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The effort to personalize treatment plans for cancer patients involves the identification of drug treatments that can 
effectively target the disease while minimizing the likelihood of adverse reactions. In this study, the gene-expression 
profile of 810 cancer cell lines and their response data to 368 small molecules from the Cancer Therapeutics Research 
Portal (CTRP) are analyzed to identify pathways with significant rewiring between genes, or differential gene 
dependency, between sensitive and non-sensitive cell lines.  Identified pathways and their corresponding differential 
dependency networks are further analyzed to discover essentiality and specificity mediators of cell line response to 
drugs/compounds. For analysis we use the previously published method EDDY (Evaluation of Differential 
DependencY). EDDY first constructs likelihood distributions of gene-dependency networks, aided by known gene-
gene interaction, for two given conditions, for example, sensitive cell lines vs. non-sensitive cell lines.  These sets of 
networks yield a divergence value between two distributions of network likelihoods that can be assessed for 
significance using permutation tests.  Resulting differential dependency networks are then further analyzed to identify 
genes, termed mediators, which may play important roles in biological signaling in certain cell lines that are sensitive 
or non-sensitive to the drugs.  Establishing statistical correspondence between compounds and mediators can improve 
understanding of known gene dependencies associated with drug response while also discovering new dependencies.  
Millions of compute hours resulted in thousands of these statistical discoveries.  EDDY identified 8,811 statistically 
significant pathways leading to 26,822 compound-pathway-mediator triplets.  By incorporating STITCH and STRING 
databases, we could construct evidence networks for 14,415 compound-pathway-mediator triplets for support. The 
results of this analysis are presented in a searchable website to aid researchers in studying potential molecular 
mechanisms underlying cells’ drug response as well as in designing experiments for the purpose of personalized 
treatment regimens. 
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1.  Introduction 

The effort to personalize treatment plans for patients involves the identification of drug treatments 
that can effectively target the disease while minimizing the likelihood of adverse reactions. The 
advent of high-throughput –omics and drug-screening data has given rise to the development of 
complex analytical approaches to identify biomarkers and drug-targets) [1]. Considering complex 
molecular mechanisms underlying complex diseases such as cancer, the discovery of such 
biomarkers and subtype-specific drug targets must be based on activities of multiple genes rather 
than individual genes. Gene Set Enrichment Analysis (GSEA) [2] is one popular method of testing 
for differential expression of gene sets between conditions. As pathways are capable of complex 
rewiring between conditions, network-based analyses have become increasingly attractive for 
extraction of biological hypotheses from big data [3]. For example, the approaches to identify 
individual differential dependencies‡ [4-8] or condition-specific sub-networks from genome-wide 
dependency networks such as a protein-protein interaction networks have gained much interest [9-
11] for the determination of biomarkers and subtype-specific therapeutic vulnerabilities.  

Recently, we developed a novel computational method Evaluation of Differential DependencY 
(EDDY) that identifies pathways enriched with differential dependencies and that discovers 
mediators as potential therapeutic targets.  The method has been further improved by incorporating 
known gene interactions as prior knowledge.  The method has been successfully applied to the 
study of glioblastoma (GBM) [12, 13] and adrenocortical carcinoma (ACC) [14]. 

In this study, we present results from an integrated analysis of large-scale transcriptomic data 
of 810 cancer cell lines and large-scale high-throughput screening data of the same cancer cell 
lines across 368 compounds using EDDY algorithm.  The analysis not only identified the 
pathways enriched with differential dependencies between sensitive and non-sensitive cancer cell 
lines to each compound, but also discovered mediators as potential novel targets of the compound 
via graphical analysis of differential dependency networks.  Identified compound-pathway-
mediator triplets were further queried across known drug-gene database as well as a known gene-
gene interaction database to identify corroborating evidence to support newly discovered 
compound-pathway-mediator triplets. We also developed a searchable website to aid researchers 
in studying potential molecular mechanisms underlying cells’ drug response and in designing 
experiments for the purpose of personalized treatment regimens, publicly available at 
http://biocomputing.tgen.org/software/EDDY/CTRP. 

2.  Methods 

2.1.  High-Throughput Drug Screening of Cancer Cell Lines 

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct detailed genetic 
characterization of a large panel of human cancer cell lines. The CCLE provides public access to 
DNA copy number, mRNA expression, and mutation data for 1,000 cancer cell lines, 

                                                             
‡ In this manuscript, we use ‘dependency’ to denote statistical dependencies derived from data such as co-expression, 

conditional dependencies, and ‘interaction’ to denote known relationships between genes or related molecules. 
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encompassing 36 different tumor types [15]. 
The Center for the Science of Therapeutics at Broad Institute performed analysis of sensitivity 

of CCLE cell lines using ~500 small molecules as perturbagens, and made the data available at the 
Cancer Therapeutics Response Portal (CTRP; http://www.broadinstitute.org/ctrp/).  The “Informer 
Set” consists of 481 small compounds, including 70 FDA approved drugs, 100 clinical candidates 
and 311 small-molecule probes. In this study, we used the transcriptomic profile and CTRP drug-
response data to identify pathways with condition-specific rewiring of gene dependencies in the 
context of drug sensitivity [16, 17].  All of these aforementioned processed data is publicly 
available on the CTD2 data portal (https://ctd2.nci.nih.gov/dataPortal/). 

2.2.  EDDY: Evaluation of Differential Dependency 

EDDY is a statistical approach that combines pathway-guided and differential dependency 
analyses in a probabilistic framework [12, 13].  The algorithm queries each pathway (gene set) in a 
database such as BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) or REACTOME 
[18] to test for differential dependencies across the set of genes between two or more conditions, 
by comparing gene-dependency networks constructed for each condition. In evaluating differential 
dependency, EDDY uses a network likelihood distribution over multiple networks constructed via 
resampling for each condition and compares the distributions between the conditions, instead of 
just using the single, most probable network from each condition. The statistical significance of 

 
Figure 1. Knowledge-assisted EDDY Workflow.  GDNi,C is a gene-dependency network constructed for a gene 
set Gi, for condition C, aided by gene interaction network GINi. A network likelihood distribution over multiple 
networks is constructed via resampling for each condition and the network score distributions between the 
conditions are compared. Permutation testing assesses the significance of the divergence between the distributions 
of scores. Differential dependency networks can then be constructed for statistically significant gene sets. 
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the divergence is then estimated using asymptotic approximation of Jensen-Shannon divergence 
based on a beta distribution whose parameters are estimated using a permutation test.  
Probabilistic and gene-set assisted approaches together contribute to significantly higher 
sensitivity and specificity of EDDY, compared to other methods, such as GSEA and Gene Set Co-
expression Analysis (GSCA) [12]. 

Incorporation of Prior Knowledge into EDDY: Known interactions from the Pathway Commons 2  
(http://www.pathwaycommons.org) database are integrated into EDDY as prior knowledge 
(Figure 1). This integration has been shown to improve the interpretability of results from EDDY. 
Prior weight (Wp) is specified to determine the degree of weight that is given to the prior 
knowledge in evaluating new edges to be included in the proposed dependency structure. Since 
prior knowledge is not condition-specific, large prior weight could decrease EDDY’s sensitivity to 
detect differential dependency while reducing discovery of false-positive dependencies. For this 
analysis, a prior weight of Wp = 0.5 was used, meaning that any edges with half the support from 
data were included in the dependency network. The choice was based on extensive analysis of 
various data sets where Wp = 0.5 seemed to give the best compromise between sensitivity and false 
discovery rate when varying prior weight, as reported in Speyer et. al. [13].  

2.3.  Input Data 

Transcriptomic data: BAM files of 935 CCLE cell lines downloaded from the Cancer Genomics 
Hub (https://cghub.ucsc.edu) were converted to a FASTQ format and transcript quantification was 
performed using Salmon [19] to obtain quantitative estimate of mRNA expression in TPM 
(transcripts per million). These mRNA expression values were log2 transformed and quantized to 
values -1 (under-expressed), 0 (intermediate), and 1 (over-expressed). For each gene, median 
average deviation (MAD) was computed and used to determine under-expression (MAD < -1), 
over-expression (MAD > 1), and intermediate. 

Drug sensitivity: The cell lines were grouped into sensitive and non-sensitive classes using the 
Small-Molecule Cancer Cell Line Sensitivity Profiling CTRP 2.0 2015 Dataset, acquired from 
CTD2 (Cancer Target Discovery and Development). CTRP summarizes drug sensitivity between 
each cell line and drug pair using the area-under-percent-viability-curve (AUC) values [16, 17]. 
We used the ‘extremevalues’ R package to identify outliers in AUC values and group the cell lines 
into sensitive (-1; lower-end outliers), non-sensitive (1; upper-end outliers), and intermediate (0; 
non-outliers) groups for each compound. 

In order to conduct a statistically meaningful analysis using EDDY, only those drugs that had 
at least 50 samples in each sensitive and non-sensitive class were analyzed. This reduced the 
number of drugs that could be analyzed to 368 drugs. 

2.4.  Identification of Mediators 

For each compound, the results from EDDY analysis (Figure 2) are summarized into 1) a list of 
pathways enriched with differential dependency of statistical significance, and 2) a differential 
dependency network (DDN) that captures how gene dependency changes between sensitive and 
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non-sensitive cell lines. We identified those genes that seemed to play a significantly different role 
(based on statistical dependencies) between cell lines that were sensitive to a drug and cell lines 
that were non-sensitive, and termed them as mediators.  

Essentiality mediators: Each DDN is split into condition-specific dependency networks (CDNs) 
where each CDN is composed of dependencies manifested in each condition.  We then compute 
between-ness centrality for each gene in both CDNs and compute the difference of the 
betweenness centrality. The genes with the most differential betweenness centrality are termed 
essentiality mediators, as the genes with highest betweenness centrality in gene regulatory 
network are often interpreted as essential genes [20].  

Specificity mediators: We also analyzed how many dependencies for each gene change between 
the CDN from sensitive cell lines and the CDN from non-sensitive cell lines.  Formally, Let 
𝑃! = 𝐸!/ 𝐸! + 𝐸! , a proportion of condition-specific edges (𝐸!) across the overall number of 
edges (𝐸! + 𝐸!), and 𝐸!! be the number of condition-specific edges and 𝐸!! be number of shared 
edges, of a gene i.  Note 𝐸! = 𝐸!!!  and 𝐸! = 𝐸!!! .  We can then compute the 
probability, Pr 𝑘 ≥ 𝐸!! , that a gene i can have 𝐸!! or more condition-specific edges by random 
chance, via binomial probability 𝐵 𝑘,𝐸!! + 𝐸!! ,𝑃! . If this probability, Pr 𝑘 ≥ 𝐸!! < 0.05, we 
termed gene i as specificity mediator.  

2.5.  Evidence Networks  

However, uncertainty in interpreting these drug-pathway-mediator triplets hinders prioritization of 
hypotheses or experimental design to explore these potentially valuable results. We address this 
challenge by constructing evidence networks built with protein and drug interactions from the 
STRING and STITCH interaction databases. STITCH and STRING are sister knowledge-bases 
that store scored drug-protein interactions and protein-protein interactions, respectively [21, 22]. 
As compounds can have multiple names, from commercial and generic labels to chemical formula 

 
Figure 2. Overall workflow of EDDY analysis of CCLE and CTRP data. EDDY identifies significant 
pathways from RNA expression and compound-response categorization of cancer cell lines. Graphical analysis of 
output networks (edge color indicating condition) identifies important genes, termed mediators. Mining knowledge 
bases yields evidence networks for compound-mediator pairings (edge color here indicating evidence type).   
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and IUPAC ID, the database employed a unifying InChIKey to maximize comprehensiveness and 
to avoid false negatives. 

Evidence networks were generated using a modified Yen’s K-shortest paths algorithm [23] 
with a weight function of W(EDGE) = 1 – EDGE.SCORE, so that edges with higher scores would 
be preferred over edges with lower scores (all scores are within the interval [0,1] and are based on 
how compelling the supporting evidence is). To generate the evidence networks, shortest paths 
were continually found and added to the network until there were no more paths from the drug to 
the gene or there were at least N distinct nodes in the sub-network, where N is some arbitrary 
threshold. N was not a strict floor as sometimes the last path added to the sub-network would add 
two or more distinct nodes pushing the total number of distinct nodes over the threshold. Instead, 
N was used simply as a stopping condition and was chosen in order to prevent generation of 
evidence networks that would be too overwhelming for users to interpret. Choosing N = 5 yielded 
abundant evidence nets without excessive density.  Dijkstra’s shortest-path algorithm with a 
Fibonacci heap was used as the supporting shortest-path algorithm in the modified Yen’s K-
shortest-paths algorithm [24, 25].  

3.  Results 

3.1.  Pathway and Mediator Analysis 

EDDY analysis identified a total of 8,811 statistically significant pathways and 26,822 compound-
pathway-mediator triplets.  Of these, 534 pathways out of 685 BIOCARTA and REACTOME 
pathways were identified for at least one compound, and 2,401 genes out of 4,298 unique 
BIOCARTA and REACTOME genes were identified as mediators for at least one compound.  On 
average each compound identified about 24 pathways and 73 mediators. We found that for 125 
compounds, EDDY identified pathways that had the compound’s intended target in their DDN, 
and 29 mediators were identified as intended targets. Only 248 out of the 368 compounds had 
intended targets that EDDY could potentially identify within the REACTOME and BIOCARTA 
pathways. Hence, EDDY identified pathways that included the intended target for 125 out of 248 
compounds (50.4%). We tabulated (Table 1 & Table 2) the top 10 statistically significant 
pathways and mediators, respectively, which were identified by the largest number of compounds.  
We can see that the top two pathways that were statistically significant were ERYTH (erythrocyte 

Table 1.  Top 10 most commonly identified statistically significant pathways that were statistically significant 

Pathway # Compounds Database 
Erythrocyte differentiation (ERYTH) 78 BIOCARTA 

Cells and molecules involved in local acute inflammatory response (LAIR) 61 BIOCARTA 
CBL mediated ligand-induced downregulation of EGF receptors (CBL) 55 BIOCARTA 

TERMINATION OF O GLYCAN BIOSYNTHESIS 52 REACTOME 
SIGNALING BY HIPPO 49 REACTOME 

NUCLEOTIDE LIKE PURINERGIC RECEPTORS 48 REACTOME 
ZINC TRANSPORTERS 

GRANULOCYTES 
46 
45 

REACTOME 
BIOCARTA 

SYNTHESIS OF SUBSTRATES IN N GLYCAN BIOSYTHESIS 
PURINE CATABOLISM 

44 
43 

REACTOME 
REACTOME 
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differentiation pathway) and LAIR (pathway for cells and 
molecules involved in local acute inflammatory response) from 
BIOCARTA.  The erythrocyte differentiation pathway is the 
pathway responsible for the formation of red blood cells from the 
bone marrow. It is expected that this pathway would be altered in 
hematopoietic cancers and that its alteration would be involved in 
immune responses. The genes found in this pathway include 
TGFB2 and cytokines IL1A, IL3, IL6, IL9, and IL11. Cytokines 
are involved in various immune responses and inflammatory 
processes. The LAIR pathway includes mechanisms associated 
with the releases of cytokines IL1A and IL6.  The genes IL1A 
and IL6 are among the top fourteen mediators identified by 
compounds in EDDY and they are also intended targets for the ERYTH and LAIR pathways.  
IL1A gene is a cytokine involved in various immune responses, inflammatory processes, and 
hematopoiesis. This protein is released in response to cell injury. IL6 is also a cytokine that 
functions in inflammation and maturation of B cells [26].  Indeed, upon further examination of the 
response data for the compounds differentially dependent for the ERYTH and LAIR pathways, 
hematopoietic cell lines were on average six times more prevalent in the sensitive versus the non-
sensitive groups.  

The MAPK signaling pathway is an important signaling pathway in cancer studies because it 
is altered in many different cancer types and regulates processes such as cell proliferation, cell 
differentiation, and cell death. MAPK1, MAPK3 and MAPK14 are mitogen-activated protein 
kinases and are members of the MAP kinase family. These genes act in signaling pathways 
(MAPK signaling, immune response) and various other cellular processes such as proliferation, 
differentiation, and cell cycle progression. MAPK14 is activated by environmental stresses and 
cytokines associated to inflammatory responses. MAP kinases play important roles in cascades of 
cellular responses and lead to direct activation of transcription factors [27]. 

3.2.  Evidence Network Analysis 

EDDY-CTRP analysis identified 26,822 drug-pathway-mediator triplets. Among these pairs, 
19,222 of them consisted of a drug or a gene that is contained within the STRING and STITCH 
databases. Mining STITCH and STRING for each of 19,222 unique compound-pathway-mediator 
triplets yielded 14,415 evidence networks (~75%) of a path with 3 or fewer intermediate genes. 
These evidence networks are integrated into the main EDDY-CTRP portal as searchable tables 
(Table 3).  

We note that 102 evidence 
networks indeed were direct 
compound and mediator relations, 
among which only 34 were intended 
targets defined in the CTRP data 
and annotation. This indicates 

Table 2.  The top 10 most 
commonly identified mediators 

Pathway # Compounds 
MAPK1 185 
MAPK3 171 
GRB2 168 

NUP210 158 
HRAS 
NUP37 

136 
125 

AKT1 120 
ORC4 

MAPK14 
114 
114 

CDK1 114 

 

Table 3. Distribution of the number of intermediate genes in 
shortest path between drug and mediator pair. 

  Direct 
targets 

Indirect targets 

 
# of intermediate genes in shortest path 

    1 2 3 
# of pairs 102 988 3,410 9,915 
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STITCH/STRING contain drug-target relations that were not included in the CTRP database, but 
EDDY-CTRP analysis was able to discover those relations. Most of these evidence networks were 
for drug-pathway-mediator triplets where mediators were not direct targets of drug but had some 
known functional association to the drug (based on STITCH/STRING database).  Note that known 
“hub” genes such as TP53 turned out to have high prevalence in the constructed evidence 
networks.  In future development, the algorithm will introduce weighting to counter this bias. 

3.3.  Interactive and Searchable Web-P ortal for EDDY-CTRP Results 

The web-portal of the CTRP analysis (http://biocomputing.tgen.org/software/EDDY/CTRP) 
consists of two main views: CTRP compound-centric and mediator-centric. These views provide 
alternate perspectives on hypothesis-testing data from the EDDY analysis. CTRP compound-
centric view (Figure 3) provides pathways enriched with differential dependencies for each of 368 
compounds uncovered by EDDY. For each compound, a user can explore each identified pathway, 
corresponding DDNs, and mediators. Mediator-centric view (Figure 4) lists all compound-
pathway-mediator triplets uncovered across all compounds and all identified pathways. For each 
triplet, a user can also explore evidence networks as well as corresponding DDNs and pathways. 

4.  Case Studies: Potential Alternative Drug Targets 

4.1.   DAPK3 as an Alternative Target for TG-101348 

TG-101348 was developed as a selective inhibitor of JAK2 kinase for the treatment of 
myeloproliferative disorder [28]. EDDY identified 29 pathways significantly enriched with 
differential dependency, and 66 mediators.  One of the pathways is the EPONFKB pathway, 
which has JAK2 as an identified mediator, and, examining this DDN, JAK2 has exclusively 
sensitive-specific edges.  We obtained the evidence networks for 59 of 66 mediators, and one of 
those mediators with evidence network is DAPK3 which is identified as a direct target of TG-
101348, based on STITCH database.  DAPK3 was identified as a mediator for the "ROLE OF 
DCC IN REGULATING APOPTOSIS" pathway which has an altered differential dependency 

 
Figure 3. CTRP compound-centric view 
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network for TG-101348. The gene product of DAPK3 was a mediator in this pathway due to high 
change of essentiality (betweenness centrality) between the condition-specific dependency 
networks TG-101348 sensitive cancer cell lines and non-sensitive cancer cell lines.  In TG-
101348-sensitive cell lines, DAPK3 is highly connected in the network (Figure 5a), consistent 
with DAPK3 playing a central role in a functioning apoptotic network. In the non-sensitive cell 
lines, however, DAPK3 is not connected to the rest of the network (Figure 5b), corroborating the 
indication that disconnected DAPK3 may confer insensitivity to TG-101348 sensitivity.  

 

The evidence network built for TG-101348 - DAPK3 supports this hypothesis by showing a 
direct association between TG-101348 and DAPK3, discovered from the STITCH database 
(Figure 5c).  Indeed, the evidence link was from a study that showed TG-101348 can inhibit the 
kinase activity of DAPK3, indicating that TG-101348 actually does target DAPK3 in addition to 
JAK2. Additionally, an association between the downstream JAK2 modulator and DAPK3 was 
revealed suggesting further signaling interactions targeted by TG-101348 [29]. So, while this 
target was not annotated in CTRP annotation for known targets of TG-101348, EDDY-CTRP 

 
Figure 4. CTRP mediator-centric view 

 
Figure 5. (a) Condition-specific dependency network (CDN) for TG-101348-sensitive cell lines. Dashed lines 
represent statistical dependencies while solid lines known interactions. Size of nodes represents node essentiality. (b) 
CDN for TG-101348-insensitive cell lines. (c) Evidence network for the TG-101348 – DAPK3 drug-mediator pair. All 
edges represent a known association based from the STRING/STITCH databases. Blue edges represent mediator-gene 
associations, red edges drug-gene associations, and yellow edge a direct drug-mediator association.  
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analysis was able to detect this relationship.  This example illustrates EDDY can discover 
potentially novel targets of a compound and how the evidence network provides further contextual 
information regarding the possible mechanisms of how mediators selected in the EDDY analysis 
function to alter individual drug responses. 

4.2.  HIF1A as an Alternative Target for Indisulam  

Indisulam is a carbonic anhydrase IX (CA9) inhibitor [30].  CA9 activity in cancer is associated 
with an acidic microenvironment that favors tumor cell survival and growth [31]. EDDY 
identified the HIF pathway as a DDN associated with indisulam response. The HIF pathway is 
important for cancer-cell survival in hypoxic conditions often seen in tumors [32]. In the non-
responsive HIF pathway DDN two genes, HIF1A and JUN exhibit high essentiality compared to 
the responsive HIF DDN (Figure 6a).  HIF1A is a major gene that signals for cell survival in 
hypoxic conditions [32]. The evidence network for indisulam and HIF1A reveals a direct link 
between CA9 and HIF1A (Figure 6c). This would not be evident if investigator had only HIF 
pathway DDN evidence. Inspection of the evidence from STRING shows that HIF1A positively 
regulates CA9 expression. Cancer cells may be non-responsive to indisulam because HIF1A 
increases CA9 levels such that the drug is not effective at tested concentration in fully inhibiting 
CA9. This example shows how the evidence network is able to mechanistically link EDDY DDNs 
to drug targets and expand understanding of signaling events associated with drug response. 

5.  Conclusions  

While the current CTRP dataset allows the study of the correlations between genetic features with 
sensitivity to compounds, and while there are previous studies associating genes with compound 
sensitivity [33], this paper presents an unprecedented identification of pathways with differential 
dependency networks across a large number of cancer cell lines with drug-screening data.   
Additionally we have created a web repository to allow clinicians and researchers to view the 
results of our analysis. The web repository provides an interactive method to view the results for 

 
Figure 6. (a) Condition-specific dependency network (CDN) for indisulam for drug-sensitive cell lines. (b) CDN for 
indisulam for drug-insensitive cell lines. (c) Evidence network for the indisulam – HIF1A drug-mediator pair.  
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specific drugs. Researchers can query the intended targets, genes, or pathways to identify types of 
drugs, known targets, and to discover hitherto unknown mediators. We integrated quick unique 
links to the CTRP database, MSigDB Database, and Gene Cards, for each of the compounds, 
pathways, and genes.  These links allow users to view the analysis and information about the drug, 
pathway, or gene seamlessly.  We also provide links to the interactive DDN and condition-specific 
CDNs so that users can move around the nodes and edges to better analyze the results.  In addition 
we provide links to generate the Oncoprints for the sensitive and non-sensitive cell lines for each 
DDN.  These links allow the users to look at the mutation data used to generate the DDN.  

This resource can be valuable for researchers to explore potential targets of their interest and 
allow them to look at differential dependencies across a large number of cell lines and compounds. 
It may aid in studying potential molecular mechanisms underlying cells’ response to drug as well 
as designing experiments for the purpose of personalized treatment regimens. 

Computational methods that can efficiently predict the effectiveness of drugs based on the 
genetic makeup of tumors would provide a major breakthrough towards personalized therapy for 
cancer patients based on their tumor’s molecular markers. To strengthen the validity of our 
analysis and resource, experimental validation of the pathways identified by EDDY is warranted.  
We anticipate that this web repository will be a living resource for clinicians and researchers to 
use for designing experiments and identifying potential personalized treatment regimens. 
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