprinting, transcriptional regulation,
X-inactivation and chromosomal stability.1 The most common DNA methylation process in
human involves the addition of a methyl group to the 5-carbon of the cytosine ring. In human,
this modification mostly occurs at a CpG site in which a cytosine nucleotide is followed by a
guanine nucleotide. Aberrant patterns of DNA methylation have been shown to be a critical
mechanism in the development and progression of various diseases, in particular cancer.2

DNA methylation is one of the most widely studied epigenetics event and has been profiled
extensively in large consortiums including the Cancer Genome Altas (TCGA), NIH Roadmap
and the Encyclopedia of DNA Elements (ENCODE) projects. These efforts provide research
opportunities for secondary analyses of the large datasets to further understand the biology
of the disease.

Most of the work in DNA methylation have been focused on identifying DNA methylation
markers that exhibit differential average or mean methylation (DM).3,4 These epigenetic mark-
ers have been shown to be promising biomarkers in designing platform for disease diagnosis.5

Over the last few years, there has been an increasing interest in identifying DNA methyla-
tion markers that exhibit differential variability in various diseases, including cancer6–8 and
obesity.9 These epigenetic variabilities can be attributed to increased plasticity arising from
changing environment including varying oxygen tension10 and is associated with the risk of
morphological and neoplastic transformation.11 These studies opened up new avenues to the
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study of DNA methylation, which indicated that simultanenous investigation of both differ-
ential mean and variability may delineate the complex patterns of epigenetic regulation in
pathophysiology and development of diseases.

One of the most widely used DNA methylation platforms is the Illumina Infinium Hu-
manMethylation450 BeadChip which profiles more than 450,000 CpGs genome wide. The
latest phase of the Illumina methylation array is the MethylationEPIC BeadChip which cov-
ers approximately 850,000 methylation sites including CpG islands, enhancers and regulatory
regions identified from the ENCODE project. The methylation value for each CpG is repre-
sented as a beta (β) value, which is the ratio of methylated probe intensities to the total probe
intensities, where 0 ≤ β ≤ 1; β = 0 and β = 1 indicate that the CpG is fully unmethylated and
methylated, respectively.

An important aspect of differential methylation analysis is to identify CpGs which exhibit
differential mean or variance in large scale hypothesis testing. Statistical tests for detecting
CpGs which exhibit differential mean methylation include t-tests, non-parametric Wilcoxon
rank sum test or limma12 based on linear models and empirical Bayes approach. On the other
hand, several algorithms have been proposed in recent years to identify CpGs which exhibit
differential variability in large scale hypothesis testing. For instance, Teschendorff et al. (2012)8

proposed a regularized version of the Bartlett’s test, Ahn et al. (2013)13 used a score test from
generalized regression model, Phipson et al. (2014)14 proposed a modification of Levene’s test,
Wahl et al. (2014)15 introduced a generalized additive models for location, scale and shape
(GAMLSS) framework and Kuan (2014)16 proposed a general linear model with propensity
score method for detecting CpGs with differential variability.

CpGs which exhibit differential mean methylation have been utilized in classification al-
gorithm to define methylation signatures for disease subtypes.17,18 As the methylation arrays
encompass > 450, 0000 CpGs, a common approach in training the classification algorithm is
to pre-select features ranked highly by the univariate differential mean methylation as candi-
date CpGs in the classification algorithm to improve the stability of the algorithm. Motivated
by the biological insights of differential variability in methylation, Teschendorff et al. (2012)8

proposed a method which selected differential variable CpGs using Bartlett’s test for inclusion
in the prediction algorithm.

Large scale differential methylation analysis requires proper adjustment for confounders
to reduce the biases associated with the identified methylation markers. For instance, age19,20

and cigarette smoking21,22 have been shown to be associated with DNA methylation; thus in
studies to identify methylation markers for cancer or other disease phenotypes, appropriate
adjustment for these factors is necessary. In the analysis of differential mean methylation, this
can be achieved via a regression framework where confounders are included as covariates in the
model. However, in the analysis of differential variability, potential biases due to confounding
variables are usually ignored.8,14

This paper aims to develop a unified framework to address the limitation of existing work:
(1) incorporates adjustment for confounding variables that potentially affect methylation lev-
els, and allows for simultaneous detection of differential mean (DM) and differential variability
(DV) in methylation analysis, (2) systematic selection of CpGs which exhibit differential mean
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and/or differential variability in the prediction algorithm to improve prediction accuracy and
biological interpretation. In Section 2, we describe our proposed approach. This is followed
by simulation studies and real data applications in Sections 3 and 4, respectively. The paper
concludes with a discussion in Section 5.

2. Methods

2.1. A framework for simultaneous detection of differential mean (DM)
and differential variability (DV)

Without loss of generality, we describe our proposed framework for detecting differential mean
and differential variability between two conditions or groups (e.g., tumor versus normal). A
common distribution to model the beta values from Illumina methylation arrays is the beta
distribution.23 Since the variance of a beta distribution is a function of the mean, the β

values exhibit significant heteroscedasticity.24 To overcome the heteroscedasticity issue, we
consider a variance stabilizing transformation via the logit function to the β values, i.e.,
logit(β) = log[β/(1 − β)]. Let xij denote the logit transformed methylation value for sample i
and CpG j. We first define a deviation measure rij = |xij − wt.medi(xij)| where wt.medi(xij)
is the weighted median of CpG j with weights wi = 1/2ngi , gi = 0 if sample i is a control and
gi = 1 if sample i is a case, and n0 and n1 are the respective sample sizes.

We recast the model for simultaneous detection of differential mean and differential variable
CpGs using a logistic regression model. Let yi denote the group membership of sample i, where
yi = 0 if the sample is a control/normal and yi = 1 if the sample is a case/tumor. yi is assumed
to follow a binomial distribution with P (yi = 1) = πi and log[πi/(1− πi)] = θi. We consider the
four competing models for each CpG:

Model 1: θi = β0 +
∑K

k=1 γkZik (no DM or DV)
Model 2: θi = β0 + βmxij +

∑K
k=1 γkZik (DM only)

Model 3: θi = β0 + βvrij +
∑K

k=1 γkZik (DV only)
Model 4: θi = β0 + βmxij + βvrij +

∑K
k=1 γkZik (both DM and DV)

In all models, Zk = (Zik)
′ corresponds to confounding variable k, for instance age, smoking

status or alcohol consumption. Model 1 is the baseline model which adjusts for confounding
variables and assumes that the phenotype is not associated with differential mean (DM) or
differential variability (DV). Model 2 (Model 3) assumes that the phenotype is associated with
DM (DV) after adjusting for confounders, whereas Model 4 assumes that the phenotype is
associated with both DM and DV for a CpG. To identify CpGs which exhibit DM, one can
compare Model 1 to Model 2 using likelihood ratio tests or score tests.25 On the other hand,
Model 3 can be compared to Model 1 to obtain p-values associated with DV for each CpG.
The comparison of Model 4 and Model 1 identifies CpGs which exhibit either DM or DV.
The vector of p-values from each analysis are adjusted via the false discovery rate (FDR)26

to account for multiple testings. In addition to large scale hypothesis testing framework to
identify DM and DV CpGs, another advantage of our proposed model is that it allows for
automatic classification of the CpGs into the four classes (1) no DM or DV, (2) DM only, (3)
DV only and (4) both DM and DV. This is carried out via a Bayesian Information Criterion
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(BIC) to rank the four models for each CpG, i.e., the CpG is categorized into the class with
the smallest BIC score.

2.2. Candidate feature selection for prediction modeling

The BIC used for model ranking within each CpG can also be utilized to aid candidate
feature selection to improve the stability of the prediction algorithm. The proposed framework
provides flexibility to the user for including top ranking features in constructing prediction
model. For instance, if the user is interested in a prediction model using CpGs which exhibit
the largest discriminative power in terms of both DV and DM after adjustment for confounding
variables, then the subset of CpGs which show the lowest BIC scores for Model 4 are selected
as candidate features. On the other hand, if the user is interested in a prediction model using
only DM CpGs , then the candidate features correspond to the CpGs which identify Model 2
as the best model using BIC scores.

The selected candidate features are used in the prediction algorithm for constructing clas-
sification rule discriminating case from control. In this paper, we consider the elastic net
algorithm.27 The objective function of elastic net consists of a loss function + penalty:

min
β
||y −Xβ||2 + λ

{
α||β||1 + (1− α)||β||2

}
where ||β||1 =

∑p
j=1 |βj | and ||β||2 =

∑p
j=1 β

2
j . The parameters λ and α are tuned via cross-

validation. Other types of machine learning prediction algorithm can also be used on the
selected candidate features, for instance the random forest28 which is a non-parametric en-
semble approach based on a large number of classification trees trained on bootstrap samples.

An R package methylDMV implementing our proposed method for testing DM and DV, as
well as CpGs ranking by BIC and candidate feature selection is available at http://www.ams.
sunysb.edu/~pfkuan/softwares.html#methylDMV.

3. Simulation studies

We carried out simulation studies to evaluate the effect of confounders on CpG ranking. Specif-
ically, denote Zi1 and Zi2 as the two confounders, where Zi1 ∼ N(0, 1) and Zi2 ∼ Bernoulli(0.6)

for sample i, i = 1, 2, . . . , n. The group indicator yi was generated from the following model

logit(pi) = γ0 + γ1Z1i + γ2Z2i

yi ∼ Bernoulli(pi)

For each CpG j (j = 1, 2, . . . , p), the measurements xij’s were generated from the Gaussian
distribution under the assumption that the beta values have been properly transformed (e.g.,
logit or arcsine transformation), i.e., xij ∼ N(µij , σ

2
ij) where

(i) µij = µ0 + α1Zi1 + α2Zi2 and σ2ij = σ20 if CpG j is from Model 1 (no DM or DV)
(ii) µij = µ0 + αgyi + α1Zi1 + α2Zi2 and σ2ij = σ20 if CpG j is from Model 2 (DM only)

(iii) µij = µ0 + α1Zi1 + α2Zi2 and σ2ij = σ20 + βgyi if CpG j is from Model 3 (DV only)
(iv) µij = µ0 + αgyi + α1Zi1 + α2Zi2 and σ2ij = σ20 + βgyi if CpG j is from Model 4 (both DM and

DV)
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The proportion of CpGs from Models 1-4 were drawn from a multinomial distribution with
π =

(
π1,

1−π1

3 , 1−π1

3 , 1−π1

3

)
. We set γ0 = 1, γ1 = 2, γ2 = −2 to obtain approximately equal number

of cases and controls; and αg = 1, βg = 1, µ0 = 0, σ20 = 1. We varied α1 = α2 = 0, 0.5, 1, 3, 5

to reflect the different degrees of confounding in the methylation measurements and π1 =

0.4, 0.6, 0.8 for the different mixing proportions of DM and DV CpGs. To evaluate the effect of
confounders on the phenotype, i.e., case/control, we also considered the case in which the yi’s
were not affected by confounders. Under this scenario, yi = 0 for i = 1, 2, . . . , n/2 and yi = 1 for
i = n/2 + 1, . . . , n. For each scenario, the simulation was conducted for n = 200 samples and
p = 10000 CpGs over 100 iterations.

We compared the average accuracy of the BIC ranking procedure in classifying the CpGs
into Models 1-4 with (BICadj) and without (BICnoadj) adjustment for confounders. We also
included comparison to method which performed tests for DM and DV separately. Two sample
t-test and Levene’s test were used to identify DM and DV CpGs, respectively. CpG j was
classified as DM (DV) if the p-value from t-test (Levene’s test) adjusted via the Benjamini-
Hochberg procedure26 ≤ FDR. We considered FDR 0.05 and 0.1, and referred to this method
as SepTest0.05 and SepTest0.1, respectively.

Figure 1 summarizes the average accuracy for the four methods across the different settings.
In scenarios where both the phenotype (case/control status) and methylation measurements
were affected by confounders (top row of Figure 1 for α1 6= 0), the methods which did not
adjust for confounders exhibited poor accuracy across different mixing proportions π1. For
the case where α1 = 0, i.e., methylation measurements were not affected by confounders, the
BICadj method showed a slight decrease in accuracy compared to other methods. Bottom row
of Figure 1 displays the results for the scenarios where only the methylation measurements
were confounded while the phenotype was not affected by confounders. For these cases, the
performance of the methods were comparable for α1 ≤ 1. The advantages of adjusting for
confounders were apparent for α1 = 3, 5, i.e., strong confounding effect in the methylation
measurements even in the absence of confounding in case/control status.

4. Case studies

4.1. Data preprocessing and normalization

We illustrated our proposed method, methylDMV on three datasets, namely the breast cancer
(BRCA), kidney cancer (KIRC) and liver cancer (LIHC) dataset. The breast cancer dataset
consisted of 909 samples downloaded from the TCGA data portal and the NCBI gene ex-
pression omnibus under accession number GSE67919, whereas the kidney and liver cancer
consisted of 475 and 404 samples from the TCGA data portal, respectively. All the samples
were profiled using the Illumina Infinium HumanMethylation450 BeadChip.

Preprocessing of the methylation data at the 485,557 CpGs were performed as follows.
Probes with detection p-value > 0.05 were set to missing and probes with more than 20%
missing were filtered. A beta mixture quantile (BMIQ) normalization29 was applied to the
beta values for correction of bias due to the type I and type II probes. Non-specific, cross-
hybridized probes,30,31 probes overlapping with a SNP and probes mapping to repeat regions
were filtered. For KIRC and LIHC, we further filtered for CpGs mapping to chromosomes X
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Fig. 1. Average accuracy of CpG classification across α1’s for our proposed BIC ranking with confounding
adjustment (BICadj, orange), BIC ranking without confounding adjustment (BICnoadj, green), separate two-
sample t-test and Levene’s test for DM and DV at FDR 0.05 (SepTest0.05, turquoise) and 0.1 (SepTest0.1,
purple). Each panel corresponds to a specific π1 value and whether the case control status was affected by
confounders (top row: yi ∼ Bernoulli(pi), i.e, affected by confounders; bottom row yi = 0, i = 1, . . . n/2,
yi = 1, i = n/2 + 1, . . . n, i.e, not affected by confounders).

and Y. The normalized datasets consisted of 374,680, 365,896 and 365,658 CpGs for BRCA,
KIRC and LIHC, respectively. We performed the following pairwise comparisons:

(i) KIRC (tumor vs normal): Models 1-4 were fitted on n0 = 156 normal (control) and
n1 = 319 tumor (case), adjusting for age and race.

(ii) LIHC (tumor vs normal): Models 1-4 were fitted on n0 = 47 normal (control) and
n1 = 357 tumor (case), adjusting for age and race.

(iii) BRCA (tumor vs normal): Models 1-4 were fitted on n0 = 180 normal (control) and
n1 = 729 tumor (case), adjusting for age and race.

(iv) BRCA (basal vs luminal A): Models 1-4 were fitted on n0 = 93 luminal A (control)
and n1 = 30 basal (case), adjusting for age and race.

(v) BRCA (basal vs luminal B): Models 1-4 were fitted on n0 = 40 luminal B (control)
and n1 = 30 basal (case), adjusting for age and race.

(vi) BRCA (luminal B vs luminal A): Models 1-4 were fitted on n0 = 93 luminal A
(control) and n1 = 40 luminal B (case), adjusting for age and race.
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4.2. Feature ranking by BIC scores

In tumor versus normal comparison within KIRC, LIHC and BRCA datasets, majority of
the CpGs were showing either DM or DV or both as shown in Table 1. A large number of
CpGs ranked Model 4 (DM and DV) as the best model which indicated that both differential
mean and differential variability play important role in distinguishing tumor from normal.
In KIRC and BRCA, CpGs showing DM only (Model 2) were enriched in CpG islands, first
exons, 200 bp upstream of the transcription start sites (TSS200); whereas CpGs showing DV
only (Model 3) were enriched in CpG shores and gene body as shown in Figures 2 and 3.
In LIHC, the proportions of DM and DV CpGs mapping to CpG islands were fairly similar,
whereas the proportion of DM CpGs mapping to gene body was higher compared to DV CpGs.
On the other hand, the subtypes comparison within BRCA identified fewer number of CpGs
exhibiting DM or DV. In basal versus luminal A or luminal B comparisons, the proportions
of DV CpGs mapping to CpG island and TSS200 were higher than DM CpGs.

Among the lists of DM only CpGs (Model 2) identified by tumor versus nor-
mal comparison within KIRC, LIHC and BRCA datasets, 4814 CpGs were in com-
mon. On the other hand, there were 1223 and 46885 common CpGs in DV only
(Model 3) and both DV and DM (DM&DV) (Model 4) categories, respectively. DAVID
(https://david-d.ncifcrf.gov/home.jsp) functional annotation enrichment analysis was
performed on the genes of mapping to each of the top 1000 common DM only CpGs, DV
only CpGs and DM&DV CpGs to identify enriched canonical pathways and biological pro-
cess ontologies. At FDR ≤ 0.05, enriched canonical pathways for DM only CpGs include Rho
GTPase cycle, Rap1 signaling pathway and NRAGE signals death through JNK; whereas
DM&DV CpGs identified olfactory transduction and signaling pathway among the top en-
riched pathways. On the other hand, DM only CpGs, DV only CpGs and DM&DV CpGs
identified processes related to GTPase regulation, regulation of transcription from RNA poly-
merase II promoter and regulation of ion transmembrane transport, respectively.

Table 1. Number of CpGs identified for each model based on BIC scores
for the different datasets and comparisons.

Data Model 1 Model 2 Model 3 Model 4

KIRC: tumor vs normal 18685 94948 44291 207972
LIHC: tumor vs normal 85769 52315 83296 144278
BRCA: tumor vs normal 33735 104575 43880 192490
BRCA: basal vs luminal A 201378 131085 23193 19024
BRCA: basal vs luminal B 198192 124764 31393 20331
BRCA: luminal B vs luminal A 290963 47145 31327 5245

4.3. Elastic net predictive modeling

The elastic net algorithm27 was applied to each dataset for constructing a prediction model
differentiating case from control. We randomly split the dataset into 80% training and 20%
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Fig. 2. CpG island, shelf and shore annotation for the proportion of CpGs identified by each model (color
code: orange (Model 1), green (Model 2), turquoise (Model 3), purple (Model 4)) for the different datasets
and comparisons.

test set. The parameters λ and α were tuned using 10 fold cross-validation on the training
set. The random partitioning of data into training and test set was repeated 10 times. We
compared the following methods for selecting top 2000 CpGs from the training set to be
included as candidate features:

(i) Set 1: Logit transformed beta values xij of the top 2000 CpGs among the CpGs which
ranked model 2 as the best model.

(ii) Set 2: Absolute deviation measure rij of the top 2000 CpGs among the CpGs which
ranked model 3 as the best model.

(iii) Set 3: Both the logit transformed beta values xij and absolute deviation measure rij of
the top 2000 CpGs among the CpGs which ranked model 4 as the best model.

We evaluated the performance of the prediction algorithm on the test set in terms of
area under the receiver operating characteristics curve (AUC), accuracy (Acc)= TP+TN

n0+n1
,

sensitivity (Sn)= TP
TP+FN , specificity (Sp)= TN

TN+FP and Matthew’s correlation coefficient
(Mcc)= TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
, averaged over the 10 iterations. The results are

presented in Table 2. The prediction model for predicting tumor from normal in KIRC, LIHC
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Fig. 3. Gene annotation for the proportion of CpGs identified by each model (color code: orange (Model 1),
green (Model 2), turquoise (Model 3), purple (Model 4)) for the different datasets and comparisons.

and BRCA had high accuracy and AUC, and were comparable across the different candidate
feature sets. Similar patterns were observed in basal versus luminal A and basal versus lu-
minal B comparisons, indicating that DNA methylation was able to differentiate the more
aggressive subtype (basal) from the less aggressive subtypes (luminals A and B) regardless of
whether DM or DV CpGs were used. On the other hand, the prediction algorithm for predict-
ing luminal A from luminal B subtypes exhibited lower accuracy compared to the previous
comparisons, indicating that it is harder to differentiate these two subtypes based on DNA
methylation.

5. Discussion

The promise and power of DNA methylation for therapeutics and diagnostics have been
demonstrated in various diseases including cancer. Advancements in biotechnology enable
large scale and population based epigenome-wide profiling of DNA methylation for identify-
ing differential mean (DM) and differential variability (DV) CpGs. In these studies, covariates
such as demographic and clinical factors may be confounded with both DNA methylation
and disease phenotypes. One way to circumvent this problem is via randomization. However,
this approach is not always feasible especially in case control studies. Moreover, in DNA
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Table 2. Average AUC, Mcc, Accuracy (Acc), Sensitiv-
ity (Sn) and Specificity (Sp) for the different datasets and
comparisons.

Candidate feature AUC Mcc Acc Sn Sp

KIRC: tumor vs normal

Set 1 1.000 0.998 0.999 0.998 1.000
Set 2 1.000 0.991 0.996 0.994 1.000
Set 3 1.000 0.998 0.999 0.998 1.000

LIHC: tumor vs normal

Set 1 0.996 0.933 0.986 0.992 0.940
Set 2 0.994 0.913 0.981 0.985 0.950
Set 3 0.997 0.929 0.984 0.987 0.960

BRCA: tumor vs normal

Set 1 1.000 0.976 0.992 0.997 0.975
Set 2 0.999 0.969 0.990 0.993 0.978
Set 3 1.000 0.976 0.992 0.997 0.972

BRCA: basal vs luminal A

Set 1 0.996 0.947 0.980 0.950 0.989
Set 2 0.987 0.848 0.944 0.817 0.984
Set 3 0.995 0.947 0.980 0.950 0.989

BRCA: basal vs luminal B

Set 1 0.998 0.905 0.950 0.950 0.950
Set 2 0.996 0.905 0.950 0.967 0.938
Set 3 0.998 0.889 0.943 0.950 0.938

BRCA: luminal B vs luminal A

Set 1 0.798 0.339 0.741 0.425 0.874
Set 2 0.720 0.287 0.722 0.413 0.853
Set 3 0.791 0.380 0.767 0.413 0.916

methylation studies using whole blood sample, the different cell types have been shown to be
confounded with the measured methylation levels.32 In such cases, confounding factors need
to be properly accounted for to avoid biases in DNA methylation biomarker detection. There
are several approaches for DM analysis which allow for confounders adjustment,33 however to
the best of our knowledge existing DV analysis approaches are not tailored for confounders
adjustments, except for our earlier work16 which proposed a DV only analysis in the presence
of confounders within large scale hypothesis testings framework. This paper extends our ear-
lier work which allows for simultaneous detection of DM and DV in large scale hypothesis
testings framework, and at the same time provides a candidate feature selection mechanism
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for the prediction algorithm.
We showed that the analysis on KIRC, LIHC and BRCA TCGA datasets identified DM

and DV CpGs which mapped to different CpG and gene annotations. For instance, in tumor
versus normal comparisons, a larger proportion of DM CpGs mapped to CpG island and
TSS200, whereas in basal versus luminal A or B comparisons, a larger proportion of DV
CpGs mapped to these regions, suggesting that DM and DV CpGs regulate transcription
differently. An R package methylDMV implementing this flexible framework is available at
http://www.ams.sunysb.edu/~pfkuan/softwares.html#methylDMV.

DNA methylation generated from high resolution arrays including Illumina Infinium Hu-
manMethylation450 BeadChip may induce a natural correlation structure among neighboring
CpGs. An immediate extension of our current framework is to model the dependence structure
and borrow information from nearby CpGs to improve the power of detecting DM and DV
CpGs. Two of such approaches are (1) the hidden Markov model and local index of significance
method as in Kuan et al. (2012),34 and (2) the smoothing and bump hunting method as in
Jaffe et al (2012),7 which can possibly be adapted into our current methylDMV framework for
detecting DM and DV CpGs.
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