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Standard approaches to evaluate the impact of single nucleotide polymorphisms (SNP) on 

quantitative phenotypes use linear models. However, these normal-based approaches may not 

optimally model phenotypes which are better represented by Gaussian mixture distributions (e.g., 

some metabolomics data). We develop a likelihood ratio test on the mixing proportions of two-

component Gaussian mixture distributions and consider more restrictive models to increase power 

in light of a priori biological knowledge. Data were simulated to validate the improved power of the 

likelihood ratio test and the restricted likelihood ratio test over a linear model and a log transformed 

linear model. Then, using real data from the Framingham Heart Study, we analyzed 20,315 SNPs on 

chromosome 11, demonstrating that the proposed likelihood ratio test identifies SNPs well known to 

participate in the desaturation of certain fatty acids. Our study both validates the approach of 

increasing power by using the likelihood ratio test that leverages Gaussian mixture models, and 

creates a model with improved sensitivity and interpretability. 
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1.  Introduction 

Genome-wide association studies (GWAS) continue to be viewed as a standard approach to 

evaluating the genetic component of a variety of diseases and other phenotypes of interest [1]. 

Standard approaches to the analysis of genotype associations with quantitative phenotypes use linear 

models. 

 As suggested in Tintle et al. [2], bimodal distributions are frequently observed in continuous 

phenotype samples of metabolites, challenging the normality assumption needed in many existing 

GWAS analysis approaches. For example, red blood cell fatty acid levels have been found to 

contribute to coronary heart disease [3].  As outlined in Tintle et al. [2], it is biologically reasonable 

to consider one’s fatty acid levels as coming from a mixture of Gaussian distributions, with each of 

the two or three mean fatty acid levels determined by genetics, and variation around the mean level 

determined by other factors (e.g., diet; lifestyle). While the standard way of analyzing fatty acids 

follows the typical GWAS linear model approach, in cases where the distribution does not appear 

to be normally distributed, a log transformation is sometimes used [4]. However, this log 

transformation may fail to accurately capture the true distribution of the genotypic and phenotypic 

data since it ignores the biological reasoning for observing a non-normal distribution. It may be 

more powerful to directly model the normal mixture distribution and then test for genotype-

phenotype association. 

Recently, Kim et al. proposed a likelihood ratio test to test for association between copy number 

polymorphisms (CNP) with quantitative phenotypes and case control outcomes which followed a 

mixture of Gaussian distributions [5]. The likelihood ratio test evaluates possible differences in the 

mixing proportions of the Gaussian components by different copy number. Kim et al. showed that 

the likelihood ratio test was more powerful than a 2 x d chi-squared test with d equal to the number 

of CNP categories when the underlying data was from a mixture distribution. 

We propose adapting the Kim et al. likelihood ratio test to the standard genotype-phenotype 

testing situation for phenotypes which are distributed as a mixture of Gaussian distributions, like 

some metabolomics data  (e.g., fatty acid levels). We will provide a theoretical framework for the 

likelihood ratio test, evaluate its performance on simulated data and then apply it to a real set of 

fatty acid data from the Framingham Heart Study.  

2.  Methods 

2.1.  Notation 

Let X be a quantitative phenotype that follows a two-component Gaussian mixture distribution. 

Thus, 𝑋~𝜋𝑁(𝜇1, 𝜎2) + (1 − 𝜋)𝑁(𝜇2, 𝜎2) where π is the mixing parameter of the Gaussian 

components.  Let 𝜇1 and 𝜇2 be the mean parameters such that 𝜇1 ≠ 𝜇2, and we assume a common 

variance σ2 for both components. We assume 𝜋 = 𝑝01(𝑛0/N) + 𝑝11(𝑛1/N) + 𝑝21(𝑛2/N) where 𝑝𝑡1 

(t = 0, 1, 2) is the proportion of genotype t in the first component of the mixture distribution, 𝑛𝑡 (t = 

0, 1, 2) is the number of individuals with genotype t, and N is the total number of individuals.  We 

consider the null hypothesis H0 : 𝑝01 = 𝑝11 = 𝑝21  and the alternative Ha: at least one is not equal. 

Let 𝑝ф𝑖 = 𝑝0𝑖 = 𝑝1𝑖 = 𝑝2𝑖 (𝑖 = 1,2) (see Figure 1 for a visual representation). Let 𝑥𝑡𝑏 (b = 1, 2, … 
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nt) and (t = 0, 1, 2) be a random variable representing the phenotype for individual b who has 

genotype t, and let w be a vector of all 𝑥𝑡𝑏. Across all the components, the mixing proportion for 

genotype t must sum to 1 such that 𝑝𝑡1 + 𝑝𝑡2 = 1 ( t =  0 , 1, 2). 

  

 

Figure 1 visually illustrates the null and alternative models.  The black, light grey, and dark grey 

two-component mixture distributions are the phenotype distributions for the less common 

homozygote, the heterozygote and the more common homozygote, respectively. In the null 

model, 75% of the observations in each genotype are in the component with the smaller mean. 

In the alternative model, the mixing proportion for the component density with the smaller mean 

varies across genotypes.  

2.2.  Likelihood functions 

2.2.1.  Null and alternative likelihood function 

The likelihood function under the null hypothesis is:  

 

𝐿0 = ∏ (∑ 𝑝ф𝑖𝑁(𝑤𝑗|𝜇𝑖 , 𝜎2)

2

𝑖=1

)

𝑛0+𝑛1+𝑛2

𝑗=1

 (1) 

The likelihood function under the unrestricted alternative hypothesis is: 

𝐿1 = (∏ (∑ 𝑝0𝑖𝑁(𝑥0𝑘|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛0

𝑘=1

) (∏ (∑ 𝑝1𝑖𝑁(𝑥1𝑚|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛1

𝑚=1

) (∏ (∑ 𝑝2𝑖𝑁(𝑥2ℎ|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛2

ℎ=1

) (2) 
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2.2.2.  Restricted likelihood function 

When there is a biological understanding of the 

phenotype-genotype relationship, we recommend 

restricting the mixing proportions of the test to fit the 

biological model. We demonstrate two possible 

models, but our general method easily extends to other 

models.  The first model (LRTpro; Table 1) we consider 

is that the proportion of change between genotypes 0 

and 1 is equal to the change between genotypes 1 and 

2. Therefore, we can restrict our parameters of interest 

to 𝑝0𝑖
∗ = (𝑝01, 1 − 𝑝01), 𝑝1𝑖

∗ = (𝑝01𝑞, 1 − (𝑝01𝑞)), and 

𝑝2𝑖
∗ = (𝑝01𝑞2 , 1 − (𝑝01𝑞2)).  The second restricted 

model (LRTadd; Table 2) that we demonstrate describes 

an equal difference in proportions between groups 0 

and 1 and groups 1 and 2. We can restrict our 

parameters of interest to 𝑝0𝑖
∗ = (𝑝01, 1 − 𝑝01), 𝑝1𝑖

∗ =

(𝑝01 − 𝑞, 1 − (𝑝01 − 𝑞)), and 𝑝2𝑖
∗ = (𝑝01 − 2𝑞 , 1 −

(𝑝01 − 2𝑞)). Therefore, the likelihood function under 

these restrictions is: 

 

𝐿2 = (∏ (∑ 𝑝0𝑖
∗ 𝑁(𝑥0𝑘|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛0

𝑘=1

) (∏ (∑ 𝑝1𝑖
∗ 𝑁(𝑥1𝑚|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛1

𝑚=1

) (∏ (∑ 𝑝2𝑖
∗ 𝑁(𝑥2ℎ|𝜇𝑖, 𝜎2)

2

𝑖=1

)

𝑛2

ℎ=1

) (3) 

 

2.2.3.  Test statistics 

Because 𝑝𝑡2 = 1 − 𝑝𝑡1 for all t, we can express each likelihood as a function of the parameters 𝜇1, 

𝜇2, 𝜎2, and the mixing proportion(s) associated with the 𝑁(𝜇1, 𝜎2) distribution. The resulting 

likelihood ratio test statistics are given by: 

 
𝐿𝑅𝑇𝑆 = 2(

𝑚𝑎𝑥
𝑝01, 𝑝11, 𝑝21, 𝜇1, 𝜇2, 𝜎2  ln(𝐿1) −

𝑚𝑎𝑥
𝑝ф1, 𝜇1, 𝜇2, 𝜎2 ln(𝐿0)) (4) 

 
 

𝐿𝑅𝑇𝑆𝑟𝑒𝑠 = 2(
𝑚𝑎𝑥

𝑝01, 𝑞, 𝜇1,, 𝜇2, 𝜎2 ln(𝐿2) −
𝑚𝑎𝑥

𝑝ф1, 𝜇1, 𝜇2, 𝜎2 ln(𝐿0)) (5) 

 

 

Extending the argument provided by Kim et al. the LRTS under the null hypothesis follows a central 

chi-squared distribution with the degrees of freedom equal to the difference in parameters of the 

null and alternative models [5]. Therefore, under the null hypothesis, the LRTS has a central chi-

squared distribution with 2 degrees of freedom, and the LRTSres follows a central chi-squared 

distribution with 1 degree of freedom.  

Table 1. LRTpro 

Genotype 

Component 1 

of Mixture 

Distribution 

Component 2 

of Mixture 

Distribution 

0 𝑝01  1 − 𝑝01 

1 𝑝01𝑞 1 − (𝑝01𝑞) 

2 𝑝01𝑞2 1 − (𝑝01𝑞2) 

   

Table 2. LRTadd 

Genotype 

Component 1 

of Mixture 

Distribution 

Component 2 

of Mixture 

Distribution 

0 𝑝01  1 − 𝑝01 

1 𝑝01 − 𝑞 1 − (𝑝01 − 𝑞) 

2 𝑝01 − 2𝑞 1 − (𝑝01 − 2𝑞) 
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2.3.  Simulation 

Using R software, we simulated 1000 datasets with 10,000 individuals per data set.  For each, 

individual, the genotype for a single SNP was generated by assuming Hardy-Weinberg equilibrium 

and minor allele frequency of either 0.05, 0.10, or 0.25. Trait values for individuals were simulated 

from two component Gaussian mixture distributions with centers one unit apart and equal variance 

of the components 𝜎2 = 0.5 or 0.75. For the mixing proportions of individuals with genotype 0, we 

used 𝑝01 = 0.9 or 𝑝01 = 0.75. We used two different biological models to simulate. In the proportional 

model we set q equal to 1, 0.9, or 0.75 so that the other mixing proportions were 𝑝11 = 𝑝01𝑞 and 

𝑝21 = 𝑝01𝑞2. In the additive model we set q equal to 0.1 or 0.2 so that the mixing proportions were 

𝑝11 = 𝑝01 − 𝑞 and 𝑝21 = 𝑝01 − 2𝑞. Simulations were performed on all combinations of the 

parameters.  

2.4.  Statistical analysis 

To evaluate the performance of these tests in direct comparison to the standard procedure of linear 

and log-linear models, all tests were run on each simulated SNP and phenotype.  Each test produced 

a p-value, test statistic and parameter estimates. Type I error rates and power estimates were 

calculated by dividing the number of observations less than a significance level (Type I error 0.01, 

power 0.0001) by the total number of simulations. We used an Expectation Maximization (EM) 

algorithm to find the global maximums of equations (4) and (5).  One hundred random start points 

(RSP) were used for the null likelihood, and 50 RSP and one start point from the maximum of the 

null were used in the alternative [5].  The EM algorithm ran until a tolerance of 10-5 was reached or 

until 600 and 300 iterations were performed for the null and alternative models respectively.  

2.5.  Real data application  

We analyzed 20315 SNPs on chromosome 11 for 5936 individuals from the Framingham Heart 

Study using the proposed LRTpro test.  We looked exclusively at members in the offspring and 

generation 3 cohorts, all of whom are of European descent. Detailed descriptions of the sample are 

available elsewhere [6]–[9]. We looked at the red blood cell fatty acid level ratio of arachidonic acid 

(AA) to dihomo-gamma-linoleneic acid (DGLA).  These fatty acid levels were analyzed by gas 

chromatography as previously described [6].  The desaturation of AA to DGLA occurs primarily 

via enzymatic activity in the FADS gene complex on chromosome 11. We will use a Bonferroni 

correction to control the probability of type I errors at 2.47x10-6 (0.05/20315).  
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3.  Results 

3.1.  Verifying the null distribution and type I error rate 

To confirm that the null distribution of the unrestricted model is a chi-square distribution with two 

degrees of freedom and that the null distribution of the restricted model is a chi-square distribution 

with one degree of freedom, we 

examined simulations when q = 

1. In addition to examining the 

 novel tests proposed here 

(LRTpro, LRTadd) we also 

explored the type I error rates 

of the linear model, log-linear 

model, and LRT across these 

same simulations. As shown in 

Table 3 the type I error rate was 

controlled by all tests. 

3.2.  Power estimates  

 There were 48 simulations 

where the alternative 

hypothesis was true. As 

summarized in Table 4 (full 

detailed results are in 

Supplemental Table 1), the 

LRTpro has empirical power 

equal to or greater than all the 

other tests in all situations.  

LRTadd was the second most 

powerful test in all 48 

simulations. When comparing a 

linear model to the 

unconstrained LRT test directly 

there were 21 simulations 

where they had different power. 

In two-thirds of these cases (14 

out of 21), LRT had higher 

power than the linear model. 

The log-linear model never had 

an empirical power higher than 

any other test.  

Table 3. Type I Error Estimates 

  Nominal Significance Level  

 SD 0.05 0.01 0.001 
Kolmogorov-Smirnov 

test p-value1 

LRTpro 0.5 0.0497 0.011 0.0012 0.6846 

 0.75 0.0515 0.0097 0.0010 0.8832 

LRTadd 0.5 0.0472 0.0108 0.0012 0.7277 

 0.75 0.0495 0.0085 0.0008 0.7091 

LRT 0.5 0.0557 0.0108 0.0012 0.2269 

 0.75 0.0478 0.0078 0.0013 0.7435 

Linear 

Model 

0.5 0.0538 0.0107 0.0007  

0.75 0.0458 0.0070 0.0005  

Log Linear 

Model 

0.5 0.0523 0.0108 0.0007  

0.75 0.0460 0.0083 0.0007  

1As compared to a chi-square distribution.   

  

      Table 4 Power Estimates  

model q maf 𝑝01 
Linear 

Model 

Log 

 Linear  

Model 

LRTpro LRTadd LRT 

add  0.1 

0.05 
0.75 0.343 0.26 0.403 0.39 0.295 

0.9 0.44 0.316 0.631 0.624 0.508 

0.1 
0.75 0.824 0.736 0.879 0.871 0.798 

0.9 0.898 0.793 0.967 0.966 0.938 

0.25 
0.75 0.999 0.997 0.999 0.999 0.999 

0.9 0.999 0.999 1 1 1 

pro 0.9 

0.05 
0.75 0.12 0.095 0.156 0.153 0.105 

0.9 0.325 0.212 0.478 0.467 0.362 

0.1 
0.75 0.388 0.31 0.46 0.451 0.342 

0.9 0.75 0.622 0.891 0.887 0.831 

0.25 
0.75 0.904 0.844 0.936 0.932 0.892 

0.9 0.998 0.975 1 1 1 

  Power estimates for standard deviation of .75 for alpha = 0.0001 
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The choice of 0.0001 as a cutoff for our 

power estimates is arbitrary as Figure 2 

demonstrates. The LRTpro tends to have a 

smaller p-value than the linear model for all 

thresholds since almost all of the points are 

above the gray line.  

3.3.  Robustness of model selection 

Since choosing a restriction based on prior 

knowledge as is done in both LRTpro and 

LRTadd may not be possible in every 

circumstance, it may not be necessary to 

choose the exact model.  Table 4 shows that 

LRTpro and LRTadd were the most powerful 

tests even when the other model was 

simulated.  These two restrictions are of 

similar patterns, but the increase of power 

is substantial.  Therefore, choosing a model 

at least similar to the true model can 

increase the power of the test.  

3.4.  Parameter estimation 

In order to conduct the LRT, 

estimates of the underlying 

parameters of the two-component 

distribution are obtained. Table 5 

illustrates the accuracy and 

precision of the resulting estimates 

across a range of simulation settings 

for the LRTpro approach, with full 

results for all tests in supplemental 

tables 2 and 3. In general, LRTpro 

and LRTadd yielded unbiased and 

accurate estimates across settings.  

In Table  5, one can see that  LRTpro 

accurately predicted the means of 

the components both across a wide 

range of settings and with low 

variation of the estimate. LRTpro 

estimated well even when the data was simulated from the additive model. Similar results are 

obtained when estimating the mixing proportion (see Table 6) and the standard deviation of the 

components (see supplemental table 4).  

 

Table 5. Estimates of Means  for LRTpro 

True 

model 

True 

𝑝01  
q 𝜇1 

Standard 

deviation 

of 𝜇1 
𝜇2 

Standard 

deviation 

of 𝜇2 

 

 

Add 

0.75 0.1 0.0005 0.02936 1.0022 0.0401 

0.9 0.1 -0.0021 0.0240 1.0036 0.0740 

0.75 0.2 -0.0007 0.0240 1.0011 0.0349 

 0.9 0.2 -0.0020 0.0206 1.0005 0.0547 

 

 

Pro 

0.75 0.75 0.0005 0.02678 1.0005 0.0356 

0.9 0.75 -0.0014 0.0110 1.0008 0.0518 

0.75 0.9 0.0002 0.0293 1.0030 0.0400 

 0.9 0.9 -0.0025 0.02496 1.0028 0.0781 

Estimates aggregated across all settings with these parameters and all 

simulations within each setting, with the true value of 𝜇1 = 0 and 

𝜇2 = 1. 

Figure 2.  P-value comparison between LRTpro and 

the linear model. 
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3.5.  Real data results  

After analyzing 20321 SNPs on Chromosome 11 in relation to the AA/DGLA ratio, the LRTpro  test 

identified 28 SNPs as significantly associated after applying a Bonferonni multiple testing 

correction.  These 28 SNPs came from 5 different regions on chromosome 11, all of which validated 

previous GWAS findings.  Nineteen significant SNPs are in the well documented [10]–[12]FADS 

region (bp = 61622896- 61978819).   Genes in this region that contain significant SNPs include 

DAGLA, MYRF, FADS1, FADS2, FADS3, and RAB3IL1 all of which have strong biological basis 

for desaturation activity [10]. 

As an example interpretation of the results in Table 7, we first note that the significant tests all 

show similar estimates of the two components of the AA/DGLA ratio (mean of component one 

between 0.16 and 0.18; mean of component two between 0.097 and 0.101; SD of each component 

between 0.023 and 0.024). When an individual is genotyped and is the common homozygote at 

rs174549, they have a 3.6% chance of having their AA/DGLA ratio in the first component. 

However, if the individual has one less common allele, his chance increases to 18.3%, and with a 

second copy of the minor allele, it will increase to 93.7%.   

Table 6 Estimates of Mixing Proportions for LRTpro 

model True 𝑝01  q 𝑝01 sd 
True 

𝑝11  
𝑝11 sd True 𝑝21  𝑝21  sd 

 

 

Add   

0.75 0.1 0.7509  0.0280 0.65 0.5197  0.1537 0.55 0.5290  0.0625 

0.9 0.1 0.8973 0.0265 0.8 0.6134  0.2786 0.7 0.6059  0.1627 

0.75 0.2 0.7496 0.0247 0.55 0.5097  0.0582 0.35 0.5072  0.1731 

 0.9 0.2 0.8985 0.0220 0.7 0.6559   0.1220 0.5  0.5523  0.0744 

 

 

Pro   

0.75 0.75 0.7504 0.0248 0.5625 0.5390  0.0597 0.4219 0.4707  0.1188 

0.9 0.75 0.8983 0.0205 0.6750 0.6627  0.0691 0.5063 0.5139  0.0677 

0.75 0.9 0.7507 0.0284 0.6750 0.5385  0.1754 0.6075 0.5358  0.1037 

 0.9 0.9 0.8966 0.0278 0.8100 0.6290  0.2823 0.729 0.6170  0.1814 

Estimates aggregated across all settings with these parameters and all simulations within each setting. 

  Table 7. Most significant SNPs in each region 

rs# 
# of 

SNPs 
MAF Pos Gene 

LRTpro 

p-value 
𝑝01 𝑝11 𝑝21 𝜇1 𝜇2 𝜎 

rs10751124 1 0.346 85432084 DLG2 2.50x10-8 0.062 0.114 0.162 0.174 0.100 0.023 

rs11220658 1 0.350 99618283 CNTN5 4.52x10-7 0.110 0.075 0.051 0.179 0.101 0.024 

rs7129015 5 0.198 110772485  1.86x10-7 0.105 0.059 0.034 0.179 0.101 0.024 

rs11217753 1 0.167 120181415  2.94x10-9 0.108 0.052 0.025 0.180 0.101 0.024 

rs174549 19 0.290 61803910 FADS1 5.32x10-312 0.036 0.183 0.937 0.160 0.097 0.024 
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4.  Discussion 

GWAS typically utilize linear models, thus making an assumption about the underlying normality 

of the data. When data is not normal, a Gaussian mixture distribution may represent a statistically 

justified and biologically interpretable model of the data. We proposed a constrained likelihood ratio 

test, which across many simulation settings, was more powerful than the standard linear model and 

gave accurate parameter estimates. When applied to a real dataset, the method identified biologically 

relevant SNPs in the well understood FADS region, along with parameter estimates to aid in 

biological interpretability of the impact of the SNP. 

The general LRT framework proposed here shows reasonably good performance compared to 

the additive linear model, but can be improved upon by further constraining the model and ‘saving’ 

a degree of freedom. Our simulations suggest relatively robust performance of the constrained 

methods (LRTpro and LRTadd) to misspecification of the true model though additional simulations 

across a wider range of misspecifications are needed. 

We note that, due to the use of the EM algorithm to generate parameter estimates for use in the 

LRT, computational time for our proposed methods (3 minutes per test on a single processor with a 

sample size of 10,000) are much greater than that of the traditional linear model.  Nevertheless, with 

the increasing computational power and the limited number of high minor allele frequency SNPs, it 

is plausible to run GWAS with this method and is a reasonable option for candidate gene approaches. 

Further work is necessary to investigate potential areas of computational improvement.  

Numerous areas of future work and extension are possible. First, extensions of this work are 

needed to incorporate covariates and family structure into the method. Standard methods (e.g., first 

modeling the phenotype by covariates and/or family structure and then modeling the residuals) make 

normality assumptions and, so, may not be optimal candidates for extension in this Gaussian mixture 

modeling framework. Imputed data often provides dosages instead of discrete genotypes. Work is 

needed to extend this framework to allow for dosages in this testing framework. Further applications 

to genome wide data is necessary to fully understand the impact of this new method. Finally, 

extensions for multiple-marker testing and relaxing the equal variance assumption are also targets 

for further exploration.  

We have developed a likelihood ratio test that analyzes the differences in mixing proportions 

between genotypes. The method and null distribution were validated through simulation.  There was 

notable power increase over the more commonly used linear model, especially when we further 

increased power by restricting the model to incorporate prior biological belief. We have shown that 

this method is able to accurately predict model parameters. The model was applied to real data, and 

it replicated many previous findings while also providing more interpretable results. Further work 

is necessary to apply the model to a wider range of real metabolomics data and to investigate 

extensions of the model to handle covariates and imputed genotypes.  

 Supplemental files and R code 

All supplemental material can be found at http://homepages.dordt.edu/ntintle/mixture_test.zip. 
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