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Advances in cellular, molecular, and disease biology depend on the comprehensive 
characterization of gene interactions and pathways. Traditionally, these pathways are 
curated manually, limiting their efficient annotation and, potentially, reinforcing field-
specific bias. Here, in order to test objective and automated identification of functionally 
cooperative genes, we compared a novel algorithm with three established methods to 
search for communities within gene interaction networks. Communities identified by the 
novel approach and by one of the established method overlapped significantly (q < 0.1) 
with control pathways. With respect to disease, these communities were biased to genes 
with pathogenic variants in ClinVar (p << 0.01), and often genes from the same 
community were co-expressed, including in breast cancers. The interesting subset of novel 
communities, defined by poor overlap to control pathways also contained co-expressed 
genes, consistent with a possible functional role. This work shows that community 
detection based on topological features of networks suggests new, biologically meaningful 
groupings of genes that, in turn, point to health and disease relevant hypotheses. 
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1.  Introduction 

How genes and proteins interact with each other is the basis of molecular biology and disease 
pathogenesis1,2. These functional interactions, which biologists place into pathways, have been 
characterized through hypothesis-driven experiments and then manually defined in the past3,4. This 
is necessarily knowledge intensive and painstaking, and it stands in sharp contrast to the massive 
amount of new gene interaction data from high-throughput experiments. Continued reliance on 
manual recognition of pathways may limit the overall capacity to characterize gene behavior, and 
potentially focus on already well-known sets of gene interactions. With at least 100,000 
interactome hubs in humans, the number of potential interactions to annotate are in the billions5. 
Yet, the current estimate of interactions from the broadly used and expertly curated STRING 
database6 that focus solely on proteins are in the millions. This large discrepancy suggests many 
unrecognized, or “dark,” associations and pathways are simply missing.  
 In order to take a data-driven approach to annotate and detect novel biological pathways, 
clusters in biological networks were defined based on topological features to isolate functional and 
disease pathways5,7. One topological feature that has been extensively applied in social network 
analysis8-10, but has not yet seen widespread use in biology, is community structure11,12.  
 Communities are groups of nodes (i.e. proteins) that are more connected to each other than 
to anything else in a network8,13. Often these groups of nodes correspond to a common process, 
purpose, or function5,9. Therefore, it is reasonable to hypothesize that determining communities on 
biological networks may shed new light on groupings of genes with common biological function 
or features. Past efforts13,14 were useful but did not comprehensively test various algorithms in 
functional and disease contexts. Given appropriate algorithms, community detection has the 
potential to automatically expand biological pathways, determine novel pathways, and perhaps 
even predict gene-disease associations. 
 This study sought to detect communities on a protein-protein interaction network and to 
evaluate their number and size against existing references. Several methods can evaluate 
performance in terms of the number and size of the overlap between communities and known 
control pathways. Moreover, beyond reference pathways, disease data can directly demonstrate the 
applicability of communities to formulate new and clinically relevant biomedical hypotheses. 

2.  Results 

2.1. Determining putative biological pathways 

In order to automatically determine putative biological pathways, several possible community 
detection methods exist. Clauset-Newman-Moore (CNM)8 and Louvain10 are well-established and 
extensively applied algorithms with more than 3000 citations each.  BIGCLAM15 is a more recent  
alternative that searches for densely overlapping, hierarchically nested communities in an 
orthogonal approach. Each of these approaches was tested on a STRING protein-protein 
interaction network16, limited to high-quality direct biological associations. The communities that 
were obtained could then be compared to gold standard set of curated biological pathways, such as 
Reactome17 and Canonical pathways from the GSEA tool18, and, for disease pathways, 
DisGeNET19. 
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 A first assessment of 
performance was the granularity of 
the communities. That is, we 
compared the number of gene groups 
and the number of genes in each 
group in order to determine whether 
the communities resemble the 
references. CNM and Louvain 
community detection found an order 
of magnitude fewer groupings than 
the smallest reference set, and 
BIGCLAM detects five times more 
groups than the largest reference set 
(Figure 1). This is not surprising 
given that the methods were designed 
for social network analysis. 
Combined with different numbers of 
genes per group, these algorithms 
appear to poorly represent the 
reference pathways as defined by 
biologists. 

 To address this problem, we then introduced a novel community detection algorithm we 
called, Recursive Louvain (RL). RL applies the Louvain algorithm but iterates on the resulting 
communities so as to break them down stepwise into smaller and smaller groups until reaching a 
majority of right-sized communities, an idea that was in fact discussed in the original Louvain 
community detection paper10. In this way, RL generated communities that matched more closely 
the size of the control pathways (Figure 1, red). 
 

2.2. Assessing the biological relevance of communities 
Next, when comparing communities to the reference sets, careful consideration of what constitutes 
a pathway was necessary. First, we removed overly small reference pathways and communities 
(size ≤ 3 genes) to better focus on significant gene groupings. Additionally, pathways often share 
many genes, and in the extreme, they can share all but one gene. To avoid the over-counting of a 
pathway, or community, any with more than 90% of genes in common were combined. Finally, 
four different metrics were selected to gauge success. Jaccard similarity measures the similarity of 
a community to a reference by looking at the size of the intersection relative to the union of the 
genes; the modified Jaccard metric does not punish a community for being larger than the 
reference; the hypergeometric test measures the likelihood of getting an overlap between a 
reference and a community given all genes in a given community set; and the F1 score measures 
the ability to recover an overlap (see methods for the mathematical details). 
 To test if communities represent biological information from functional and disease 
pathways, we compared each community to each reference pathway. This comparison was 
accomplished with the hypergeometric test, which allows a statistical probability and Benjamini-
Hochberg False Discovery Rate (FDR) correction20. This correction is essential to account for 

Figure 1: Community Algorithms Detect Variable Numbers and 
Sizes of Pathways. Recursive Louvain (Red) is a novel community 
detection method that detects a similar number of gene groups to 
the references with approximately the same number of genes per 
gene group given STRING 9.1 protein-protein interaction network.  
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multiple testing. Encouragingly, many communities were significantly enriched (q-value ≤ 0.1) for 
a functional pathway (Reactome and Canonical Pathways), a disease pathway (DisGeNET), or a 
mixture of the two. Depending on the method, between 7-24% of communities were not enriched 
for any known pathway or disease and were regarded as novel. The exact breakdown of the 
community classification is shown in Figure 2A, and the majority of communities in BIGCLAM 
and RL are statistically overlapped with a function pathway and often with a disease pathway. 
Indeed, RL has the smallest fraction (7%) of novel communities, suggesting a higher positive 
predictive rate for the references. We noted that the number of genes in each community group 
generally increases from novel to mixed (Figure 2B). This could have a number of implications, 
including an observational annotation bias or a biological basis. These data show that community 
detection methods recover many commonly known functional and disease pathways but also 
discover new gene associations that possibly suggest novel pathways. 
 In order to assess the robustness of community detection we tested four metrics of 

Figure 2: Communities Recapitulate Biological Knowledge. A) A hypergeometric test determines (q-
value ≤ 0.1) whether a community is overlapped with a reference, and while many communities were 
overlapped with a disease or functional pathway, few or none (denoted by an *) were exclusively 
overlapped with only disease pathways. B) The number of genes in each group generally increases from a 
novel community to a community enriched for disease and functional pathways. C) All methods were 
non-randomly associated with every reference according to some metric, and many with p-values smaller 
than 10-10. 
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community overlap. Three random controls were generated to match the number and size of a set 
of communities and then scored against the references. Only the top score of a community or 
random against all pathways in a reference was kept. The distribution of random scores was then 
compared against the distribution of community scores using a Kolmogorov-Smirnov test. Due to 
poor performance and a lack of data (only 17 total communities), Louvain community detection 
(Supp. Figure 1-2) was assessed, but will not be shown because RL finds more total communities 
with overlap. As seen in Figure 2C, all three remaining methods were non-random by some 
metric; however, BIGCLAM and RL were significant on more metrics than CNM. In particular, 
BIGCLAM and RL appear highly significant in overlap with functional and disease pathways. RL 
has a higher percentage of communities that are enriched for both functional and disease pathways 
(Figure 2A), and this may suggest RL is better at recapitulating disease pathways. BIGCLAM has 
many more communities than the other methods (Figure 1A); this means we are more confident 
that BIGCLAM is performing different from random because we have more examples of overlap 
with the references. In contrast, Louvain community detection only found 17 communities, 
offering fewer opportunities to overlap with the references, and when we break those communities 
down further with RL, there is now more overlap with the references. These data show that 
BIGCLAM and RL recapitulate biological knowledge, while CNM appears to be less reliable. 

 
2.3. Clinical and disease 
relevance of communities 
A central question is 
whether these communities 
have real-world 
significance with respect to 
disease mechanisms. In 
order to address this 
question, communities 
were tested for overlap 
with diseases in the 
genetics database ClinVar. 
We hypothesized that 
communities represent 
units of biological 
function, and, if so, 
disrupting a gene that is 
part of a community would 
be more pathogenic than 
disrupting one that is 
outside of a community. 
Indeed, we find that 
mutations of disease genes 
that belong to communities 
have greater impact on the 
clinical phenotypes and on 
overall protein fitness 

Figure 3: The Overlap between Communities and Diseases is Biased to Highly 
Pathogenic and Impactful Mutations. A) ClinVar groups variants into diseases. When 
a community and a disease from ClinVar both share genes, those genes possess a high 
B) clinical impact and C) mutation impact (p<<0.01) when compared to genes that 
are not found in communities. This implies that the communities are enriched towards 
variants that are pathogenic. Overlaps were only taken if the overlap was non-random 
(q<0.05). 
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(Figure 3A). This was tested using the extensive annotations ClinVar21 provides on the clinical 
impact of disease mutations. Specifically, for every community detection method, genes that fell 
inside communities showed are biased towards pathogenic variants (Chi-Square p-value << 0.01, 
Figure 3B). As an orthogonal control to test for bias in the impact of variations on disease genes, 
the Evolutionary Action (EA) provides an independent assessment of the deleterious impact of a 
mutation on protein fitness22. The same statistically significant trend emerges (Figure 3C, Chi-
Square p << 0.01). These data show that mutations tend to have greater clinical and evolutionary 
deleterious impact if they affect genes that are part of communities.  
 To demonstrate a specific application of communities to disease pathways, we compared 
communities from BIGCLAM and RL, which outperformed CNM, against two diseases. These 
two diseases, Zellweger Syndrome (ZS) and Bardet-Biedl Syndrome (BBS) were both statistically 
associated with communities (p << 0.01). To associate diseases to communities, we used the 
disease-gene association information from two sources: (1) DisGeNet, a disease-gene association 
database integrating several public data resources and literature, and as shown in Figure 3, (2) 
ClinVar, a database providing the expert-asserted associations between genetic variants of genes 
and diseases. These disease-gene associations were used to calculate the statistical overlap 
between a disease and a community according to a hypergeometric distribution test of the overlap 
of genes, the unique genes of each, and all human genes. We hypothesized that when a community 
is statistically associated with a disease, any genes unique to the community are promising novel 
disease candidates. This hypothesis extends from a guilt-by-association assumption that has been 
successful in multiple systems23,24. As shown in Figure 4, when communities from multiple 
algorithms are compared to diseases, the overlaps possess high predictive power. For example, ZS 
is a peroxisomal biogenesis disorder characterized by severe hypotonia, epileptic seizures, and 
craniofacial abnormalities25. Because peroxisomal biogenesis depends highly on protein-protein 

interactions (PPIs), 
community detection on a 
PPI network reliably predicts 
and expands the disease 
definition. Indeed, using both 
community algorithms 
recovers all genes from 
DisGeNET and thirty 
additional genes are 
predicted. Of these thirty 
genes, fourteen are already 
annotated in the literature as 
being associated or causative 
of ZS. Two genes predicted 
to be associated with ZS are 
ABCD1 and ABCD2, which 
are not known to be 
associated with ZS but 
transport very-long-chain 
fatty acids (VLCFA) across 
the peroxisome membrane 

Figure 4: Communities Discover Novel Disease-Gene Associations. A) 
For Zellweger Syndrome, all known disease associated genes in 
DisGeNET are recovered between a community from Recursive 
Louvain and BIGCLAM. Fourteen out of thirty predictions possess 
some form of evidence in the literature. B) Bardet-Biedl Syndrome 
(BBS) possesses significant overlap with the ground truth but does not 
find all known genes. However, there is a high concordance of overlap 
between the methods and the ground truth, with 2/7 of the Recursive 
Louvain predictions with literature evidence. 
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and cause adrenoleukodystrophy, a related peroxisomal disorder26.  
 Another example is BBS, a rare ciliopathy that affects multiple body systems, where over 
half of the known genes were recovered and nine genes were predicted. Of these nine genes, two 
genes are already known in the literature to be associated with BBS. BBS is characterized by 
obesity, polydactyly, hypogonadism, intellectual disability, and renal abnormalities27. The gene 
FOPNL is suggested by community analysis but possesses no literature evidence. Despite this, 
FOPNL is well known to be associated with the biogenesis of cilia and BBS causative mutations 
upset cilial function. Furthermore, FOPNL interacts with PCM1, a known BBS gene that is also 
suggested by community analysis28. For BBS, there is a lack of overlap between community 
predictions, which points to the fact that each method is dependent on different features and 
therefore provides unique insight. These data demonstrate that communities can be useful in 
predicting and expanding sets of genes related to diseases that depend on protein interactions.  

We determined if novel communities that lacked overlap with functional and disease pathways 
are biologically relevant by analyzing the co-expression of community genes in breast invasive 
carcinoma (BRCA). BRCA was chosen as a test case because it has a large number of patients 
with whom to power a co-expression study, though other cancers will be investigated in the future. 
If the genes in a community are co-expressed together more than randomly selected genes within 
tumor tissue RNA sequencing data, then that community represents a biologically relevant disease 
module. To validate our co-expression analysis, we examined four Reactome pathways, which are 
related to breast cancer pathways (PI3K/AKT activation, Signaling to RAS, PI3K/AKT Signaling 
in Cancer, and Constitutive Signaling by AKT1 E17K in Cancer) and found they are significantly 
co-expressed/regulated in breast diseased tissues (q<0.05). For both BIGCLAM and RL, at least 
30% of the communities were co-expressed more than random with a q-value < 0.1 (FDR 
corrected by Benjamini-Hochberg), and over 52 % of novel RL communities were co-expressed 
non-randomly (Figure 5). Moreover, CNM preformed weaker than RL and BIGCLAM in 
comparisons to references, but with co-expression, CNM showed no signal, suggesting that it may 

be a poor approach for biological 
analysis. Overall, the figure shows 
that all classes of communities, 
including novel communities, have 
co-expression in BRCA.  

As an application, one novel 
community (no. 657) detected by 
RL showed significant co-
expression in BRCA (q = 0.00588) 
and has 14 gene members. Five 
members (GPNTG, ECHS1, NACA, 
ABHD14B, NKX6-1) were found to 
significantly coexist in the same 
subcellular location, extracellular 
vesicular exosome (GO:0070062; q 
= 0.01456; see Method). 
Furthermore, four members (BTF3, 
GNPTG, CPEB2, and BICC1) were 
found to be potentially co-regulated 

Figure 5: Communities are Significantly Perturbed in Cancer. 
In order to investigate whether novel communities had 
biological relevance, novel communities were investigated in 
the context of Breast Cancer (BRCA) co-expression data from 
TCGA. According to this analysis, the genes in novel 
communities are co-expressed to the same degree as 
communities with statistical overlap to functional and mixed 
pathways. This suggests that novel pathways represent a 
promising source of relevant biological knowledge. 
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by the same transcription factor, DACH1, in a triple-negative breast cancer cell line, MDA-MB-
231, (q = 0.0077 in ChIP-Seq enrichment analysis; see Method). Although it has been shown that 
DACH1 expression level can predict BRCA survival29 and play roles in breast cancer metastasis30, 
DACH1 currently has no pathway annotation in KEGG and Reactome databases. Therefore, this 
community might be the pathway related to DACH1. These results showed that novel 
communities could be related not only by expression but also by subcellular location and 
transcription factors. These data show the potential of communities to expand our knowledge of 
biology and disease. 

3.  Discussion 
Determining the relationships between genes is essential for molecular biology and medicine. 
These relationships often cluster together into functional and disease pathways, and the 
characterization of these pathways is necessary to improve disease classification, patient 
stratification and, ideally, personalized treatment5. Here, we investigated the automated discovery 
of pathways by comparing several community detection algorithms against known functional and 
disease pathways and leading us to a novel application of the well-known Louvain algorithm, 
which we call Recursive Louvain (RL).  
 First, the communities detected by both BIGCLAM and RL were associated non-randomly 
with all the control, reference pathways. This strongly supports the biological relevance of these 
communities. Second, these communities also show a bias towards genes that experience 
pathogenic and high-impact variants in ClinVar. And third, regardless of the enrichment to a 
particular reference, these communities are often statistically co-expressed in breast cancer, 
including those that are new, in the sense that they are not enriched for any known functional or 
disease pathway. Therefore, these novel communities of genes may point to currently 
unrecognized biological pathways. Finally, in at least several cases, communities appear to predict 
genes associated with diseases with high predictive power. In the case of Zellweger Syndrome, six 
out of seven of the highest confidence predictions were already found in the literature although 
they were missing from the reference. The data from these approaches therefore consistently show 
that communities are biologically relevant. 

The breadth of information in the input network limits community analysis. With only 
direct protein-protein interaction information, protein associations via indirect biological 
mechanisms such as transcription regulation can be missed. Eventually, the addition of 
transcriptional, post-translational, and epigenetic associations should help better characterize 
biological processes and extend the ability of community detection to recognize a wider variety of 
pathways. This is important as we note that, so far, many diseases and pathways are not enriched 
for communities. Beyond the breadth of information, community detection is also limited by its 
quality. Low-confidence, spurious associations between proteins surely lead to incorrect 
memberships of proteins in pathways. Furthermore, the pathways found represent global averages 
of associations. The future addition of context-specific transcriptional networks, such as from 
ChIP-seq data in ENCODE31, should help find context-specific communities relevant to individual 
tissues or disease states. Despite these limitations, this work reveals the potential of topological 
network analysis in the identification and expansion of biologically meaningful pathways and 
shows that diverse results can be achieved through careful algorithm choice. 
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4.  Methods: 

4.1. Collection of reference sets: Reactome was downloaded from http://www.reactome.org, and 
was filtered for all disease pathways by trimming the disease section of the hierarchy as well as 
filtering out any pathway with the following words: disorder, hiv, defect, cancer, mutant, host, 
disease, influenza, toxin, viral, carcinoma, deletions, deficiency, variant, or virus. Canonical 
Pathways from the GSEA tool were downloaded from 
http://software.broadinstitute.org/gsea/downloads.jsp. Both KEGG and Reactome pathways are 
included in the Canonical pathways. All Reactome pathways in this dataset were filtered out to 
eliminate redundancy and then KEGG pathways related to diseases were filtered out to eliminate 
overlap with disease pathways from DisGeNET. DisGeNET was downloaded from 
http://www.disgenet.org/web/DisGeNET/menu/downloads as the curated dataset.  
 
4.2. Community detection: Louvain community detection was calculated with the python 
community detection, which can be downloaded at http://perso.crans.org/aynaud/communities/. 
This base module then was used to create RL. RL runs Louvain, then takes each community larger 
than ten genes and makes it a subgraph of the original network, then calls Louvain community 
detection again. It does this iteratively until all communities have been broke down to ten genes or 
less or a gene has been seen in more than three communities. CNM and BIGCLAM communities 
were detected using implementations in the SNAP software package32. All community detection 
algorithms were applied onto STRING 9.1 experimental network16. 
 
4.3. Comparison to reference sets: All groups of genes were filtered to exclude pathways that 
contained three or fewer genes. This eliminated pathways that could easily be randomly 
recapitulated and therefore skew results. Pathways often overlap with each other, with minor 
differences between them. To prevent over counting from this, pathways that are too similar were 
collapsed together. Given a set of reference gene groups 𝑅! ∈ 𝑅 and a set of community gene 
groups 𝐶! ∈ 𝐶, all gene groupings were collapsed if the Jaccard Similarity > 0.9, where: 

 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, 𝐽(𝐶! ,𝑅!) =

𝐶! ∩ 𝑅!
𝐶! ∪ 𝑅!

 
(1) 

 
To collapse two gene groups, the union of the genes was taken. In addition to the Jaccard 
Similarity, we then adopted three mathematical measures to evaluate the community detection 
algorithms outputs against the references, including a Modified Jaccard Similarity, a 
Hypergeometric Distribution test, and a F1 score.  

 
 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑  𝐽𝑎𝑐𝑐𝑎𝑟𝑑  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦,   𝐽!(𝐶! ,𝑅!) =
𝐶! ∩ 𝑅!
𝑅!

 (2) 

 
𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  𝑇𝑒𝑠𝑡,𝑃 𝑋 ≥ 𝐶! ∩ 𝑅! = 1−

!!
!

!! !!
!! !!

!
!!

!!∩!! !!

!!!

 (3) 

 𝐹!  𝑆𝑐𝑜𝑟𝑒 =
1
2 𝐹! + 𝐹!  

 
(4) 
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 𝐹!𝑜𝑟  𝐹! = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
(5) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"!!"

      , 𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"!!"

 (6) 
 
Where M=Number of genes in the original network and 𝐹!𝑜𝑟  𝐹!   are the F1 scores from the 
perspective of the reference or the community, respectively. TP represents the number of true 
positives; FP represents the number of false positives; FN represents the number of false 
negatives. 
 
4.4 Comparison to ClinVar: In order to compare to ClinVar, we binned variants by clinical 
impact and Evolutionary Action, and the difference between each group of genes was assessed by 
a Chi-Square analysis. Only groups of genes from significant overlaps (q < 0.1 by hypergeometric 
analysis) between diseases and communities were assessed. 
 
4.5. Generation and evaluation of random controls: Random controls were generated for each 
community set. For each community, a set of randomly generated genes were chosen from the 
protein interaction network such that the number of genes was identical to the number in the 
community. This was done three times in order to get a set of random communities that was then 
compared to the reference sets. The distribution of the random scores was compared against the 
distribution of the community scores using a Kolmogorov-Smirnov test. Each distribution was 
built with only the top score for a community or random against all pathways in a reference.  
 
4.6. Co-expression analysis in tumor tissues using RNA-seq data: To determine if genes in a 
community have co-expression, RNA sequencing data version 2 of 1104 breast cancer tumor 
samples were downloaded from The Cancer Genome Atlas (TCGA) database (https://tcga-
data.nci.nih.gov/tcga/dataAccessMatrix.htm) dated January, 2015. RNA-Seq by Expectation-
Maximization (RSEM) normalized read counts (https://wiki.nci.nih.gov/display/TCGA/RNASeq) 
were used to represent mRNA expression level. The pairwise Spearman's rank correlation 
coefficients between the expression levels of pairs of genes in a community were computed. The 
distribution of absolute values of correlation coefficients was compared to the coefficient 
distribution of a random gene set, which is three times the size of a community, using a 
Kolmogorov-Smirnov test. All p-values were adjusted by Benjamini-Hochberg FDR correction20. 
A community was defined as co-expressed if the adjusted p-value is less than 0.1. 
 
4.7. Gene Ontology and ChIP-Seq enrichment analysis: To understand the subcellular 
localization and potential upstream transcription factors of genes in a novel community, we 
analyzed the enrichment of Gene Ontology (GO) Cellular Component 2015 and ChIP Enrichment 
Analysis (ChEA) 2015 using Enrichr33 (adjusted p-value < 0.1). 
 
4.8. Computation: All calculations were done on an Ubuntu OS with 64 GB RAM and 4th Gen. 
Intel Core i7 3.7 GHz processor or equivalent machine.  
 
4.9. Supplemental data: Supplemental data can be seen at: 
http://mammoth.bcm.tmc.edu/SupplementalPSB2016Data.pdf 
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