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We consider the problem of multimodal data integration for the study of complex neurological dis-
eases (e.g. schizophrenia). Among the challenges arising in such situation, estimating the link between
genetic and neurological variability within a population sample has been a promising direction. A
wide variety of statistical models arose from such applications. For example, Lasso regression and
its multitask extension are often used to fit a multivariate linear relationship between given pheno-
type(s) and associated observations. Other approaches, such as canonical correlation analysis (CCA),
are widely used to extract relationships between sets of variables from different modalities. In this
paper, we propose an exploratory multivariate method combining these two methods. More Specif-
ically, we rely on a ’CCA-type’ formulation in order to regularize the classical multimodal Lasso
regression problem. The underlying motivation is to extract discriminative variables that display are
also co-expressed across modalities. We first evaluate the method on a simulated dataset, and fur-
ther validate it using Single Nucleotide Polymorphisms (SNP) and functional Magnetic Resonance
Imaging (fMRI) data for the study of schizophrenia.
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1. Introduction

An increasing amount of high-dimensional biomedical data such as micro arrays (mRNA,
SNP) or brain imaging sequences (MRI, PET) is collected every day. Classical unimodal anal-
ysis often ignore the potential joint effects that may exist, for example, between genes and
specific brain regions for diseases such as Schizophrenia, Alzheimer, etc. By harnessing these
joint effects across modalities, we might be able to identify new mechanisms that uni-modal
methods may fail to capture. Imaging genomics is an emerging field whose aim is precisely
to leverage the wealth of biomedical knowledge provided by genomic and brain imaging data.
Integrating such multimodal data sets is critical to extract meaningful bio-markers, improve
clinical outcome prediction or identify potential associations across modalities. Unfortunately,
as mentioned by Lin1, such studies using genomic and brain imaging data often run into two
limitations: The first one is an average small sample size, which may result in over fitting
issues. In order to address such constraint, many authors relied on the use of sparse models.
One classical method introduced by Tibshirani2 is the Lasso regression. The second limitation
is poor biomarker reproducibility across studies. Although this issue remains an open prob-
lem, one may hope that using appropriate priors over the solution will lead to an improved
consistency of the result across different studies.
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1.1. Motivation: the study of Schizophrenia

Schizophrenia is a serious neurological disorder that affects around 1% of the general popu-
lation. It is regarded as the result of various factors including genetic variants, brain devel-
opment abnormalities and environmental effects. Identifying critical genes or SNPs related to
schizophrenia3,4 has been a challenging issue. Many studies relied as well on brain imaging
techniques5,6 to pinpoint functional abnormalities in brain regions for schizophrenia patients.
Multimodal analysis (e.g. using both genomic and brain imaging) often improve generalization
in situations in which many irrelevant features are present. In their recent paper, Cao et al.7

proposed a sparse representation based variable selection (SRVS) algorithm relying on sparse
regression model to integrate both SNP and fMRI in order to perform biomarker selection for
the study of schizophrenia. Lin8 proposed a group sparse canonical correlation analysis (CCA)
method based on SNP and fMRI data to extract correlation between genes and brain regions.
Le Floch et al.9 combined univariate filtering and Partial Least Squares (PLS) to identify
SNPs covarying with various neuroimaging phenotypes. It appears that both regression and
CCA methods display promising behaviors when combining SNP and fMRI data for the study
of schizophrenia. In this work, we will try to merge these two methods in order to make the
most out of both formulations.
The rest of this paper is organized as follows: we introduce in Section 2 some of the relevant
methods as well as the motivation for this work. A novel approach to multivariate regression
problems is then proposed in Section 3. Such method is then evaluated on both synthetic and
real datasets in Section 4, followed by some discussions and concluding remarks in Section 5.

2. Methods

2.1. Learning with L1 penalty

We consider M ∈ N+ distinct (i.e. from different modalities) datasets with n samples and
pm ∈ N+ (m = 1, ..,M) variables each. The m-th dataset is represented by a matrix Xm ∈ Rn×pm .
Additionally, each sample is assigned a class label (e.g. case/controls) yi ∈ {−1, 1}, i = 1, .., n.
Our goal is to look for a linear link between those class labels and the M data matrices. Let
us consider the following regression model:

min
β

M∑
m=1

‖y −Xmβm‖22 + λ‖β‖1 (1)

The model described by Eq. 1 performs both variable selection and regularization. It
often improves the prediction accuracy and interpretability of the results compared to the
use of classical `2 norm regularization terms, especially when the number of variables is far
greater than the number of observations. In some situations, we have several output vectors
ym,∀m = 1, ..,M and the m datasets are from the same modality: multi-task Lasso10 was
proposed to capture shared structures among the various regression vectors. We consider the
following model:

min
β

M∑
m=1

‖ym −Xmβm‖22 + λ

P∑
p=1

‖βp‖2 (2)
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where P is the dimension of the problem and βp is the p-th row of the matrix such that
β = [β1, .., βm] (i.e. the βm are stacked horizontally). Such norm is also referred to as the `1/`2
norm, and is used to both enforce joint sparsity across the multiple βm and estimate only a
few non-zero coefficients. Enforcing regularity within a modality11,12 (and across tasks) has
been an active aspect of regression models, and has proven to increase reliability and results.
However, since often pair-wise closeness is looked for in the common subspace, such methods
will often fail to capture relationships across modalities.

2.2. Collaborative learning

Collaborative (or Co-regularized) methods13 are based on the optimization of measures of
agreement and smoothness across multi-modal datasets. Smoothness across modalities is en-
forced through a joint regularization term. Their general model can be expressed as follows:

J(β) =

M∑
m=1

‖y −Xmβm‖22 + γ

M∑
m,q=1

‖Umβm −Uqβq‖22 + λ‖β‖1 (3)

where the Um, m = 1, ..,M are arbitrary matrices whose roles are to control the cross-view
joint regularization between each pair of vectors (βm, βq), m, q = 1, ..,M . Scalar parameter
γ ≥ 0 controls the influence of such cross-regularization term. Notice that if γ = 0, we fall back
on the original Lasso formulation. Collaborative learning is an interesting extension of Eq.1
allowing the user to explicitly enforce regularization across modalities. In this work, we rely on
a special case of collaborative methods (introduced later in section 3) to address the following
aspects: (i) Extend the regularization idea across modalities; (ii) Assume that relationships
between variable are not available as a prior knowledge (as opposed, e.g., to Xin11); (iii) Define
links between components using correlation measure. To do so, we first briefly introduce in
the next section some of the classical methods to extract meaningful relationships between
variables across modalities.

2.3. Extracting relationship between datasets

A wide variety of problems amount to the joint analysis of multimodal datasets describing
the same set of observations. Often, a mean to perform such analysis is to learn projection
subspaces using paired samples such that structures of interest appear more clearly. Some of
these methods are for example: Canonical correlation analysis14 (CCA), Partial least squares9

(PLS) or cross-modal factor analysis (CFA). Among them, CCA is probably the most widely
used. Its goal is to extract linear combinations of variables with maximal correlation between
two (or more) datasets. Using similar notations as in the previous section,and assuming M = 2,
one formulation of CCA is expressed as follow:

argmin
β1,β2

Jcca(β1, β2) = ‖X1β1 −X2β2‖2 (4)

to which a constraint on the norm of canonical vectors β1, β2 is added to avoid the trivial
null solution. In recent years, CCA has been widely applied to genomic data analysis. As a
consequence, many studies on sparse versions of CCA (sCCA) have been proposed8,15–18 to
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cope with the high dimension but low sample size problem. In the next section, we will rely
on a CCA term to measure co-expression between variables from different modalities.

3. Enforcing cross-correlation in regression problems

3.1. MT-CoReg formulation

As discussed in Section 1, several methods have been proposed to: (i) Associate a phenotype
and datasets while enforcing prior over solution; (ii) Extract relationships between coupled
or co-expressed datasets. In the present study, we propose to associate both the regression
and CCA frameworks in the case of M = 2 datasets. Our motivation is to extract informative
features that also display a significant amount of correlation across modalities. A simple way
to combine Lasso and sparse CCA would be a weighted combination of Eq.(1) and Eq.(4):

min
β
J(β) = (1− γ)

2∑
m=1

‖y −Xmβm‖22 + γ‖X1β1 −X2β2‖2 + λ‖β‖1 (5)

where γ ∈ [0, 1] is a weight parameter. Notice that Eq.(5) can be expressed within the col-
laborative framework introduced in Section 2.2. If we take a look at Eq.(3) with M = 2,
U1 = X1 and U2 = X2, we fall back on Eq.(5). Let us call this model CoReg for Collaborative
Regression. Interestingly, a similar model has been considered before by Gross19 to perform
prediction using breast cancer data. However, to our opinion, such formulation might prove
to be too constraining. It essentially amounts to force each component of the βm’s to fit both
the regression term and the CCA one. We illustrate such behaviour using a toy dataset later
in Section 3.4. Since our goal is to perform feature selection, we may allow the model to be
slightly more flexible. We thus propose an alternative formulation by first duplicating each βm
into two components such that:

βm = [αm, θm] , ∀m = 1, 2 (6)

where αm, θm are vectors from Rpm . As a consequence, the βm’s are now matrices such that
βm ∈ Rpm×2 ∀m = 1, 2. We then propose the following MT-CoReg formulation:

min
β
J(β) = (1− γ)

2∑
m=1

‖y −Xmαm‖22 + γ‖X1θ1 −X2θ2‖2 + λ

2∑
m=1

pm∑
i=1

‖βim‖2 (7)

where βim is the i-th row of βm, i.e. βim = [αm(i), θm(i)] ∈ R2. The third term of Eq.(3.3) is
simply the `1/`2 norm of each of the βm. As we can observe from looking at Eq.(3.3), each
’component’ (i.e. column of βm) will be involved in separate parts of the functional J : (i)
components αm are the fit to the regression term of Eq.(3.3); (ii) components θm are the
fit of the CCA term of Eq.(3.3). Each pair (αm, θm) and m = 1, 2 is coupled through the
use of the `1/`2 norm from the third term in Eq.(3.3). Although their values are different,
shared sparsity patterns are encouraged within each pair (αm, θm). As a consequence, we allow
the method to be significantly more flexible in terms of solutions: different values can be
taken to simultaneously fit the Regression and CCA parts. We hope that such framework
will encourage the selection of features that are discriminative (via the regression part) but
also co-expressed across modalities (via the CCA part). Note that when γ = 0, criterion (3.3)
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essentially reduces to the initial regression problem of Eq.(1), while setting γ = 1 amounts to
solving a conventional sparse CCA problem. A schematic view of the MT-CoReg pipeline can
be seen in Fig.(1). In the next section, we briefly explain how to solve the problem described
in Eq.(3.3).

Fig. 1. Schematic view of the MT-CoReg pipeline. From two different datasets X1 and X2 from different
modalities (here SNP and fMRI respectively), we fit both a regression and CCA terms and couple the resulting
components (αm, θm) using the `1/`2 norm denoted ‖ · ‖1,2 here. The ultimate goal is to find discriminative
SNP and brain regions that are also co-expressed across modalities.

3.2. Optimization

We solve the problem from Eq.(3.3) by optimizing the βm’s alternatively over iterations until
convergence, in a similar fashion to Wilms20 et al. formulation of sCCA. Suppose we have
an initial value β∗1 for β1, and want to estimate β2. Updating matrix β2 can be recast into a
problem of the following form:

min
β̃2

J(β̃2|β∗1) = ‖ỹ2 − X̃2β2‖2F + λ

p2∑
i=1

‖βi2‖2 (8)

where

ỹ2 = [
√

(1− γ)y,
√
γX1θ

∗
1], X̃2 = [

√
(1− γ)X2,

√
γX2] (9)

Obviously, Eq.(8) is a classical group-lasso regression problem10 (cf. Eq.(2)). It is easy to show
that updating β1 reduces to solving a similar problem. As a consequence, solving our mixed
Lasso/CCA problem from Eq.(3.3) can be briefly summarized as:

1 Initialization: estimate initial values for α1, β1, α2, β2 using ridge regression and ridge
CCA.

2 Assume β1’s value fixed, and update β2 using Eq.(8).
3 Assume β2’s value fixed, and update β1 using the adapted version of Eq.(8).
4 Go back to step 2. until convergence

Pacific Symposium on Biocomputing 2017

109



3.3. Parameter selection

Solving problem from Eq.(3.3) requires the estimation of two parameters, λ and γ, which
respectively control the weights of the sparsity and the co-expression regularization terms.
The choice of sparsity parameter λ for this type of problems is known to display a high
sensitivity21. In order to make the searching process more robust, we chose to let the sparsity
level of the solution control the tuning parameter value22,23. Consider a column vector β ∈ Rp

(e.g. a column of β from Eq.): let us denote |β|κ the κ-th (κ ∈ N+ ) largest absolute magnitude
of β. We can define a correspondence between λ and κ by making sure that for each iteration,
we have λ ∈ [|β|κ, |β|κ+1]. The selection can be looked for around the sample size (i.e. κ = n

for the entire estimation process), which helps drastically stabilize the estimation process in
practice.
As for the estimation of γ, we chose to rely on a technique introduced by Sun et al.24 based
on variable selection stability. Its main goal is to select a given tuning parameter so that
the associated variable selection method (in our case, the model from Eq.(3.3)) is stable in
terms of the features it selects. In this framework, the training set is split in two halves using
resampling (bootstrap resampling in our case). The variable selection method is then applied
to each of the subsamples along a grid of candidate values for the parameter. Kappa selection
criterion25 is then used to measure the degree of agreement between the two sets of variables
obtained for a given parameter value. This process is then repeated a number of times, and an
approximated measure of selection consistency is derived. The parameter value for which this
consistency is the highest (after correction for the number of non-zeros elements retained) is
the one kept for the estimation.

3.4. MT-CoReg VS. CoReg

As mentioned earlier in Section 3.1, in their CoReg model from Eq.(5) Gross et al.19 did
not separate the solution vectors βm into two components. We then propose to illustrate the
behavior of both models (Eq.(5) and Eq.(3.3)) on a toy dataset.
We generated M = 2 data matrices X1,X2 such that p1 = p2 = 30 and n = 50 observations.
We used a latent variable model to simulate cross-correlated components so that columns
p = [1, ..5]∪ [10, ..15] of X1,X2 are mutually co-expressed. We further use columns p = [10, ..15]∪
[20, ..25] to generate a phenotype vector y such that yi ∈ {−1; 1}. With such setup, columns p =

[10, ..15] correspond to both non-zeros values in the true regression and canonical coefficients.
Furthermore, let us point out that these non-zero values are diferent (canonical coefficients’
amplitude is lower than the regression ones). This setup can be seen in the first row of Fig.(2,
Truth), where the blue and red curves are the values taken by the canonical and regression
coefficients respectively. Resulting estimates for sCCA, Lasso, CoReg19 as well as proposed
method MT-CoReg can also be seen in Fig.(2). In such scenario, while CoReg model assumes
that regression and canonical coefficients have identical values, MT-CoReg has a wider scope
and allows a finer joint estimation of both components types.
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Fig. 2. Resulting estimates β1, β2 on the toy dataset. (Truth) blue and red curves are the values taken by
the true canonical and regression coefficients respectively. Solutions obtained with sCCA, Lasso, CoReg19 and
proposed method MT-CoReg are displayed. Notice that columns columns p = [10, ..15] correspond to both
non-zeros values in the true regression and canonical coefficients, although their amplitudes are different. By
relaxing the assumption that regression and canonical coefficients have identical values, MT-CoReg allows a
finer joint estimation of both components types compared to CoReg.

4. Experiments

In this section, we evaluate the proposed estimator from Eq.3.3. Performances will be assessed
in terms of feature selection relevance on both simulated and real data.

4.1. Results on synthetic data

For our first test, we simulate both fMRI and SNP datasets. Similar to the toy dataset from
Section 3.4, we start by generating explanatory variables α∗

1, α
∗
2 ∈ R900 for both genomic and

brain imaging data. The first 100 components of α∗
1, α

∗
2 are drawn from Normal distribution,

while the rest is set to zero. The total number of observations is set to n = 200. Genomic
values are coded as 0 (no minor allele), 1 (one minor allele), and 2 (two minor allele). We first
define a minor allele frequency η drawn from a uniform distribution U([0.2, 0.4]). The i-th SNP
is then generated from a binomial distribution B(2, ηi). For the imaging data, voxels values
were drawn from a Gaussian distribution N (0, Ip). Finally, binary phenotype y data are gen-

erated from B(1, di), where di =
exp(5

∑M
m=1Xmα

∗
m)

1 + exp(5
∑M

m=1Xmα∗
m)

. Furthermore, we add 100 additional

variables to the problem that will play the role of cross-correlated variables. Two canonical
vectors θ∗1, θ

∗
2 ∈ R100 are drawn from Normal distribution. Cross-correlated SNP are drawn from

B(2, logit−1(−ai + logit(ηi))) where a is issued from N (θ∗1y, I100), while cross-correlated voxels
are drawn from N (θ∗2y, I100) . The final dataset is made of n = 200 observations of p = 1000

variables for both SNP and fMRI. Each of these datasets is made of explanatory and cross-
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correlated components. A common way to assess the performance of a model when it comes
to feature selection is to measure the true positive rate (TPR) and false positive rate (FPR).
TPR reflects the proportion of variables that are correctly identified, while FDR reflects the
proportion of variables that are incorrectly selected by the model. We apply MT-CoReg to
100 random generation of the dataset described above. The tuning parameter γ from Eq.(3.3)
that weights the CCA term against the regression one is optimized through a grid search over
{[0] ∪ [10−1+`/20]; ` = 0, .., 20}. We plotted TPR values against FDR ones in Fig.(3) for two
different cases. In the first (left) subfigure are displayed TPR/FDR values relative to non-zero
components of α∗

1, α
∗
2 for γ = 0 (i.e. classical Lasso), γ = γ(C.S.) where the weight value is

determined using consistency selection (C.S.) scheme described in Section 3.3, and γ = 1 (i.e.
classical sCCA). We can observe that although classical regression seems to perform slightly
better for really low FDR values, MT-CoReg is quickly catching up around FDR ≈ 0.15.
sCCA, on the other hand, has a low selection power. The second (bottom) figure displays
TPR/FDR values relative to non-zero components of θ∗1, θ

∗
2, i.e. the cross-correlated compo-

nents. We can observe that MT-CoReg performs as well as sCCA, while Lasso is unable to
properly select the components of interest. It is encouraging to see that MT-CoReg takes the
best of both methods and seems to properly select the components we are interested in. It
seems to confirm our hypothesis that using a mix of both terms may lead to an improved
feature selection accuracy. In the next section, we apply the same method to a real dataset of
fMRI and SNP data.

Fig. 3. TPR against FDR values averaged over 100 simulations for different γ values. Fixing γ = 0 amounts
to using Lasso regression, while γ = 1 is equivalent to classical sparse CCA. γ(C.S.) is the ROC curve obtained
while using consistency selection (C.S.) scheme described in section 3.3 to automatically estimate γ. (a) values
for the selection of first 100 components (i.e. the explanatory components) only (b) values for the selection
of the last 100 components (i.e. the cross-correlated components). It can be seen that a non-trivial weight
combinaison for γ seems to be taking the best of the two methods that are Lasso (γ = 0) and CCA (γ = 1).
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4.2. Results on real imaging genetics data

4.2.1. Data acquisition

Both SNP and fMRI acquisition were conducted by the Mind Clinical Imaging Consortium
(MCIC) for 214 subjects, including 92 schizophrenia patients (age: 34 ± 11, 22 females) and
116 controls (age 32 ± 11, 44 females). Schizophreniac were diagnosed based on DSM-IV-TR
citeria. Controls were free of any medical, neurological of psychiatric illnesses.

fMRI were acquired during a sensor motor task with auditory simulation. Data were pre-
processed with SPM5, spatially normalized and resliced, smoothed, and analyzed by multiple
regression considering the stimulus and their temporal derivatives plus an intercept term as
regressors. For each patient, a stimulus-on vs. stimulus-off contrast image was extracted. 116
ROIs were extracted based on the aal brain atlas, which resulted in 41236 voxels left for
analysis. SNP data were obtained from blood sample using Illumina Infinium HumanOmni1-
Quad array covering 1,140,419 SNP loci. After standard quality control procedures using
PLINK software package a, a final dataset spanning 777, 635 SNP loci was available. Each
SNP was categorized into three clusters based on their genotype and was represented with
discrete numbers: 0 (no minor allele), 1 (one minor allele) and 2 (two minor alleles). SNPs with
> 20% missing data were deleted and missing data were further imputed. SNPs with minor
allele frequency < 5% were removed. This procedure yielded a final set of 129, 145 SNPs.

4.2.2. Significance analysis

In order to achieve a stable feature selection process, we follow Lin8 and perform N = 100

random samplings out of the 214 total subjects, where for each time 80% are used for training
and parameter selection, while the remaining 20% are used for evaluation. At the k − th

random sampling, we can calculate a set of solution vectors β̂km,m ∈ {1, 2}. It is then possible
to define a measure of relevance pim for the i-th feature in the m-th dataset such that: pim =
1
N

∑N
k=1 I(β̂km(i) 6= 0) where i = 1, .., dm is the feature index and I(·) is the indicator function.

We can then rank each SNP and voxel based on their associated relevance measure and apply
a cut-off threshold of 0.3 (c.f. Lin8). After applying this significance test, we were left with a
subset of 43 SNP spanning 30 genes and 6 ROI with a number of selected voxels over 5.
We display in Table.1 the list of each of the 43 selected SNP, as well as their associated
genes. Some of them have been identified by other similar studies8,26,27 such as CNTNAP2,
GLI2, GRIK3, NOTCH4, SUCLG2, GABRG2. Others have been identified from well-known
databases28 such as GRIK4 or HTR4. We display in Table.2 the list of the selected ROI as well
as the corresponding voxel count for each one of them. ROI for which less than 5 voxels were
selected where dismissed. Once again, it is encouraging to note that each of the selected ROI
(3, 7, 11, 40, 51, 100 from aal.) have been identified in similar studies8,29 on the same dataset.
Other studies pointed out both functionnal or structural differences in the middle occipital
gyrus30 and the parahippocampal gyrus31 for schizophrenic patients. Finally, a detailled slice
view of the selected voxels can be seen in Fig.(4).

ahttp://pngu.mgh.harvard.edu/ purcell/plink
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Table 1. List of selected SNP and their associated genes.

SNP ID Gene name SNP ID Gene name SNP ID Gene name SNP ID Gene name

rs3856465 ATP6V1C2 rs11607732 GRIK4 rs815533 CACNA2D3 rs10748732 HPSE2
rs12333931 CNTNAP2 rs12332417 HTR4 rs2373347 CNTNAP2 rs13359903 HTR4
rs2407264 CYSLTR2 rs7725785 HTR4 rs9535112 CYSLTR2 rs11875988 LIPG
rs6567629 DHRSX rs12454370 LIPG rs858341 ENPP1 rs9787820 LRRC4C
rs16842460 EPHB1 rs17819648 MAML2 rs11927660 FGF12 rs3134797 NOTCH4
rs17599845 FHIT rs3134799 NOTCH4 rs10926254 FMN2 rs394657 NOTCH4
rs4659573 FMN2 rs1009708 PDE2A rs11060822 FZD10 rs7111188 PDE2A
rs12824777 FZD10 rs17016738 RARB rs2963094 GABRG2 rs12101383 SMAD6
rs10831614 GALNTL4 rs7030433 SMARCA2 rs7602673 GLI2 rs573700 SPRY2
rs6753202 GPD2 rs9849270 SUCLG2 rs1392744 GRIK3 rs1105880 UGT1A6
rs10502240 GRIK4 rs17863787 UGT1A6

Table 2. List of selected ROI (from aal.) and associated voxel count.

ROI ID (aal.) ROI name voxels nb.

51 Left middle occipital gyrus 13
7 Left middle frontal gyrus 11
11 Left middle frontal gyrus, orbital part 9
100 Right lobule VI of cerebellar hemisphere 9
3 Left superior frontal gyrus 8
40 Right parahippocampal gyrus 7

Fig. 4. Slice view of the selected voxels (without thresholding using cluster size) and their significance.

4.2.3. Quantitative analysis

In this section, we try to analyze the results of MT-CoReg using some quantitative metrics.
We can first turn our attention to the Sum of Squared Errors (SSE) values obtained on
the testing set during our tests. Histograms of SSE distributions for different γ values (i.e.
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Lasso, MT-CoReg and sCCA) can be seen in Fig.(5,left): unsurprisingly, Lasso and MT-CoReg
produce the lowest RSS values, while sCCA does not fit the phenotype. If we now look at
Fig.(5,middle) where distributions of Pearson’s correlation on the testing set are displayed
for the same 3 strategies, we can see that MT-CoReg produces a better selection than Lasso
in terms of cross-correlation. This seems to confirm our intuition that MT-CoReg makes the
best of both Lasso and CCA by producing a solution that is good fit to the phenotype while
selecting co-expressed features across modalities.
Distribution of γ values produced by the consistency selection scheme described in Section
3.3 can be seen in Fig.(5,right). Most of these values fall into the range [0; 0.4], with a peak
in [0.2; 0.3]. It does appear, at least in term of feature consistency selection, that a non-zero
weight for the CCA term in Eq.(3.3) leads to improved performances.

Fig. 5. Frequency distribution of RSS values (on the test set) for N = 100 sub-sampling of the original set
of observations.

5. Conclusions

The main contributions of this paper can be summarized as follows. First, we proposed a
novel variable selection approach using a CCA-like regularization term in order to enforce
co-expression between modalities. Secondly, we present an efficient algorithm to solve this
problem, as well as strategies to estimate the tuning parameters. On top of that, a series of
experiments on both synthetical and real datasets were conducted, allowing us to evaluate the
performances of the proposed method. We identified two sets of SNP and voxels in which a
number of them have been previously reported to have potential relationship with the risk of
schizophrenia. Further exploration of the optimization scheme (alternate estimations) as well
as the selection of regularization parameter λ (see Section 3.3) will be needed in the future.
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