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Automated annotation of protein function has become a critical task in the post-genomic era.
Network-based approaches and homology-based approaches have been widely used and recently
tested in large-scale community-wide assessment experiments. It is natural to integrate network
data with homology information to further improve the predictive performance. However, integrat-
ing these two heterogeneous, high-dimensional and noisy datasets is non-trivial. In this work, we
introduce a novel protein function prediction algorithm ProSNet. An integrated heterogeneous net-
work is first built to include molecular networks of multiple species and link together homologous
proteins across multiple species. Based on this integrated network, a dimensionality reduction algo-
rithm is introduced to obtain compact low-dimensional vectors to encode proteins in the network.
Finally, we develop machine learning classification algorithms that take the vectors as input and
make predictions by transferring annotations both within each species and across different species.
Extensive experiments on five major species demonstrate that our integration of homology with
molecular networks substantially improves the predictive performance over existing approaches.

Keywords: protein function prediction, homology, molecular networks, dimensionality reduction,
data integration

1. Introduction

Comprehensively annotating protein function is crucial in illustrating activities of millions of
proteins at molecular level, which can further advance basic biological research and biomedical
sciences.1 Although massive annotations have been curated, such as popular Gene Ontology
(GO) annotations,2 current experimental approaches are infeasible to fully exploring protein
function annotations. As a result, computational approaches have become a more accessible
way to annotate protein function3,4 and help biologists prioritize their experiments.

Computational prediction of protein function has been extensively studied in the context
of molecular evolution. Homologous proteins have most likely evolved from a common ances-
tor. They often carry out similar protein functions, because functions are generally conserved
during molecular evolution. Consequently, computational approaches can predict the function
of query proteins by transferring those of their annotated homologs. In addition to automatic
annotations based on orthology or domain information or pre-existing cross-references and key-
words,5 a variety of machine learning algorithms6–12 have been proposed to extract annotations
based on sequence similarity-detection tools such as BLAST, PSI-BLAST,13 and phylogenetic
analysis.14,15 Despite the success of homology-based approaches, their major constraint arises
from a lack of annotated sequences.16 In fact, among over 65 million protein sequences in
publicly accessible databases,17 only 2 million of them are manually curated.18 Consequently,
the predictive power of homology-based methods has been limited due to the scarcity of an-
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notations. Furthermore, reliable homology relationships are sparse between distantly related
species, thus posing computational and statistical challenges when making faithful predictions.

Fortunately, the rapidly growing interactome data from high-throughput experimental
techniques allows us to extract patterns from neighbors in molecular networks19–21 in addition
to homologous proteins. This idea is supported by the established “guilt-by-association” prin-
ciple, which states that proteins that are associated or interacting in the network are more
likely to be functionally related.22 Recently, this “guilt-by-association” principle has become
the foundation of many network-based function prediction algorithms.23–30 Among them, Gen-
eMANIA31 and clusDCA32 are state-of-the-art network-based function prediction approaches.
In addition to incorporating network topology, clusDCA also leverages the similarity between
GO labels and obtains substantial improvement on sparsely annotated functions. GeneMA-
NIA uses a label propagation algorithm on an integrated network specifically constructed for
each functional label, and is currently available as a state-of-the-art web interface for gene
function prediction for many organisms.

Intuitively, integrating homology data with molecular networks can synergistically improve
function prediction results. On one hand, it enables us to transfer annotations from function-
ally well-characterized neighbors in the molecular network as well as from homologous proteins
with conserved similar functions. On the other hand, homology data can further mitigate the
incomplete and noisy nature of molecular networks through interologs,33 which states that
a conserved interaction occurs between a pair of proteins that have interacting homologs in
another organism.34

Nevertheless, integrating homology data with molecular networks is both computationally
and statistically challenging. Since they are heterogeneous data sources, it is likely sub-optimal
to integrate them in an additive way which simply averages the prediction results of either of
these two data sources. Moreover, we also need an efficient algorithm that scales to hundreds
of thousands of proteins from multiple species. One way to integrate these two heterogeneous
data sources seamlessly is to construct a multiple species heterogeneous network in which
both nodes and edges are associated with different types. With this network, we can predict
functions for query proteins based on annotations extracted from both their homologs and
their neighbors in molecular networks. Furthermore, information can also be transferred be-
tween two proteins that are neither homologs nor neighbors in molecular networks. Notably,
the only previous attempt to integrate these two heterogeneous data sources is using multi-
view learning.35 However, it does not scale to multiple species. In addition, they formulated
protein function prediction as a structured-output hierarchical classification problem whose
performance for sparsely annotated functional labels is far from satisfactory.32

In this work, we introduce ProSNet, a novel Protein function prediction algorithm which
efficiently integrates Sequence data with molecular Network data across multiple species.
Specifically, an integrated heterogeneous network is first constructed to include all molecular
networks of multiple species, in which homologous proteins across multiple species are also
linked together. Based on this integrated network, a novel dimensionality reduction algorithm
is applied to obtain compact low-dimensional vectors for proteins in the network. Proteins that
are topologically close in the molecular networks and/or have similar sequences are co-localized
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in this low-dimensional space based on their vectors. These low-dimensional vectors are then
used as input features to two classifiers which utilize annotations from molecular networks
and homologous proteins, respectively. In addition, ProSNet is inherently parallelized, which
further promises scalability. When compared to the state-of-the-art methods that only use
homology data or molecular networks, ProSNet substantially improves the function prediction
performance on five major species.

2. Methods

As an overview, ProSNet first constructs a heterogeneous biological network by integrating
homology data with molecular network data of multiple species. It then performs a novel di-
mensionality reduction algorithm on this heterogeneous network to optimize a low-dimensional
vector representation for each protein. The vectors of two proteins will be co-localized in the
low-dimensional space if the proteins are close to each other in the heterogeneous biological
network. A key computational contribution is that ProSNet obtains low-dimensional vectors
through a fast online learning algorithm instead of the batch learning algorithm used by pre-
vious work.23,32 In each iteration, ProSNet samples a path from the heterogeneous network
and optimizes low-dimensional vectors based on this path instead of all pairs of nodes. There-
fore, it can easily scale to large networks containing hundreds of thousands or even millions of
edges and nodes. After finding low-dimensional vector representation for each node, ProSNet
calculates an intra-species affinity score and an inter-species affinity score by transfering an-
notations within the same species and across different species, respectively. Finally, ProSNet
predicts functions for a query protein by averaging these scores and picking the function(s)
with the highest score(s).

2.1. Heterogeneous biological network

Definition 1. Heterogeneous Biological Networks (HBNs) are biological networks
where both nodes and edges are associated with different types. In an HBN G = (V,E,R), V
is the set of typed nodes (i.e., each node has its own type), R is the set of edge types in the
network, and E is the set of typed edges. An edge e ∈ E in a heterogeneous biological network
is an ordered triplet e = 〈u, v, r〉, where u ∈ V and v ∈ V are two typed nodes associated with
this edge and r ∈ R is the edge type.

Definition 2. In an HBN G = (V,E,R), a heterogeneous path is a sequence of compatible
edge types M = 〈r1, r2, . . . , rL〉, ∀i, ri ∈ R. The outgoing node type of ri should match the
incoming node type of ri+1. Any path Pe1 eL = 〈e1, e2, . . . , eL〉 connecting node u1 and uL+1 is
a heterogeneous path instance following M, iff ∀i, ei is of type ri.

In particular, any edge type r is a length-1 heterogeneous path M = 〈r〉. We show a toy
example of an HBN under our function prediction framework in Fig. 1.
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Fig. 1. An example of the heterogeneous biological network under our function prediction framework. The
node set V consists of four types, {“Human protein”, “Yeast protein”, “Mouse protein”, and “Gene On-
tology term”}. The edge type set R consists of five types, {“Sequence similarity”, “Protein function anno-
tation”,“Gene Ontology relationship”,“Experimental”, and “Co-expression” }. This HBN explicitly captures
interolog and transfer of annotation through heterogeneous paths across different species.

2.2. Low-dimensional vector learning in the heterogeneous biological
network

ProSNet finds the low-dimensional vector for each node through first sampling a large num-
ber of heterogeneous path instances according to the HBN. It then finds the optimal low-
dimensional vector so that nodes that appear together in many instances turn to have similar
vector representations. We first define the conditional probability of node v connected to node
u by a heterogeneous path M as:

Pr(v|u,M) =
exp(f(u, v,M))∑

v′∈V exp(f(u, v′,M))
, (1)

where f is a scoring function modeling the relevance between u and v conditioned on M.
Inspired from the previous work,36 we define the following scoring function:

f(u, v,M) = µM + pM
Txu + qM

Txv + xu
Txv. (2)

Here, µM ∈ R is the global bias of the heterogeneous path M. pM and qM ∈ Rd are local
bias d dimensional vectors of the heterogeneous path M. xu and xv ∈ Rd are low-dimensional
vectors for nodes u and v respectively. Our framework models different heterogeneous paths
differently by using pM and qM to weight different dimensions of node vectors according to
the heterogeneous path M.

For a heterogeneous path instance Pe1 eL = 〈e1 = 〈u1, v1, r1〉, . . . , eL = 〈uL, vL, rL〉〉 following
M = 〈r1, r2, . . . , rL〉, we propose the following approximation.

Pr(Pe1 eL |M) ∝ C(u1, 1|M)γ × Pr(Pe1 eL |u1,M), (3)

where C(u, i|M) represents the count of path instances following M with the ith node being
u. C(u, i|M) can be efficiently computed through a dynamic programming algorithm. γ is a
widely used parameter to control the effect of overly-popular nodes, which is set to 0.75 in
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previous work.37 We assume that each node on the path only depends on its previous node.
Then we have

Pr(Pe1 eL |u1,M) =

L∏
i=1

Pr(vi|ui, ri). (4)

Given the conditional distribution defined in Eq. (1) and (3), the maximum likelihood
training is tractable but expensive because computing the gradient of the log-likelihood takes
time linear in the number of nodes. Following the noise-contrastive estimation (NCE),38 we
reduce the problem of density estimation to a binary classification, discriminating between
samples from path instances following the heterogeneous path and samples from a known
noise distribution. In particular, we assume these samples come from the following mixture.

1

θ + 1
Pr+(Pe1 eL |M) +

θ

θ + 1
Pr−(Pe1 eL |M), (5)

where θ is the negative sampling weight and Pr+(Pe1 eL |M) denotes the distribution of path
instances in the HBN following the heterogeneous path M. Pr−(Pe1 eL |M) is a noise distri-
bution, and for simplicity we set

Pr−(Pe1 eL |M) ∝
L+1∏
i=1

C(ui, i |M)γ . (6)

We further assume noise samples are θ times more frequent than positive path instance
samples. The posterior probability that a given sample D came from positive path instance
samples following the given heterogeneous path is

Pr(D = 1|Pe1 eL ,M) =
Pr+(Pe1 eL |M)

Pr+(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)
, (7)

where D ∈ {0, 1} is the label of the binary classification. Since we would like to fit Pr(Pe1 eL |M)

to Pr+(Pe1 eL |M), we simply maximize the following expectation.

LM =EPr+
[

log
Pr(Pe1 eL |M)

Pr(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)

]
+ θ · EPr−

[
log

θ · Pr−(Pe1 eL |M)

Pr(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)

]
.

(8)

The loss function can be derived as

LM ≈
∑

Pe1 eL
following M

log σ(

L∑
i=1

f(ui, vi, ri)) +

∑θ
j=1 EPj

e1 eL
∼Pr−|u1,M

[
log
(
1− σ(

∑L
i=1 f(uji , v

j
i , ri))

)]
,

(9)

where σ(·) is the sigmoid function. Note that when deriving the above equation we used
exp(f(u, v,M)) in place of Pr(v|u,M), ignoring the normalization term in Eq. (1). We can do
this because the NCE objective encourages the model to be approximately normalized and re-
covers a perfectly normalized model if the model class contains the data distribution.38 Follow-
ing the idea of negative sampling,37 we also replaced

∑L
i=1 f(ui, vi, ri)− log

(
θ ·Pr−(Pe1 eL |M)

)
with

∑L
i=1 f(ui, vi, ri) for ease of computation. We optimize parameters xu,xv,pr,qr, and µr

based on Eq. (9).
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2.3. Runtime improvements through online learning

Like diffusion component analysis,23 the number of pairs of nodes 〈u, v〉 that are connected by
some path instances following at least one of the paths is O(|V |2) in the worst case. This is too
large for storage or processing when |V | is at the order of hundreds of thousands. Therefore,
sampling a subset of path instances according to their distribution is the most feasible choice
when optimizing, instead of going through every path instance per iteration. Thus, our method
is still very efficient for networks containing large numbers of edges. Based on Eq. (3), we
can sample a path instance by sampling the nodes on the heterogeneous path one by one.
Once a path instance has been sampled, we use gradient descent to update the parameters
xu,xv,pr,qr, and µr based on Eq. (9). As a result, our sampling-based framework becomes a
stochastic gradient descent framework. The derivations of these gradients are trivial and thus
are omitted. Moreover, since stochastic gradient descent can generally be parallelized without
locks, we can further optimize via multi-threading. Decomposing a heterogeneous network
with more than sixty thousand nodes and ten million edges into a 500-dimensional vector
space takes less than 30 minutes on a 12-core 3.07GZ Intel Xeon CPU through this online
learning framework.

2.4. Function prediction

After using the above framework to find the low-dimensional vector for each protein in the
HBN, ProSNet transfers annotations both within the same species and across different species
to predict for a query protein.

To transfer annotations within the same species, ProSNet first uses diffusion component
analysis23 on the Gene Ontology graph2 to find low-dimensional vector yi for each functional
label i. It then uses a transformation matrix W to project proteins from the protein vector
space to the function vector space, which allows us to match proteins to functions based on
geometric proximity. Let y

′

i be the projection of the protein vector xi:

y
′

i = xiW. (10)

We define the intra-species affinity score zij between gene i and function j to be used for
function prediction as:

zij = xiWyT
j . (11)

A larger zij indicates that gene i is more likely to be annotated with function j. We follow
clusDCA32 to find the optimal W.

Since proteins from different species are located in the same low-dimensional vector space,
ProSNet is able to use the annotations across different species as well. Instead of using the
annotations from all the other proteins, ProSNet only considers the k most similar proteins
based on the cosine similarity between their low-dimensional vectors. It then calculates the
inter-species affinity score sij between gene i and function j as:

sij =
∑
g∈Bi

cos(xi,xg) · 1(g ∈ Tj), (12)
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where Bi is the set of k most similar proteins of i and Tj is the set of genes that are annotated
to function j in the training data.

After obtaining the intra-species affinity score z and inter-species affinity score s, ProSNet
normalizes them by z-scores. It predicts functions for a query protein by averaging these two
normalized affinity scores and picking the function(s) with the highest score(s)

3. Experimental results

3.1. Construction of heterogeneous biological network for function
prediction

To construct the heterogeneous biological network (HBN), we obtained six molecular net-
works for each of five species, including human (Homo sapiens), mouse (Mus musculus),
yeast (Saccharomyces cerevisiae), fruit fly (Drosophila melanogaster), and worm (Caenorhab-
ditis elegans) from the STRING database v10.20 These six molecular networks are built from
heterogeneous data sources, including high-throughput interaction assays, curated protein-
protein interaction databases, and conserved co-expression data. We excluded text mining-
based networks to avoid potential confounding. Each edge in the molecular networks has
been associated with a weight between 0 and 1 representing the confidence of interaction.
Next, we obtained protein-function annotations and the ontology of functional labels from the
GO Consortium.2 We only used annotations that have experimental evidence codes including
EXP, IDA, IPI, IMP, IGI, and IEP. As a result, annotations that are based on an in silico
analysis of the gene sequence and/or other data are removed to avoid potential leakage of
labels. We built a directed acyclic graph of GO labels from all three categories [biological
process (BP), molecular function (MF) and cellular component (CC)] based on “is a” and
“part of ” relationships. This graph has 13,708 functions and 19,206 edges. We set all edge
weights of protein-function links to 1 and all edge weights between GO labels to 1. Finally, we
extracted amino acid sequences of all proteins in our five-species network from the STRING
database and the Universal Protein Resource (Uniprot).17 To construct homology edges, we
performed all-vs-all BLAST13 and excluded edges with E-value larger than 1e-8. We then used
the negative logarithm of the E-values as the edge weights and rescaled them into [0, 1]. We
showed the statistics of our HBN in Tab. 1. For simplicity, all edges are undirected. Note that
we excluded the protein-function annotation edges that are in the hold-out test set in the
following experiments for rigorous comparisons. Our heterogeneous network is similar to the
example network in Fig. 1, except that our network has five species and six different types of
molecular networks.

3.2. Experimental setting

We used 3-fold cross-validation to evaluate the methods of interest. For a given species for
evaluation, we randomly split proteins of the species into three equal-size subsets. Each time,
the GO annotations of proteins in one subset were held out for testing, and the annotations
of the other two subsets were used for intra-species classification training. For inter-species
training, we used all experimental GO annotations from the other four species, ensuring no
leakage of label information in the training data. To evaluate the predictive performance, we
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Table 1. Statistics of our heterogeneous network

Human Mouse Yeast Fruit fly Worm
#proteins 16,544 16,649 6,307 11,261 13,469
#co-expression edges 1,319,562 1,406,572 628,014 2,466,234 2,774,840
#co-occurrence edges 28,334 29,472 5,328 17,962 14,678
#database edges 275,860 347,406 66,972 116,748 69,948
#experimental edges 492,548 672,326 439,956 380,046 298,684
#fusion edges 2,678 3,994 2,722 4,026 4,336
#neighborhood edges 78,440 77,962 91,220 69,934 49,890
#human homology edges 0 525,221 55,884 202,993 159,481
#mouse homology edges 525,221 0 52,916 188,729 151,408
#yeast homology edges 55,884 52,916 0 26,950 28,269
#fruit fly homology edges 202,993 188,729 26,950 0 75,831
#worm homology edges 159,481 151,408 28,269 75,831 0
#annotations 77,950 66,238 28,668 32,259 21,655

measured the extent to which the predicted ranked list was consistent with the ground truth
ranked list by computing the receiver operating characteristic curve (AUROC). We used the
macro-AUROC as the evaluation metric following previous work.31,32 The macro-AUROC is
calculated by separately averaging the area under the curves for each label. We set the vector
dimension d = 500, the number of nearest neighbors k = 2000, and the negative sampling weight
θ = 5 in our experiment. We observed that the performance of our algorithm is quite stable
with different d, k, and θ values. We included all edge types in the predefined heterogeneous
path set. Additionally, we added “transfer of annotation” to the predefined heterogeneous
path set (Fig. 1).

To show the improvement from integrating homology data with molecular networks of mul-
tiple species, we compared our method with three existing state-of-the-art function prediction
methods: GeneMANIA,31 clusDCA,32 and BLAST.13 GeneMANIA and clusDCA integrate
protein molecular networks within a given species. Neither of them is able to integrate infor-
mation across different species. We used the latest released code and the suggested parameter
settings for these two methods. BLAST uses bit score to rank annotations from significant
hits by BLAST. We used the same datasets (i.e. annotations, proteins, and networks) and the
same evaluation scheme for every method we tested.

3.3. Molecular network data and homology data are complementary in
function prediction

We first studied whether information extracted from homology and from molecular networks
are complementary. We compared the predictive performance of three different data sources:
1) molecular networks, 2) homology, 3) both molecular network and homology (integrated).
We used clusDCA to predict function annotations based on molecular networks. We used
BLAST to make predictions of function annotation based on homology. We summarized how
many functions can be accurately annotated (AUROC>0.9) by each data source (Fig. 2). We
notice that there are many functions that can only be accurately predicted by homology or
network. For example, on mouse MF with 3-10 labels, 9% of functions (difference between
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Fig. 2. Comparison of using different data sources for function prediction

yellow bar and green bar) can be accurately predicted only by homology but not by network.
In the same category, another 21% of functions (difference between blue bar and green bar)
can be accurately predicted only by network but not by homology. This suggests that these
two data sources are complementary, and integrating them can synergistically improve the
function prediction results. To this end, we integrated homology and network data by simply
taking average of the z-scores of predicted annotations from these two data sources. We found
that the predictive performance using both molecular network data and homology data is
significantly better than only using one in all categories on both human and mouse. For
example, on human MF with 101-300 labels, using both network data and homology data
accurately annotates 60% of functions, which is much higher than 4% of only using network
data and 26% of only using homology data. Notably, we only use the homology data from five
species here. When including homology data from more species in the future, homology data
may further boost the function prediction performance.

3.4. ProSNet substantially improves function prediction performance

We performed large-scale function prediction on all five species to compare our method to
other state-of-the-art function prediction approaches. The results are summarized in Fig. 3
and Supplementary Fig. 1 (Supplementary Data). It is clear that our approach achieved the
best overall results in all five species. When comparing with homology-based methods, we
found that ProSNet significantly outperforms BLAST on both sparsely annotated and densely
annotated labels (data not shown). For example, ProSNet achieves 0.8690 AUROC on human
BP labels with 3-10 annotations, which is much higher than the 0.6326 AUROC by BLAST.

Furthermore, we compared ProSNet to existing state-of-the-art network-based methods, in-
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Fig. 3. Comparison of different methods

cluding clusDCA and GeneMANIA, which only integrate molecular networks of single species.
We found that the overall performance of our approach is substantially higher than that of
both of these methods. For instance, in human, our method achieved 0.9211 AUROC on MF
labels with 3-10 annotations, which is much higher than 0.8673 by GeneMANIA and 0.8794
by clusDCA. In mouse, our method achieved 0.8523 AUROC on BP labels with 31-100 anno-
tations, which is much higher than 0.8078 AUROC by GeneMANIA and 0.8299 AUROC by
clusDCA.

To evaluate the integration of homology and network data, we developed a baseline ap-
proach that simply merges predictions made from homology data and sequence data, sepa-
rately. This additive approach takes the average z-scores of the annotation score of clusDCA
and BLAST to rank functional labels for each protein. We note that this baseline approach
outperformes both GeneMANIA and clusDCA, indicating that integrating homology with
molecular networks can substantially improve the function prediction performance. We then
compared this additive approach to our method. We found that ProSNet also outperforms
the additive approach. For instance, in human, our method achieves 0.9129 AUROC on MF
labels with 11-30 labels, which is higher than 0.8956 AUROC by the additive approach. The
improvement of our method in comparison to the additive approach demonstrates a better
data integration by constructing a heterogeneous network and finding low-dimensional vector
representations for each node in this network.

The improvement of ProSNet over existing network-based approaches is more pronounced
on sparsely annotated functions. Since very few proteins are annotated to these functions,
it is very easy to overfit any classification algorithm if we only use the data from a single
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species. With the integrated heterogeneous biological network, ProSNet successfully transfers
annotations from other species to have a more robust and improved predictive performance
on sparsely annotated functions.

4. Conclusion

In this paper, we have presented ProSNet, a novel protein function prediction method which
seamlessly integrates homology data and molecular network data. ProSNet constructs a het-
erogeneous network to include molecular networks from all species and homology links across
different species. We have designed an efficient dimensionality reduction approach which only
takes 30 minutes to decompose a heterogeneous network containing hundreds of thousands
of proteins. We have demonstrated that ProSNet outperforms state-of-the-art network-based
approaches and homology-based approaches on five major species. Furthermore, ProSNet has
achieved improved performance over an additive integration approach that simply adds predic-
tions from network and homology data. This result supports our hypothesis that constructing a
heterogeneous network and then finding low-dimensional vector representations for each node
in this network is a better data integration approach. In the future, we plan to study how to
annotate proteins of species that have very sparse molecular networks or even no molecular
network. In addition, we plan to pursue further improvement by integrating networks and
homology data from a complete spectrum of reference species.

Supplementary Data:
http://web.engr.illinois.edu/~swang141/PSB/ProSNetSupp.pdf
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