
DNA Steganalysis Using Deep Recurrent Neural Networks

Ho Bae 1, Byunghan Lee 2, 3, Sunyoung Kwon 2, 4 and Sungroh Yoon 1, 2, 5,∗

1Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
2Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea

3Electronic and IT Media Engineering, Seoul National University of Science and Technology, Seoul
01811, Korea

4Clova AI Research, NAVER Corp., Seongnam 13561, Korea
5ASRI and INMC, Seoul National University, Seoul 08826, Korea

E-mail: sryoon@snu.ac.kr

Recent advances in next-generation sequencing technologies have facilitated the use of
deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are vari-
ous methods that exist in other domains to detect hidden messages in conventional covert
channels. However, they have not been applied to DNA steganography. The current most
common detection approaches, namely frequency analysis-based methods, often overlook
important signals when directly applied to DNA steganography because those methods de-
pend on the distribution of the number of sequence characters. To address this limitation,
we propose a general sequence learning-based DNA steganalysis framework. The proposed
approach learns the intrinsic distribution of coding and non-coding sequences and detects
hidden messages by exploiting distribution variations after hiding these messages. Using
deep recurrent neural networks (RNNs), our framework identifies the distribution varia-
tions by using the classification score to predict whether a sequence is to be a coding or
non-coding sequence. We compare our proposed method to various existing methods and
biological sequence analysis methods implemented on top of our framework. According to
our experimental results, our approach delivers a robust detection performance compared
to other tools.

Keywords: Deep recurrent neural network, DNA steganography, DNA steganalysis, DNA
watermarking

1. Introduction

Steganography serves to conceal the existence and content of messages in media using vari-
ous techniques, including changing the pixels in an image1. Generally, steganography is used
to achieve two main goals. On the one hand, it is used as digital watermarking to protect
intellectual property. On the other hand, it is used as a covert approach to communicating
without the possibility of detection by unintended observers. In contrast, steganalysis is the
study of detecting hidden messages. Steganalysis also has two main goals, which are detection
and decryption of hidden messages1,2.

Among the various media employed to hide information, deoxyribonucleic acid (DNA) is
appealing owing to its chemical stability and, thus is a suitable candidates as a carrier of

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2019

88

concealed information. As a storage medium, DNA has the capacity to store large amounts
of data that exceed the capacity of current storage media3. For instance, a gram of DNA
contains approximately 1021 DNA bases (108 terabytes), which indicates that only a few grams
of DNA can store all information available4. In addition, with the advent of next-generation
sequencing, individual genotyping has become affordable5, and DNA in turn has become an
appealing covert channels.

To hide information in a DNA sequence, steganography methods require that a reference
target sequence and a message to be hidden6. A näıve example of a substitution-based method
for watermarking that exploits the preservation of amino acids is shown in Fig. 1 (see the
caption for details). The hiding space of this method is restricted to exon regions using a
complementary pair that does not interfere with protein translation. However, most DNA
steganography methods are designed without considering the hiding spaces, and they change
a sequence into a binary format utilizing well-known encryption techniques.

In this regard, Clelland et al.7, first proposed DNA steganography that utilized the mi-
crodot technique. Yachie et al.8, demonstrated that living organisms can be used as data
storage media by inserting artificial DNA into artificial genomes and using a substitution ci-
pher coding scheme. This technique is reproducible and successfully inserts four watermarks
into the cell of a living organism9. Several other encoding schemes have been proposed 10,11.
The DNA-Crypt coding scheme 12 translates a message into 5-bit sequences, and the ASCII
coding scheme13 translates words into their ASCII representation, converts them from deci-
mals to binary, and then replaces 00 with adenine (A), 01 with cytosine (C), 10 with guanine
(G), and 11 with thymine (T).

With the recent advancements with respect to steganography methods, various steganalysis
studies have been conducted using traditional storage media. Detection techniques that are
based on statistical analysis, neural networks, and genetic algorithms14 have been developed
for common covert objects such as digital images, video, and audio. For example, Bennett1

exploits letter frequency, word frequency, grammar style, semantic continuity, and logical
methodologies. However, these conventional steganalysis methods have not been applied to
DNA steganography.

In this paper, we show that conventional steganalysis methods are not directly applica-
ble to DNA steganography. Currently, the most commonly employed detection schemes, i.e.,
a statistical hypothesis testing methods, are limited with respect to the number of input
queries in order to estimate distribution to perform statistical test15. To overcome the limi-
tations of these existing methods, we propose a DNA steganalysis method based on learning
the internal structure of unmodified genome sequences (i.e., intron and exon modeling16,17)
using deep recurrent neural networks (RNNs). The RNN-based classifier is used to identify
modified genome sequences. In addition, we enhance our proposed model using unsupervised
pre-training of a sequence-to-sequence autoencoder in order to overcome the restriction of
the robustness of detection performance. Finally, we compare our proposed method to var-
ious machine learning-based classifiers and biological sequence analysis methods that were
implemented on top of our framework.

Pacific Symposium on Biocomputing 2019

89

Fig. 1. DNA hiding scheme using synony-
mous codons. A watermark is a scheme used
to deter unauthorized dissemination by mark-
ing hidden symbols or texts. For the conserva-
tion of amino acids, DNA watermarking can
be changed to one of the synonymous codons.

Fig. 2. Learned representation of DNA se-
quences. The learned representations for each
coding and non-coding region projected into
a two-dimensional (2-D) space using t-SNE.18

The representation is based on sequence-to-
sequence learning using an autoencoder and
stacked RNNs.

2. Background

We use the standard terminology of information hiding19 to provide a brief explanation of
the related background. For example, two hypothetical parties, (i.e., a sender and a receiver)
wish to exchange genetically modified organisms (GMOs) protected by patents. A third party
detects watermark sequence from the GMOs for unauthorized use. Both the sender and receiver
use the random oracle20 model, which posits existing steganography schemes, to embed their
watermark message, and the third party uses our proposed model to detect the watermarked
signal. A random oracle model posits the randomly chosen function H, which can be evaluated
only by querying the oracle that returns H(m) given input m.

2.1. Notations

The notations used in this paper are as follows: D = {D1, · · · , Dn} is a set of DNA sequences
of n species; D̂ = {D̂1, · · · , D̂n} is a set of DNA sequences of n species and the hidden messages
are embedded for some species D̂i; m ∈ {A,C,G,T}` is the input sequence where ` is the length
of the input sequence; m̂ ∈ {A,C,G,T}` is the encrypted value of m where ` is the length of
the encrypted sequence; E is an encryption function, which takes input m and returns the
encrypted sequence E(m)→ m̂; MDi

is a trained model that takes target species Di as training
input; y is an averaged output score y; ŷ is a probability output given by the trained model
MDi

(m̂) → ŷ given input m̂, where m̂ ∈ D̂i; A is a probabilistic polynomial-time adversary.
The adversary21 is an attacker that queries messages to the oracle model; ε is the standard
deviation value of score y.

2.2. Hiding Messages

The hiding positions of a DNA sequence segment are limited compared to those of the covert
channel because the sequences are carried over after the translation and transcription processes
in the exon region. For example, assume that ACGGTTCCAATGC is a reference sequence, and

Pacific Symposium on Biocomputing 2019

90

01001100 is the message to be hidden. The reference sequence is then translated according
to any coding schemes. In this example, we apply the DNA-crypt coding scheme12, which
converts the DNA sequence to binary replacing A with 00, C with 01, G with 10, and T with 11.
The reference sequence is then translated to 00011010111101010000111001 and divided into
key bits that are defined by the sender and receiver. Assume that the length of the key is 3,
the reference sequence can be expressed as 000, 110, 101, 111, 010, 100, 001, 110, 01, and the
message is concealed at the first position. The DNA sequence with the concealed messages
are then represented as 0000, 1110, 0101, 0111, 1010, 1100, 0001, 0110, 01. Finally, the sender
transmits the transformed DNA sequence of AATGCCCTGGTAACCG. The recipient can extract
the hidden message using the pre-defined key.

2.3. Determination of Message-Hiding Regions

Genomic sequence regions (i.e., exons and introns) are utilized depending on whether the task
is data storage or transport. Intron regions are suitable for transportation since they are not
transcribed and are removed by splicing22,23 during transcription. This property of introns
provides large sequence space for concealing data, creating potential covert channels. In con-
trast, data storage (watermarking) requires data to be resistant to degradation or truncation.
Exons are a suitable candidate for storage because underlying DNA sequence is conserved af-
ter the translation and transcription processes24. These two components of internal structure
components in eukaryote genes are involved in DNA steganography as the payload (water-
marking) or carrier (covert channels). Fig. 2 shows the learned representations of introns and
exons which are calculated by softmax function. The softmax function reduces the outputs of
intron and exons to range between 0 and 1. The 2D projection position of introns and exons
will change if hidden messages are embedded without considering shared patterns between the
genetic components (e.g., complementary pair rules). Thus, the construction of a classification
model to enable a clear separation axis of these shared patterns is an important factor in the
detection of hidden messages.

3. Methods

Our proposed method uses RNNs25 to detect hidden messages in DNA. Fig. 3 shows our
proposed steganalysis pipeline. The pipeline comprises of training and detection phases. In
the model training phase, the model learns the distribution of unmodified genome sequences
that distinguishes between introns and exons (see Section 3.2 for the model architecture). In
the detection phase, we obtain a prediction score exhibiting the distribution of introns and
exons. By exploiting the obtained prediction score, we formulate a detection principle. The
details of the detection principle are described in Section 3.1.

3.1. Proposed DNA Steganalysis Principle

The security of the random oracle is based on an experiment E involving an adversary A,
as well as A’s indistinguishability of the encryption. Assume that we have the random oracle
that acts like a current steganography scheme S with only a negligible success probability.

Pacific Symposium on Biocomputing 2019

91

Fig. 3. Flowchart of proposed DNA steganalysis pipeline.

The experiment E can be defined for any encryption scheme S over message space D and for
adversary A. We describe the proposed method to detect hidden messages using the random
oracle. For the E, the random oracle chooses a random steganography scheme S. Scheme S

modifies or extends the process of mapping a sequence with length n input to a sequence with
length ` with a random sequence as the output. The process of mapping sequences can be
considered as a table that indicates for each possible input m the corresponding output value
m̂. With chosen scheme S, A chooses a pair of sequences m0,m1 ∈ Di. The random oracle
which posits the scheme S selects a bit b ∈ {0, 1} and sends encrypted message S(mb)→m̂ to
the adversary. The adversary outputs a bit b′. Finally, the output of the E is defined as 1 if
b′ = b, and 0 otherwise. A succeeds in the E in the case of distinguishing mb. Our methodology
using E is described as follows:

(i) We construct MDi
(Fig. 3-A) that runs on a random oracle where selected species

Di ∈D. Note that a model M can be based on any classification model, but the key to
select a model is to reduce the standard deviation. Our proposed model M is described
in Section 3.2.

(ii) A computes y (Fig. 3-B4) using MDi
(m) given m ∈ Di.

(iii) A computes the standard deviation ε of y (Fig. 3-B).
(iv) A computes ŷ (Fig. 3-C3) using MDi

(m̂) given m̂ ∈ D̂i.
(v) m̂ is successfully detected (Fig. 3-C4) if

|y − ŷ| > ε. (1)

This gives two independent scores y and ŷ from MDi
. The score y will have the same range of

the unmodified genome sequences whereas the score ŷ will have a different range of modified
genome sequences. If the score difference between y and ŷ is larger than the standard deviation
of the unmodified genome sequence distribution, it may be that the sequence has been forcibly
changed. Fig. 4 shows the histogram of the final score of y and ŷ returned from softmax of
the neural network. If the message is hidden, we can see that the final score from softmax of
the neural network differs over the range y± ε. From Eq. (1) below, we show that detection is
possible using information theoretical proof based on entropy H (Ref.26).

Pacific Symposium on Biocomputing 2019

92

Fig. 4. Final score of intron/exon sequence obtained from the softmax of the neural network (best
viewed in color). (a) kernel density differences between two stego-free intron sequences (b) kernel
density differences between stego-free and 1% perturbed steged intron sequences. (c) kernel density
differences between stego-free and 5% perturbed steged intron sequences.

Lemma 1. A DNA steganography scheme is not secure if H(D) 6= H(D̂|D).

Proof. The mutual joint entropy H(D, D̂) = H(D) +H(D̂|D) is the union of both entropies
for distribution D and D̂. According to Gallager at el27, the mutual information of I(D; D̂) is
given as I(D; D̂) = H(D)−H(D|D̂). It is symmetric in D and D̂ such that I(D; D̂) = I(D̂;D),
and always non-negative. The conditional entropy between two distribution is 0 if and only if
the distributions are equal. Thus, the mutual information must be zero to define secure DNA
steganography schemes:

I(C; (D, D̂)) = H(C)−H(C|(D, D̂)) = 0. (2)

where C is message hiding space and it follows that:

H(C) = H(C|(D, D̂)). (3)

Eq. (2) indicates that the amount of entropy H(C) must not be decreased based on the
knowledge of D and D̂. It follows that the secure steganography scheme is obtained if and
only if:

∀i ∈ N,mi ∈D, m̂i ∈ D̂ : mi = m̂i. (4)

Note that for mi = m̂i it is not possible to distinguish between the original sequence and
the stego sequence. Considering that the representations of m̂ are limited to {A,C,G,T}, it is
nearly impossible to satisfy the condition because current steganography schemes are all based
on the assumption of addition or substitution. Because C is independent of D, the amount of
information will increase over distribution D if hidden messages are inserted over distribution
D̂. We can conclude that the schemes are not secure under condition H(C) > H(C|(D, D̂)).

3.2. Proposed Steganalysis RNN Model

The proposed model is based on sequence-to-sequence learning using an autoencoder and
stacked RNNs28, where the model training consists of two main steps: 1) unsupervised pre-
training of sequence-to-sequence autoencoder for modeling an overcomplete case, and 2) super-
vised fine-tuning of stacked RNNs for modeling patterns between canonical and non-canonical

Pacific Symposium on Biocomputing 2019

93

Fig. 5. Overview of proposed RNN methodology.

splice sites (see Fig. 5). In the proposed model, we use a set of DNA sequences labeled as in-
trons and exons. These sequences are converted into a binary vector by orthogonal encoding29.
It employs nc-bit one-hot encoding. For nc = 4, {A,C,T,G} is encoded by

〈[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]〉. (5)

For example, the sequence ATTT is encoded into a 4 × 4 dimensional binary vector
〈[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]〉. The encoded sequence is a tuple of a four-dimensional
(4D) dense vector, and is connected to the first layer of an autoencoder, which is used for
the unsupervised pre-training of sequence-to-sequence learning. An autoencoder is an artifi-
cial neural network (ANN) that is used to learn meaningful encoding for a set of data in a
case involving unsupervised learning. An autoencoder consists of two components, namely an
encoder and decoder.

The encoder RNN encodes x to the representation of sequence features h, and the decoder
RNN decodes h to the reconstructed x̂; thus minimizing the reconstruction errors of L(x, x̂) =

‖x − x̂‖2, where x is one-hot encoded input. Through unsupervised learning of the encoder-
decoder model30, we obtain representations of inherent features h, which are directly connected
to the second activation layer. The second layer is RNNs layer used to construct the model. The
model in turn is used to determine patterns between canonical and non-canonical splice signals.
We then obtain the tuple of fine-tunned h =< h1, · · · ,hd >, where h is the representation of
sequence features learned by features, which is a representation of introns and exons in hidden
layers, and d is the dimension of a vector.

The features h learned from the autoencoder are connected to the second stacked RNN
layer, which consists of our proposed architecture for outputting a classification score for the
given sequence Di ∈ D. For the fully connected output layer, we use the sigmoid function as
the activation. The activation score is given by Pr(y = i|h) = 1/(1+exp(−wT

i h))∑1
k=0 1/(1+exp(−wT

k h))
, where y is

the label that indicates whether the given region contains introns (y = 1) or exons (y = 0).
For our training model, we use a recently proposed optimizer of multi-class logarithmic loss
function Adam31. The objective function L(w) that must be minimized is defined as follows:

L(w) = − 1

N

N∑
n=1

(yilog(pi) + (1− yi)log(1− pi)) (6)

where N is the mini-batch size. A model MDi
has a possible score of pi for one species, where

pi is the score of given non perturbed sequences.

Pacific Symposium on Biocomputing 2019

94

(a)

(b)

(c)

(nts) (nts) (nts) (nts) (nts) (nts)

Fig. 6. Comparison of learning algorithms with random hiding algorithms (best viewed in color).
(a) differences in accuracy for intron region (b) differences in accuracy for exon region (c) difference
in accuracy for both region. [The performances of four supervised learning algorithms when detecting
hidden messages are shown for six variable lengths of nucleotides (nts).]

4. Results

4.1. Dataset

We simulated our approach using the Ensembl human genome dataset and human UCSC-
hg38 dataset32, which include sequences from 24 human chromosomes (22 autosomes and 2
sex chromosomes). The Ensembl human genome dataset has a two-class classification (coding,
and non-coding) and the UCSC-hg38 dataset has a three-class classification (donor, acceptor,
and non-site).

4.2. Input Representation

The machine learning approach typically employs a numerical representation of the input
for downstream processing. Orthogonal encoding, such as one-hot coding29, is widely used
to convert DNA sequences into a numerical format. It employs nc-bit one-hot encoding. For
nc = 4, {A,C,T,G} is encoded as described in Eq. (5). According to Lee et al.17, the vanilla
one-hot encoding scheme tends to limit generalization because of the sparsity of its encoding
(75% of the elements are zero). Thus, our approach encodes nucleotides into a 4D dense vector
that follows the direct architecture of a normal neural network layer33, which is trained by the
gradient decent method.

Pacific Symposium on Biocomputing 2019

95

1 2 3 4 5 6 7 8 9 10

modification rate (%)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

va
ri

a
ti

o
n

 o
f

te
st

 a
cc

u
ra

cy

INTRON

1 2 3 4 5 6 7 8 9 10

modification rate (%)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

va
ri

a
ti

o
n

 o
f

te
st

 a
cc

u
ra

cy

EXON

1 2 3 4 5 6 7 8 9 10

modification rate (%)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

va
ri

a
ti

o
n

 o
f

te
st

 a
cc

u
ra

cy

BOTH

RNN(proposed) SVM AdaBoost RandomForest

Fig. 7. Comparison of learning algorithms in terms of robustness (best viewed in color). Mean
and variance of accuracy are measured for the fixed DNA sequence length of 6000 for 500 cases by
changing one percent of the hidden message. The shaded line represents the standard deviation of
the inference accuracy.

4.3. Model Training

The proposed RNN-based approach uses unsupervised training for the autoencoder and su-
pervised training for the fine-tuning. The first layer of unsupervised training uses 4 input
units, 60 hidden RNNs units with 50 epochs and 4 output units that are connected to the
second layer. The second layer of supervised training uses 4 input units that are connected to
stacked LSTM layers with full version including forget gates and peephole connections. The 4
input layers are used for 60 hidden units with 100 epochs, and the 4 output units are a fully
connected output layer containing K units for K-class prediction.

In our experiment, we used K = 2 to classify sequences (coding or non-coding). For the
fully connected output layer, we used the softmax function to classify sequences and the
sigmoid function to classify sites for the activation. For our training model, we used a recently
proposed optimizer of multi-class logarithmic loss function Adam31. The objective function
L(w) that has to be minimized is as described in Eq (6). We used a batch size of 100 and
followed the batch normalization34. We initialized weights according to a uniform distribution
as directed by Glorot and Bengio35. The training time was approximately 46 hours and the
running time was less than 1 second (Ubuntu 14.04 on 3.5GHz i7-5930K and 12GB Titan X).

4.4. Evaluation Procedure

For evaluation of performance, we used the score obtained from the softmax of the neural
network. We exploited the state-of-the-art algorithm2 to embed hidden messages for the mes-
sage hiding. We randomly selected DNA sequences from the validation set using the Ensembl
human genome dataset. We obtained the score of the stego-free sequence from the validation
set. In the next step, we embedded hidden messages to a selected DNA sequence from the vali-
dation set, and we obtained the score. Using the score distribution of the stego-free and steged
sequences, we evaluated the different scores for the range y ± ε. The output from softmax of
the neural network is expected to have a similar score distribution as the unmodified genome
sequences. However, the score distribution changes if messages are embedded. As shown in
Fig. 4(b) and Fig. 4(c), modified sequences are distinguishable using our RNNs model.

Pacific Symposium on Biocomputing 2019

96

Table 1. Detection performance of sequence alignment and denoising tools.

Both Region (%) Intron Region (%) Exon Region (%)
RNN (proposed) 99.93 99.96 99.94
BLAST36 84.00 85.00 85.00
Coral37 0.00 0.00 0.00
Lighter38 0.00 0.00 0.00

4.5. Performance Comparison

We evaluated the performance of our proposed method based on four supervised learning
algorithms (RNNs, SVM, random forests, and adaptive boosting) to detect hidden messages.
For the performance metric, we used the differences in accuracy.a Using the prediction per-
formance data, we evaluated learning algorithms with respect to the following three regions;
introns dedicated, exons dedicated, and both regions together.

For each algorithm, we generated simulated data for different lengths of DNA sequences
(6000, 12000, 18000, 24000, 30000, and 60000) using the UCSC-hg38 dataset32. We also ran-
domly selected 1000 cases for the fixed DNA sequence length for the modification rate 1 to
10%. Using selected DNA sequences, we obtained the average prediction accuracy of different
numbers of samples against non-perturbed DNA sequences for 1000 randomly selected cases.
In the next step, we obtain the prediction accuracy for the modified data generated according
to the hiding algorithms. Using the averaged prediction accuracy for both the perturbed and
non-perturbed cases, we evaluated the differences between the prediction accuracy rates for
varying different numbers of samples. We carried out five-fold cross-validation to obtain the
mean/variance of the differences in accuracy.

Fig. 6 shows an experiment for each algorithm using six variable DNA sequence lengths.
Each algorithm was compared to three different regions based on the six variable DNA se-
quence lengths. The experiments were conducted by changing from one to then percent of
the hidden message. SVM showed good detection performance in the exon region, but showed
inferior performance in the intron as well as both regions category. In the case of adaptive
boosting, the detection performance was similar in both regions and in intron only categorie,
but performed poorly in exon regions. In the case of the random forest, the cases with the
exon and both regions showed good performance except for some modification rates. In the
intron regions, the detection performance was similar to that of other learning algorithms.
Notably, our proposed methodology based on RNNs outperformed all of the existing hidden
messages detection algorithms for all genomic regions evaluated.

In addition, we examined our proposed methodology based on denoising methods using
Coral37 and Lighter38. The UCSC-hg38 dataset was used to preserve local base structures
and perturbed data samples were used as random noise. As shown in Table 1, the results
showed that both Coral and Lighter missed detection for all modification rates in all regions.
In addition, the sequence alignment method performed poorly. The results suggest that there
is a 15 to 16% chance that hidden messages may not be detected in all three regions.

aAccuracy = (TP + TN)/(TP + TN + FP + FN), where TP , FP , FN , and TN represent the
numbers of true positives, false positives, false negatives, and true negatives, respectively.

Pacific Symposium on Biocomputing 2019

97

To validate the learning algorithms with respect to robustness, we tested them with a
fixed DNA sequence length of 6000 with 500 cases for each modification rate to measure the
mean and variance of the test accuracy. Fig. 7 shows how the performance measures (mean
and variance of accuracy differences) change for modification rates ranging from 1 to 10 in
the intron, exon, and both regions categories. The plotted entries represents the the averaged
mean over the 500 cases, and shade lines show the average of the variances over the 500 cases.
The results indicate that hidden messages may not be detected if the prediction difference is
less than the variance. The overall analysis with respect to the robustness showed that the
learning algorithms of SVM, random forests and adaptive boosting performed poorly.

5. Discussion

The development of next-generation sequencing has reduced the price of personal genomics39,
and the discovery of the CRIPSPR-Cas9 gene has provided unprecedented control over
genomes of many species40. While the technology is yet to be applied to simulations involving
artificial DNA, human DNA sequences may become an area in which we can apply DNA
watermarking. Our experiments using the real UCSC-hg38 human genome implicitly consider
that unknown relevant sequences are also detectable because of the characteristics of simi-
lar patterns in non-canonical splice sites. The number of donors with GT pairs and acceptors
with AG pairs were found to be 86.32% and 84.63%, respectively16. Existing steganography
techniques modify several nucleotides. Considering few single nucleotide modifications, we can
transform DNA steganography to the variant calling problem. In this regard, we believe that
our methodology can be extended to the field of variant calling.

Although there are many advantages to using machine learning techniques to detect hidden
messages41–43, the following improvements are required: parameter tuning is dependent on the
steganalyst, e.g., the training epochs, learning rate, and size of the training set; the failure
to detect hidden messages cannot be corrected by the steganalyst. However, we expect that
the future development of such techniques will resolve the limitations. According to Alvarez
and Salzmann44, the numbers of layers and neurons of deep networks can be determined using
an additional class of methods, sparsity regularization, to the objective function. The sizes of
vectors of grouped parameters of each neuron in each layer incur penalties if the loss converges.
The affected neurons are removed if the neurons are assigned a value of zero.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (Ministry of Science and ICT) [2014M3C9A3063541,
2018R1A2B3001628], and the Brain Korea 21 Plus Project in 2018.

References

1. K. Bennett (Citeseer, 2004).
2. B. A. Mitras and A. Abo, International Journal of Information Technology and Business Man-

agement 14, 96 (2013).
3. M. B. Beck, E. C. Rouchka and R. V. Yampolskiy, 204 (2012).

Pacific Symposium on Biocomputing 2019

98

4. A. Gehani, T. LaBean and J. Reif, 167 (2003).
5. H. J. Cordell and D. G. Clayton, The Lancet 366, 1121 (2005).
6. S. Katzenbeisser and F. Petitcolas (Artech house, 2000).
7. C. T. Clelland, V. Risca and C. Bancroft, Nature 399, 533 (1999).
8. N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi and M. Tomita, Biotechnology progress 23, 501

(2007).
9. D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R.-Y. Chuang, M. A. Algire, G. A. Benders,

M. G. Montague, L. Ma, M. M. Moodie et al., science 329, 52 (2010).
10. S. Brenner, S. R. Williams, E. H. Vermaas, T. Storck, K. Moon, C. McCollum, J.-I. Mao, S. Luo,

J. J. Kirchner, S. Eletr et al., Proceedings of the National Academy of Sciences 97, 1665 (2000).
11. K. Tanaka, A. Okamoto and I. Saito, Biosystems 81, 25 (2005).
12. D. Heider and A. Barnekow, BMC bioinformatics 8, p. 176 (2007).
13. S. Jiao and R. Goutte, (2008).
14. I. K. Maitra, Journal of Global Research in Computer Science 2 (2011).
15. K. Grosse, P. Manoharan, N. Papernot, M. Backes and P. McDaniel, arXiv preprint

arXiv:1702.06280 (2017).
16. T. Lee and S. Yoon International Conference on Machine Learning 2015.
17. B. Lee, T. Lee, B. Na and S. Yoon, arXiv preprint arXiv:1512.05135 (2015).
18. L. v. d. Maaten and G. Hinton, Journal of Machine Learning Research 9, 2579 (2008).
19. R. Anderson (Springer Science & Business Media, 1996).
20. R. Canetti, O. Goldreich and S. Halevi, Journal of the ACM (JACM) 51, 557 (2004).
21. M. Bellare and P. Rogaway, 62 (1993).
22. H. Keren, G. Lev-Maor and G. Ast, Nature Reviews Genetics 11, 345 (2010).
23. D. J. Lockhart and E. A. Winzeler, Nature 405, 827 (2000).
24. B. Shimanovsky, J. Feng and M. Potkonjak, 373 (2002).
25. J. Schmidhuber, Neural networks 61, 85 (2015).
26. R. E. Blahut (Addison-Wesley Longman Publishing Co., Inc., 1987).
27. R. G. Gallager, Information theory and reliable communication (Springer, 1968).
28. S. M. Peterson, J. A. Thompson, M. L. Ufkin, P. Sathyanarayana, L. Liaw and C. B. Congdon,

Frontiers in genetics 5, p. 23 (2014).
29. P. Baldi and S. Brunak, Bioinformatics: the machine learning approach (MIT press, 2001).
30. N. Srivastava, E. Mansimov and R. Salakhutdinov, 843 (2015).
31. D. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).
32. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler and D. Haussler,

Genome research 12, 996 (2002).
33. F. Chollet et al., URL: https://keras. io/k 7 (2015).
34. S. Ioffe and C. Szegedy, arXiv preprint arXiv:1502.03167 (2015).
35. X. Glorot and Y. Bengio, in Proceedings of the thirteenth international conference on artificial

intelligence and statistics, 2010.
36. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, Journal of molecular biology

215, 403 (1990).
37. L. Salmela, Bioinformatics 26, 1284 (2010).
38. L. Song, L. Florea and B. Langmead, Genome biology 15, p. 509 (2014).
39. S. C. Schuster, Nature methods 5, p. 16 (2008).
40. P. D. Hsu, E. S. Lander and F. Zhang, Cell 157, 1262 (2014).
41. S. Lyu and H. Farid, 5306, 35 (2004).
42. S. M. Erfani, S. Rajasegarar, S. Karunasekera and C. Leckie, Pattern Recognition 58, 121 (2016).
43. S. Min, B. Lee and S. Yoon, Briefings in bioinformatics 18, 851 (2017).
44. J. M. Alvarez and M. Salzmann, in Advances in Neural Information Processing Systems, 2016.

Pacific Symposium on Biocomputing 2019

99

