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Survival prediction is very important in medical treatment. However, recent leading re-
search is challenged by two factors: 1) the datasets usually come with multi-modality; and
2) sample sizes are relatively small. To solve the above challenges, we developed a deep
survival learning model to predict patients’ survival outcomes by integrating multi-view
data. The proposed network contains two sub-networks, one view-specific and one common
sub-network. We designated one CNN-based and one FCN-based sub-network to efficiently
handle pathological images and molecular profiles, respectively. Our model first explicit-
ly maximizes the correlation among the views and then transfers feature hierarchies from
view commonality and specifically fine-tunes on the survival prediction task. We evaluate
our method on real lung and brain tumor data sets to demonstrate the effectiveness of the
proposed model using data with multiple modalities across different tumor types.
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1. Introduction

Survival analysis aims at modeling the time that will elapse from the present to the occurrence
of a certain event of interest (e.g. biological death). The prognostic models generated by
survival analysis can be used to explore interactions between prognostic factors in certain
diseases, and also predict how a new patient will behave in the context of known data. In
survival analysis, the Cox proportional hazards model1 and parametric survival distributions2

have long been used as important fundamental techniques. Clinicians and researchers usually
apply these models to test for significant risk factors affecting survival. In order to handle
the high-dimensional data, dimension reduction and penalized regression have been proposed
in the Cox model.3–7 However, the Cox model and its extensions are still built based on
the assumption that a patient’s risk is a linear combination of covariates. The parametric
censored regression approaches2,8 are highly dependent on the choice of the distribution. In
fact, there are too many complex interactions that can affect the event (death) in various
ways, and thus a more comprehensive survival model is needed to better fit data in real-world
applications. To formulate the survival problem without any additional hypothesis, Li et al.
modeled the prediction problem as standard multi-task learning using an additional indicator
matrix.9 However, the number of tasks corresponds to the maximum follow-up time of all the
instances. In fact, recent cancer datasets are collecting patient electronic health records (EHR)
with a very long follow-up time. Another limitation for existing survival models is that they
mainly focus on one view and cannot efficiently handle multi-modalities data. Since more
comprehensive multi-source data are available to health-care research, a powerful survival
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analysis that can learn from those multi-view data is required.
One good way to learn highly complex survival functions is by using recent neural net-

work techniques.10–12 Katzman et al. proposed a deep fully-connected network (DeepSurv)
to represent the nonlinear risk function.10 They demonstrated that DeepSurv outperformed
the standard linear Cox proportional hazard model. However, DeepSurv is still too simple
to handle real cancer data. First, real datasets contain complex imaging and genomic data
from different views. Although using multiple pieces of information can provide complemen-
tary characterizations of tumors at different levels, the view discrepancy and heterogeneity
will bring challenges for survival prediction. Second, compared to computer vision applica-
tions, survival prediction problems only provide a very small training set due to the cost of
multiple comprehensive data collections. To integrate multiple modalities and eliminate view
variations, a good solution is to learn a joint embedding space in which different modalities
can be compared directly. Such an embedding space will benefit the survival analysis since
recent studies have suggested that common representation from different modalities provides
important information for prognosis.13,14 For example, molecular profiling data and patholog-
ical images actually share representations to describe the same event in tumor growth, which
is very important for diagnosis. Stromal tissue has been verified to have a surprising role in
predicting the overall survival of breast cancer patients.13 The proportion of stromal cells cor-
related with the overexpression of genes, including FBLN1, FBLN2, COL6A2 and COL6A3,
that encode extracellular matrix proteins .14
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Fig. 1. An overview of the proposed model.

In order to take the advantage of both histopathological information and molecular profiles
from imaging-genetics data, we developed an integrative pipeline as shown in Fig.1. It con-
sists of two sub-networks, view-specific sub-network f1, f2 and common sub-network gc. The
view-specific sub-networks reduce the discrepancy between the view and the commonality of
all views. The common sub-network is shared by all views and can extract a view-invariant
representation for survival prediction. One advantage of the proposed architecture is that it
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has good generality, since the network can handle any kind of data sources with well-designed
view-specific sub-networks. Motivated by recent deep learning methods,15,16 we proposed Con-
volutional Neural Networks (CNNs) and Fully Connected Networks (FCNs) to learn deep
representations from pathological images and molecular profiling data, respectively.

To handle multi-modalities data, we integrate outputs of two networks into a common
space where the two modalities have maximal correlation. The primary motivation of using
such a model is to eliminate the view variations and find the maximum correlated represen-
tation from the views of pathological images and molecular data. Although the commonality
of two views reduces the view-discrepancy, it still cannot guarantee that the common space is
directly associated with survival outcomes. To address this issue, the proposed model transfers
feature hierarchies from such common spaces and specifically fine-tunes on the survival regres-
sion task. This will not only help to avoid over-fitting, but also accelerates the model training.
Moreover, it has the ability to discover important markers that cannot be found by previous
deep correlational learning methods, which will benefit the survival prediction. The contri-
bution of this paper can be summarized as: 1) We proposed a deep learning approach which
can model very complex view distributions and learn good estimators for predicting patients’
survival outcomes with insufficient training samples. 2) Our model used CNNs to represen-
t much more abstract features from pathological images for survival prediction. Traditional
survival models usually adopted hand-crafted imaging features. 3) Extensive experiments on
TCGA-LUSC and GBM demonstrate that the proposed model can achieve better predictions
across different tumor types.

2. Related Work

In this section, we give a brief survey on recent survival analysis methods with basic notations
and then briefly review recent deep multi-modal embeddings.

2.1. Survival Analysis

Survival analysis aims to analyze the expected duration of time until events happen. It covers
many topics as the event can be defined very broadly such as failure in mechanical systems
and death in biological organisms. Survival analysis tries to find the answer of questions like:
how does the proportion of a population survive past a certain time (e.g. 5 years)? what rate
will they die or fail? Given a set of N patients, {xi}, i = 1 . . . N , each patient has the label
(ti, δi) indicating the survival status where ti is the observed time, δi is the indicator: 1 is for a
uncensored instance (death event happens during the study), and 0 is for a censored instance
(death not observed). If and only if ti = min(Oi, Ci) can be observed during the study, the
dataset is said to be right-censored.17

In Survival Analysis, the survival function S(t|x) = Pr(O ≥ t|x) is used to identify the
probability of being still alive at time t where x = (x1, ...xp)

ᵀ is the covariates of dimension p.
The hazard function is defined as

h(t|x) = lim
4t→0

Pr(t ≤ O ≤ t+4t|O ≥ t;x)

4t
, (1)
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which assesses the instantaneous rate of failure at time t. In the modeling methods, Cox
proportional hazard model1 is among the most popular one. The hazard function for the Cox
proportional hazard model has the form

h(t|xi) = h0(t) exp(βᵀx) (2)

where β = (β1, ..., βp)
ᵀ is a vector of regression parameters, and h0(t) is the baseline hazard. We

can define f(x) = βᵀx as a risk function. This gives the hazard rate at time t for the patient i
with covariate vector xi.

A major challenge is that the number of features p is much larger than the number
of patients n. To handle high-dimensional data, many feature selection methods have been
adapted to the Cox regression setting for censored survival data.3–7,18 Another type of hazard
model is estimated by logistic regression such that the probability of surviving beyond t is
Pr(O ≥ t|x) = (1 + exp[x>β(t) + th])−1 with a threshold th.19,20 Instead of defining the hazard
function, one recent work transforms the original survival analysis problem into a multi-task
learning problem by decomposing the regression component into related classification tasks;
the new objective function can be solved by popular ADMM based optimization.9 It is a
good way to learn highly complex survival functions by using the advanced neural networks
techniques.10,12 We can get the risk score through neural networks and now denote the risk
for the patient i as oi. Deepsurv10 is the earlier attempt to learn a nonlinear risk function by
replacing the linear part βTx in f(x) with a nonlinear deep fully connected network.

One very simple way for data fusion is to create a concatenated feature vector comprising of
all features selected individually from each modality.21 However, a powerful feature selection
is required to search for those important biomarkers from the original features, and each
modality is processed individually without considering their inter-connections. The inherent
challenge in combining data streams for survival analysis is that individual data sources are
very heterogeneous due to the heterogeneity of tumors. However, recent studies have shown
that different views actually share common representations to describe tumor morphology,
which is very important for diagnosis.14 A key challenge for survival analysis is how to eliminate
view-discrepancies and learn such common representations.

2.2. Deep multi-modal embeddings

Recent deep multi-modal embeddings22–26 provide a very good solution to the above chal-
lenge. They have been successfully applied in computer vision applications such as image-text
matching23,26 and image reconstruction utilizing multiple auto-encoders.24,25

In finding a correlated meta-space for data fusion, recent DNN-based multi-view methods
provide very complex representation learning using deep neural networks (DNNs) that maxi-
mizes signals which are common to data from multiple modalities. They can learn much more
comprehensive representation and more easily process large amounts of training data. How-
ever, these methods belong to unsupervised feature learning, which is incapable of survival
analysis since it cannot guarantee that the integrated feature space is highly associated with
patients’ survival outcome. In addition, recent cancer datasets cannot provide multi-modalities
data with sufficient patient samples, while deep multi-modal embeddings need large amounts
of data.
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3. Methodology
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Fig. 2. The architecture of our framework. ’st’ is short for ’stride’.

Figure 2 shows the pipeline of the proposed framework. f1, f2 is the view-specific sub-
network and gc is the common sub-network. The proposed model uses Convolutional Neural
Networks (CNNs) as one image-view sub-network f1 and Fully Connected Neural Networks
(FCNs) as another view-specific sub-network f2 to learn deep representations from pathological
images and molecular profiling data, respectively. More details about the sub-network f1 can
be seen in 1. It consists of 3 convolutional layers, 1 max-pooling layer and 1 fully-connected
layer. In each convolutional layer, we employ ReLU as the nonlinear activation function.

The sub-network f2 has two fully connected layers equipped with ReLU activation function,
with 128 and 32 neurons, respectively.

Table 1. The architecture of CNNs

Layer Filter size, stride,
number

Conv
(ReLU)

7× 7, 3, 32

Conv
(ReLU)

5× 5, 2, 32

Conv
(ReLU)

3× 3, 2, 32

Max-pool 2× 2
FC 32

3.1. Deep Correlational Learning

Denote xi,yi from two views as i-th sample, its representation passing through the correspond-
ing view sub-network is denoted as f1(xi;wx) and f2(yi;wy) respectively. wx,wy represent all
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parameters of the two sub-networks. The outputs of the two branches will be connected to a
correlation layer to form the common representation.

In the correlational layer, deep correlational learning tries to find pairs of projections that
maximize the correlation of two outputs from each network f1(xi;wx), f2(yi;wy). If wx,wy

represent all parameters of two networks, then the commonality is enforced by maximizing
the correlation between two views as

L = corr(X,Y) =

∑m
i=1(f1(xi)− f1(X))(f2(yi)− f2(Y))√∑m

i=1(f1(xi)− f1(X))2
∑m

i=1(f2(yi)− f2(Y))2
, (3)

where networks’ parameters wx,wy are omitted in the loss function (3). We can maximize the
correlation loss function to generate the shared representation indicating the most correlated
features from two modalities. Although different views of patients’ data are very heterogeneous,
there still share some common information for survival prediction. Correlational learning pro-
vides a very good way to find such common representation using the correlation function (3).
However, it belongs to unsupervised learning and thus this procedure has a risk of losing the
discriminant markers for predicting patients’ survival outcomes.

3.2. Survival prediction with smooth C-index loss function

Denote O = [o1, ..., oN ]> as the outputs of common sub-network gc, i.e., oi = gc(zi). The final
model will be fine-tuned on the survival prediction task using the knowledge from the deep
correlational learning. This will give the proposed model the ability to discover important
markers that are ignored by the correlational model, and learn the best representation for
survival prediction. Different from the use of negative log partial likelihood as survival loss in
recent deep survival learning,11 we propose to minimize the smoothed empirical risk function27

which is from the concordance index (C-index) estimator and differentiable with respect to
the predictor oi.

During the past few decades, the C-index, a general discrimination measure for the e-
valuation of prediction models, has gained enormous popularity in biomedical research. The
concordance index (C-index) quantifies the ranking quality of rankings and is calculated as

c = P (oi > oj |Ti < Tj) (4)

where Ti, Tj and oi, oj are the event times and the predicted risk values. The C-index measures
whether large values of o are associated with short survival times T and vice versa. Uno et al.
proposed a modified C-index estimation as follows:28

Cuno =

∑
i,k δi(Gm(Ti))

−2I(Ti < Tk)I(oi > ok)∑
i,k δi(Gm(Ti))−2I(Ti < Tk)

. (5)

where Gm(t) denotes the Kaplan-Meier estimator of the unconditional survival function of
Censored time (Ccens) estimated from the learning data. However, the Uno estimator is un-
feasible because it is not differentiable to oi. To solve this problem, the indicator function
I(oi > ok) is approximated by the sigmoid function:
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L(o) =
∑
i,k

wi,k
1

1 + exp(ok−oiσ )
, (6)

where oi is the output of the i-th patient. We implement the smoothed C-index function (6)
as the survival loss function in our method. The weights wik are defined as

wi,k =
δi(Gm(Ti))

−2I(Ti < Tk)∑
i,k δi(Gm(Ti))−2I(Ti < Tk)

. (7)

where I(Ti < Tk) is an indication function that indicates whether Ti is larger than Tk or not.
It is easy to check the smoothed empirical risk is differentiable with respect to the predictor
oi. The derivative is given by

∂L

∂oi
= −

∑
k

wi,k
exp(ok−oiσ )

σ(1 + exp(ok−oiσ ))
(8)

Compared with recent deep survival models,10,29 which can only handle one specific view of
data, our model can achieve more complex architecture for the integration of multi-modalities
data, which can be used for practical applications on more challenging datasets.

4. Experiments

4.1. Dataset Description

TCGA (The Cancer Genome Atlas) data cohort30 is a very large dataset which contains
both high resolution whole slide pathological images and molecular profiling data. In TCGA-
cohort, we focused on glioblastoma multiforme (GBM) and lung squamous cell carcinoma
(LUSC). For each cancer type, we adopted a core sample set from UT MD Anderson Cancer
Center31 in which each sample has information for the overall survival time, pathological
images, and molecular data related to gene expression. For model evaluation, 80% of patients
were randomly selected for training and the remaining 20% were used for testing.

• TCGA-LUSC: Lung squamous cell carcinoma (LUSC) is one major type in Non-Small-
Cell Lung Carcinoma (NSCLC). 106 patients with pathological images and protein ex-
pression (reverse-phase protein array, 174 proteins) are collected in our experiments.

• TCGA-GBM: Glioma is a type of brain cancer, and it is the most common malignant
brain tumor. 126 patients are selected from the core set with images and CNV data (Copy
number variation, 106 dimension).

4.2. Comparison approaches

We compare our model with four state-of-the-art survival approaches and three baseline deep
survival models. The four survival methods include LASSO-Cox,18 Parametric censored regres-
sion models with components with Weibull, Logistic distribution,2 and Boosting concordance
index (BoostCI).27 Those above methods need hand-crafted features as inputs. To calculate
imaging hand-crafted features, we used CellProfiler32 to analyze pathological images in com-
parison survival models. CellProfiler is widely used as a state-of-the-art medical image feature
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extracting and quantitative analysis tool. Motivated by the pipeline,33 a total of 1,795 quan-
titative features were calculated from each image tile.

The three baseline deep survival models are as follows:

• CNN-Surv: Deep convolutional survival model;29 we use the same architecture as the
sub-network f1 .

• FCN-Surv: FCN sub-network f2 followed by negative log partial likelihood loss.10

• DeepCorr+DeepSurv: The shared representation learned by deep correlational learning
is directly fed to another DeepSurv model.

To make fair comparisons, the architectures of different deep survival models are kept the
same as the corresponding parts in the proposed method.

4.3. Results and Discussion

To evaluate the performances in survival prediction, we take the concordance index (CI) as
our evaluation metric.

Table 2. Performance comparison of the proposed methods and other existing related methods

Data Model LUSC GBM

Images

LASSO-Cox18 0.3411 0.5775
BoostCI27 0.5088 0.5565
Weibull2 0.4261 0.4787
Logistic2 0.4217 0.4921

CNN-Surv29 0.5797 0.5154

Protein/CNV

LASSO-Cox18 0.6231 0.4920
BoostCI27 0.5714 0.4676
Weibull2 0.4851 0.5659
Logistic2 0.3915 0.4218

FCN-Surv10 0.5462 0.5221

Integration
DeepCorr+DeepSurv 0.5622 0.5900

Proposed 0.6638 0.6045

Results in Table 2 presents the C-index values by various survival methods on TCGA-
LUSC and TCGA-GBM. It can be seen that the integration of both modalities in the pro-
posed model achieves the best performance, for both lung and brain cancer. That is because
the proposed method can remove view discrepancy as well as learn the survival-related com-
mon representations from both modalities. The difference in the DeepCorr+DeepSurv from
ours is that those two models are trained separately. Performance shows that the common
representation by maximizing the correlation in an unsupervised manner still has the risk of
discarding markers that are highly associated with survival outcomes. In fact, the proposed
model used a similar smoothed C-index as the survival loss function compared with Boost-
CI,27 but the proposed method outperforms BoostCI in evaluation. This demonstrates that
the proposed method can efficiently learn deep representation from two modalities and achieve
better predictions.
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From the results, we can see that it is not easy to find a general model that can successfully
estimate patients’ survival outcomes across different tumor types using only one specific view,
either images or molecule data. The reason might be the heterogeneous of different tumor
types and the original data in each view might contain variations or noise and thus affect
the estimation of survival models. Because the proposed model can effectively integrate two
views, it can achieve good prediction performance across different tumor types.

5. Conclusion

In this paper, we proposed a deep survival model to efficiently integrate multi-modalities from
lung and brain tumor patients. Eliminating the view discrepancy between imaging data and
molecular profiling data, deep correlational learning provides a good solution to maximize the
correlation of two views and find the common embedding space. However, deep correlational
learning belongs to an unsupervised learning which cannot ensure the common representation
from correlational layer is suitable for survival prediction. To overcome this issue, the proposed
model fine-tunes the whole network using smooth C-index loss after transferring knowledge
from the embedding space. Experiments have demonstrated the proposed method can discover
important markers that might be ignored by correlational learning. Our model can find non-
linear relationships between factors and prognosis; it achieved quite promising performance
with improvements. In the future, we will extend the proposed framework to directly process
original whole slide images (WSIs).
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