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Genetic variations of the human genome are linked to many disease phenotypes. While
whole-genome sequencing and genome-wide association studies (GWAS) have uncovered a
number of genotype-phenotype associations, their functional interpretation remains chal-
lenging given most single nucleotide polymorphisms (SNPs) fall into the non-coding region
of the genome. Advances in chromatin immunoprecipitation sequencing (ChIP-seq) have
made large-scale repositories of epigenetic data available, allowing investigation of coordi-
nated mechanisms of epigenetic markers and transcriptional regulation and their influence
on biological functions. To address this, we propose SNPs2ChIP, a method to infer bio-
logical functions of non-coding variants through unsupervised statistical learning methods
applied to publicly-available epigenetic datasets. We systematically characterized latent fac-
tors by applying singular value decomposition to 652 ChIP-seq tracks of lymphoblastoid cell
lines, and annotated the biological function of each latent factor using the genomic region
enrichment analysis tool. Using these annotated latent factors as reference, we developed
SNPs2ChIP, a pipeline that takes genomic region(s) as an input, identifies the relevant latent
factors with quantitative scores, and returns them along with their inferred functions. As
a case study, we focused on systemic lupus erythematosus and demonstrated our method’s
ability to infer relevant biological functions. We systematically applied SNPs2ChIP on pub-
licly available datasets, including known GWAS associations from the GWAS catalogue and
ChIP-seq peaks from a previously published study. Our approach to leverage latent patterns
across genome-wide epigenetic datasets to infer the biological functions will advance under-
standing of the genetics of human diseases by accelerating the interpretation of non-coding
genomes.
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1. Introduction

Genome-wide association studies (GWAS) have successfully identified many associations be-
tween genetic variants and human diseases.1,2 However, functional interpretation of these as-
sociations remains challenging as most GWAS hits fall into non-coding regions of the genome.3

Advancements in high-throughput genome-wide molecular profiling methods, such as ChIP-
seq, enable molecular characterization of gene regulatory landscapes, such as histone modifica-
tion and transcription factor (TF) binding profiles.4 Leveraging growing biomedical ontologies,
such as the gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Infor-
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matics (MGI) phenotype ontology, tools based on statistical enrichment analysis on genomic
regions, such as the genomic region enrichment analysis tool (GREAT), have been used to
investigate the function of the non-coding genome.5–9 Further, collaborative research efforts,
such as ENCODE, the Roadmap Epigenomics project, and Genotype-Tissue Expression pro-
gram (GTEx), have also systematically generated data-rich molecular catalogues.10–12 These
large-scale epigenomic profiles, as well as other publicly available datasets on the NCBI se-
quence read archive, are integrated into epigenetic data resources, such as ChIP-Atlas and
ReMap, which provides an emerging opportunity for data mining and meta-analysis.13,14

Advancements in epigenetic analysis suggest that latent patterns in epigenomic regula-
tory profiles can be discovered and characterized for downstream analyses. For example, one
TF can bind to numerous genomic loci with specific sequence features and multiple TFs
can work together by forming dimers, executing coordinated transcriptional regulatory pro-
grams.15 Moreover, it is known that many TFs have multiple functions through precise co-
ordination in different contexts, that there are known interactions between histone modifica-
tions and TF occupancy, and that histone modifications and TF occupancy influence gene
expression.10–12,15 With these phenomena in mind, there has been works in harnessing these
patterns for functional interpretation of non-coding genomes. ChromHMM and Segway, unsu-
pervised statistical learning methods, successfully summarizes patterns of epigenetic profiles
as interpretable annotations,16,17 while eQTL studies examines non-coding variants in light of
molecular phenotype, such as expression levels of neighboring genes.12 While these approaches
show some success in utilizing neighboring epigenomic signals to explore molecular interpre-
tation of non-coding genomes, they are limited in leveraging genome-wide patterns of both
histone modification and TF occupancy across different functional contexts. In principle, one
can extend these analyses by leveraging all experimentally collected epigenomic profiles and
characterizing latent patterns for functional interpretation of non-coding genomic regions on
a genome-wide scale.

Here we present SNPs2ChIP, a novel method to infer function of non-coding variants by (1)
characterizing latent patterns in epigenomic regulatory profiles using an unsupervised latent
factor discovery algorithm applied to 652 ChIP-seq tracks in the ChIP-Atlas dataset, (2) infer-
ring the biological functions of the identified latent factors using GREAT enrichment analysis,
and (3) development of a pipeline that takes genomic loci as input and infers functionality of
the loci by identifying relevant latent factors using a quantitative score. Our computational
approach contributes to dissecting the genetic architecture of human diseases by accelerating
functional interpretation of non-coding variants.

2. Results

2.1. SNPs2ChIP analysis framework overview

We developed a method, SNPs2ChIP, to infer functions of non-coding loci that consists of two
computational steps: (A) construction of reference ChIP-maps and (B) using the reference
ChIP-maps to infer biological functions for user queries. To briefly summarize the first part of
our method, we collected chromatin-profiling data from ChIP-Atlas, one of the largest publicly-
available databases of ChIP-seq signals with manually curated metadata,13 and featurized the
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Fig. 1. SNPs2ChIP method overview. (A) Construction of SNPs2ChIP reference dataset. ChIP-seq
peaks of 652 assays are aggregated into a feature matrix, ChIP-map, followed by batch normalization
with surrogate variable analysis (SVA). Latent factors are characterized with singular value decompo-
sition (SVD) and their biological functions are inferred with the genomic region enrichment analysis
tool (GREAT). (B) SNPs2ChIP pipeline. Using the pre-computed reference, SNPs2ChIP identifies
the most relevant latent factors and returns them with their annotated biological functions.

ChIP-seq peaks across TFs and histone marks into a matrix, called a “ChIP-map.” To balance
the trade-off in specificity of the functional prediction and the genomic coverage of the ChIP-
map, we prepared two matrices for high-specificity and high-coverage analysis, by varying the
stringency of the featurization methods. After featurization, we applied batch normalization
with surrogate variable analysis (SVA) and singular value decomposition (SVD) in each map,
resulting latent factors preserving a linear structure optimal for interpretation..18 This was
followed by applying GREAT to find the biological functions enriched in each latent factor
(Fig. 1A).9 With latent factors and enriched functions as pre-computed reference, we developed
a pipeline that takes a loci as input and returns a list of relevant latent factors as well as their
enriched function. A query can be one or multiple genomic loci: GWAS SNPs, ChIP-seq peaks,
or genomic coordinates of interest (Fig. 1B).

2.2. Batch normalization of heterogeneous epigenetic features

We focused on 652 lymphoblastoid cell line experiments, the most numerous cell line in the
ChIP-Atlas database, and downloaded all non-empty ChIP-seq peak files. We divided the
entire genome into genomic bins of 1 kbp in size and placed ChIP-seq peaks, represented by
the strength of the peak, into the bins. This was done across 652 tracks, which created a
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Fig. 2. Batch normalization of ChIP-map with SVA.

ChIP-map matrix. After removing genomic bins that did not contain any peaks, we found
379,541 (covering 12.1 % of genome) genomic bins and 662,024 (21.1 %) genomic bins for the
high-specificity dataset and high-coverage dataset, respectively (Methods).

To normalize batch effects in each ChIP-map, we applied the SVA algorithm, a normal-
ization method useful when technical covariates are not known or have missing entries.18 Out
of 39 significant surrogate variables (SVs) identified from SVA, we found that three SVs were
significantly associated (p-value < 1.0 × 10−30, linear regression) with antibody - a biological
effect necessary to protect. The first SV captured variation attributed mainly to H3K4me1 and
H3K4me3; the second SV captured variation for H3K27ac and H3K4me3; and the third SV
captured variation for CTCF, H3K4me3 and SA1. Note that the variation from one sub-group
of a given covariate can be split across multiple SVs, as is the case with H3K4me3.

We assessed the effect of the removing these SVs when regressing out SVs from ChIP-
map and compared with results of keeping all SVs in the regression. We implemented the
regression using a QR decomposition, enabling an efficient, high-dimensional multivariate
multiple regression. When removing SVs significantly associated with antibody, clear clusters
were preserved in the corrected data reflective of antibody, but not for technical effects such as
ancestry (Fig. 2A-B). Conversely, when we including all SVs in the regression, no clusters were
observed for antibody, indicating an over-correction of data, i.e. removal of biological signal
of interest (Fig. 2C). Therefore, using a combination of SVA, linear regression and clustering,
we were able to preserve biologically important variation while removing unwanted technical
variation.

2.3. Latent factor discovery and their biological characterization

To find interpretable latent factors in an unbiased manner, we applied an unsupervised statis-
tical learning algorithm, SVD, to the batch normalized ChIP-map. Using the high-specificity
dataset, we found that the first three latent factors explain 8.2 %, 6.0 %, and 4.6 % of the
variance, respectively, and that the top 50 and 100 factors comprehensively explain 59 % and
72.5 % of the variance, respectively. For the high-coverage dataset, we found the first three
latent factors explain 14.0 %, 10.7 %, and 5.7 % of the variance, respectively, and that the top
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50 and 100 factors comprehensively explain 72.6 % and 82.6 % of the variance, respectively.
To characterize the biological functions of each latent factor, we identified the top 5,000

genomic bins ranked using the genomic bin contribution score derived from decomposed matri-
ces by SVD (Methods - Eq. (1)). We applied GREAT enrichment analysis for the top genomic
bins in each latent factor and identified enriched functional terms using three ontologies: GO,
HPO, and MGI phenotype ontology.5–9

2.4. SNPs2ChIP identifies relevant functions of the non-coding genome

To illustrate the utility of SNPs2ChIP to infer the function of non-coding genome, we applied
the pipeline to known GWAS SNPs and ChIP-seq peaks from previously published datasets.
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Fig. 3. Genome-wide coverage of the two reference datasets of SNPs2ChIP. For each phenotype in
the GWAS catalog, we queried SNPs2ChIP and summarized what percentage of the SNPs can be
mapped to the latent factors for the (A) high specificity dataset and (B) high coverage dataset.

2.4.1. Genome-wide SNPs coverage of the reference datasets

Given that our reference datasets do not contain empty genomic bins, thus excluding parts
of the genome, we first evaluated the coverage of our reference dataset by applying the
SNPs2ChIP pipeline to all previously reported SNPs from the GWAS catalogue.1 We ap-
plied the pipeline for each disease/trait and summarized the number and percentage of SNPs
covered by our reference datasets. Out of the 51,892 known non-intergenic GWAS SNPs we
tested, we found our high-specificity and high-coverage datasets covers 9,241 (17.8 %) and
14,636 (28.2 %) of SNPs (Fig. 3).

2.4.2. Non-coding GWAS SNPs of systemic lupus erythematosus

To illustrate the utility of our approach to infer biological functions associated with non-
coding GWAS SNPs of diseases, we performed a case-study on systemic lupus erythematosus
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Fig. 4. SNPs2ChIP identifies the relevant biological functions given GWAS hits for systemic lupus
erythematosus. GREAT binomial FDR and binomial fold for HPO ontology are shown.

(SLE). SLE is an autoimmune disorder with a prevalence of 0.1 % and a poorly characterized
genetic and epigenetic basis.19 Out of 425 GWAS SNPs associated with SLE, 110 and 158
SNPs are covered in the high-specificity and high-coverage reference dataset, respectively.
Applying the pipeline to the SNPs covered by high-specificity dataset, the top latent factor
identified explained 10.7 % of the variance in the epigenetic landscape and was enriched for
multiple biological concepts associated with SLE. Using HPO as the reference ontology, we
found human phenotypes, such as “Abnormality of cells of the lymphoid lineage” (HP:0012140,
binomial FDR = 2.7×10−4), “Lymphopenia” (HP:0001888, FDR = 2.8×10−4), and “Hemolytic
anemia” (HP:0001878, FDR = 2.9×10−4), which are all known phenotypes for SLE (Fig. 4).20,21

2.4.3. ChIP-seq peaks for vitamin D receptors

To further test the applicability of SNPs2ChIP, we applied the pipeline to ChIP-seq peaks
assosciated with vitamin D receptors (VDR) as an example. Vitamin D is known to participate
in transcriptional regulation through VDRs and regulates calcium homeostatic functions.22 Its
deficiency has been implied in multiple phenotypes, including increased risk of fracture, muscle
weakness, and skeletal mineralization defect.23

Using the ChIP-seq peaks highlighted in a previously published study,24 we applied
SNPs2ChIP and identified relevant phenotypes, such as “Parietal foramina” (HP:0002697,
FDR = 1.3× 10−4) and “Flat forehead” (HP:0004425, FDR = 2.3× 10−3).
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Fig. 5. Robustness analysis in the latent factor identification. By using all SNPs associated with
SLE, we found the top 5 relevant latent factors (Methods, Eq. (4)). Iterating through each SNP, we
plot the cumulative frequency of identifying each of the top 5 latent factors within the rank specified
for (A) all latent factors and (B) top 10 ranks. The dashed black line indicates the cumulative
frequency under the random null model.

2.5. Robustness Analysis in the latent factor identification

In the SNPs2ChIP pipeline, the identification of the relevant latent factor given a user query
is a critical step. To assess the robustness, we applied the pipeline on all of the SLE associated
SNPs with the high-specificity dataset and found the top 5 latent factors enriched across
the group (Methods, Eq. (4)). We then applied our pipeline on each SNP independently and
identified the relevant latent factors for each single SNP (Methods, Eq. (2)). We recorded the
number of SNPs that successfully mapped to each of the top 5 latent factors within the top
n ranks and reported the results as a cumulative distribution (Fig. 5).

3. Discussion

In this study, we propose a new method, SNPs2ChIP, to infer the function of genomic loci in the
non-coding genome by leveraging latent patterns in publicly available ChIP-seq data tracks.
Using latent factors characterized by SVD and annotating them with biomedical ontologies,
we developed a pipeline that allows us to take genomic regions as input and return relevant
latent factors with their enriched biological functions. We applied our method to GWAS SNPs
and found that SNPs2ChIP can identify relevant biological functions associated with disease,
demonstrating the utility of the genome-wide epigenomic latent factors in interpretation of
non-coding SNPs. In addition, we demonstrated the applicability of our method for vitamin
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D receptor ChIP-seq peaks, illustrating the utility of our approach for a diverse set of queries.
Further, as shown in our robustness analysis, SNPs2ChIP has an ability to identify relevant

latent factors and functions even from a single SNP. This is a major advantage of SNPs2ChIP:
it requires a minimal amount of input, one genomic coordinate, to infer biological function as
it leverages latent patterns in the epigenome from across the whole genome.

As we rely on existing ChIP-seq data and we focused on lymphoblastoid cell lines, our
reference dataset has limited coverage of the genome, which is 12.1 % and 21.1 % for our
high-specificity and high-coverage datasets, respectively. While they still provide a GWAS set
coverage of 17.8 % and 28.2 %, a further expansion of the reference dataset may expand the
applicability of the methods.

The resources made available with this study, including the SNPs2ChIP pipeline as well
the processed datasets, can provide a starting point to infer the biological functions of non-
coding genomes. Combined with the expansion of large-scale epigenomic datasets,13,14 our
results highlight the utility of latent factor analysis in interpreting the non-coding genome.

4. Methods

4.1. Featurization of the heterogeneous epigenetic assays

From the ChIP-Atlas database, we downloaded all available ChIP-seq peak files with FDR
corrected q-value threshold of 1.0× 10−5 for lymphoblastoid cell lines.13 Out of the 682 BED
files we obtained from the database, we found that 652 were non-empty and used these for
our analysis. To featurize the data, we defined genomic bins of size 1kbp across all autosomes
and saved them as a custom, genomic bin BED file. For the high-specificity dataset, we kept
the top 25,000 statistically significant peaks for each of the 652 BED files, to minimize the
confounders due to experimental design, and intersected each of them with the genomic bin
BED file using BEDTools.25 For the high-coverage dataset, we used all of the peaks in the
BED files and intersected these with the genomic bin BED file. For each pair of genomic bin
and ChIP-seq assay from the BED intersection, we aggregated the negative log q-values into
a matrix and removed the genomic bins with no peaks. We generated two ChIP-maps, our
feature matrices, for both the high-specificity and high-coverage datasets.

4.2. Batch normalization by surrogate variable analysis

We applied the SVA algorithm to the centered, scaled, and log-transformed input ChIP-
map to eliminate technical effects which may obscure biological variation.18 SVA identifies,
in an unsupervised manner, batches of variation across rows and columns of the input data
matrix that appear at a frequency greater than expected by chance; each of these batches is
represented as a single surrogate variable. We observed that the metadata for the samples had
a high rate of missingness; therefore, we devised a novel two-step approach for the removal of
technical effects and the protection of biological effects of interest. In the first step, we found
statistically significant associations between SVs and known covariates for the set of samples
with non-missing metadata using linear regression, where highly significant p-values indicate
strong correlations between SV and covariates. As a result, we assigned labels to SVs based on
the likely biological or technical variation captured by each SV. In the second step, we removed
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the SVs associated with biological effects of interest, and regressed out the remainder from
the input data matrix. We investigated the quality of SVs and the preservation of biological
signal through manual inspection of principal component analysis plots.

4.3. Latent factor discovery with singular value decomposition (SVD)

We applied SVD for our SVA normalized matrix. The normalized matrix, which we denote as
W , is of size N ×M , where N and M denote the number of ChIP-seq tracks and genomic bins,
respectively. We obtained the matrix decomposition, W = UDV T , where U = (ui,k)i,k is an
orthonormal matrix of size N ×K whose columns are left (ChIP-seq track) singular vectors,
D is a diagonal matrix of size K ×K whose elements are singular values, and V = (vj,k)j,k is
an orthonormal matrix of size M ×K whose columns are right (genomic bin) singular vectors.
While singular values in D represent the magnitude of the latent factors, singular vectors in
U and V summarize the strength of association between latent factors and ChIP-seq tracks,
and latent factors and genomic bins, respectively.

4.3.1. Quantification of strength of associations between latent factor and genomic bins

To quantify the strength of associations between latent factor and genomic bins, we define
several quantitative scores built on the linear structures of latent factors.26,27 We first define
the factor score matrix for genomic bins as G = V D. Mathematically, the factor score
matrix is equivalent to the matrix consisting of principal component vectors.26 Each element of
this matrix, which we call the genomic bin factor score and denote as gj,k, is the projection
of the j-th column vector in the input matrix W of length N , which represents the epigenetic
landscape of j-th genomic bin across samples, to the k-th latent factor (principal component).26

To quantify the relative importance of a genomic bin for a given latent factor, we define
the genomic bin contribution score for k-th latent factor by squaring the genomic bin
factor scores for k-th factor and normalizing it across latent factors, i.e.

cntrbink (j) = (vj,k)2 (1)

The sum of genomic bin contribution scores across genomic bins is guaranteed to be one, i.e.∑
j cntrbink (j) = 1, because V is an orthonormal matrix. One can interpret the score as the

percent-importance of a genomic bin for the factor.26,27

Similarly, to quantify the relative importance of a latent factor for a given genomic bin,
we define the genomic bin squared cosine score for j-th genomic bin as follows:

cos2
bin
j (k) =

(gj,k)2∑
k′(gj,k′)2

(2)

The sum of genomic bin squared cosine scores across latent factors is guaranteed to be one,
i.e.

∑
k cos2j

bin
(k) = 1, because of the demoninator in Eq. (2). One can interpret the score as

the relative importance of latent factors for a particular genomic bin.

4.3.2. Quantification of strength of associations between latent factor and samples

We also define the same set of scores to quantify the strength of associations between latent
factors and samples. We first define the factor score matrix for samples as S = UD =
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(si,k)i,k. To quantify the relative importance of samples to latent factors and latent factors to
samples, we define the sample contribution score and the sample squared cosine scores
as follows:

cntrsample
k (i) = (ui,k)2 ; cos2

sample
i (k) =

(si,k)2∑
k′(si,k′)2

(3)

With these scoring systems we can effectively quantify the associations among latent factors,
genomic bins, and samples.

4.4. GREAT analysis for biological characterization of latent factor

To characterize the functions of latent factors, we applied GREAT version 3.0.0 to each latent
factor.9 Using ontology-based gene annotations as a reference, GREAT takes a set of genomic
regions as an input and reports enriched ontology terms. In our analysis, we focused on
gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Informatics
(MGI) phenotype ontology.5–8 For each latent factor, we created the query files for GREAT
by selecting the top 5,000 genomic bins ranked by genomic bin contribution score (Eq. (1))
and applied GREAT for these queries using default parameters.9,27 Given our interest to
characterize the putative functions of non-coding genomes, we focused on the GREAT binomial
test and collected summary statistics, such as binomial p-value, binomial FDR, and binomial
fold change. We sorted the functional terms outputted by GREAT using binomial FDR and
identified the ontology terms that most characterize the function of each latent factor.

4.5. Application of the SNPs2ChIP pipeline for GWAS hits and ChIP-seq
peaks

The SNPs2ChIP pipeline consists of three steps: (1) identification of the genomic bins given
a user query, (2) identification of the relevant latent factors for the genomic bins, and (3)
reporting the results of GREAT enrichment for the relevant latent factors.

4.5.1. Identification of the genomic bin for a given user’s query

SNPs2ChIP takes genomic coordinates as an input. For GWAS SNPs and ChIP-seq peaks,
one first needs to obtain their genomic coordinates. These coordinates are then mapped to
the corresponding genomic bins, if they contain a ChIP-seq peak.

4.5.2. Identification of the relevant latent factor for the genomic bins

We identify the relevant latent factors for a given genomic bin by genomic bin squared co-
sine score (Eq. (2)). We can identify the relevant latent factors for multiple genomic bins,
which typically corresponds to multiple inputs, by taking a weighted average of genomic bin
squared cosine scores. Let’s denote J = {j1, . . . , jm} be the set of genomic bins of interest and
{w1, . . . , wm} be the corresponding weights. We defined the weighted average of genomic bin
squared cosine score as follows:

cos2
bin
J (k) =

∑
j∈J wj · cos2binj (k)∑

j∈J wj
(4)
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We set the default value of weights to be uniform, i.e. {w1, . . . , wm} = {1/m, . . . , 1/m} but the
user can specify a set of weights based on external knowledge, such as statistical significance
and effect size estimates from GWAS. Once we identify the relevant latent factors, we report
the results of GREAT enrichment analysis to the users.

4.5.3. Systematic application of SNPs2ChIP for known GWAS hits

We downloaded the GWAS Catalog v1.0 from the European Bioinformatics Institute, contain-
ing 82,735 curated SNPs.1 The catalog was subsequently filtered to exclude SNPs that were
classified as intergenic to focus on SNPs associated with transcriptional cis-regulation, result-
ing 51,892 SNPs. Individual SNPs were processed by the SNPs2ChIP pipeline to determine
their enriched phenotype. To validate the robustness of the method, SNPs were grouped by
disease and run to determine their combined, enriched phenotype. As the pipeline is designed
for high-throughput data analysis, querying thousands of SNPs was done in mere seconds.
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