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As genetic sequencing becomes less expensive and data sets linking genetic data and medical records (e.g., 

Biobanks) become larger and more common, issues of data privacy and computational challenges become 

more necessary to address in order to realize the benefits of these datasets. One possibility for alleviating 

these issues is through the use of already-computed summary statistics (e.g., slopes and standard errors 

from a regression model of a phenotype on a genotype). If groups share summary statistics from their 

analyses of biobanks, many of the privacy issues and computational challenges concerning the access of 

these data could be bypassed. In this paper we explore the possibility of using summary statistics from 

simple linear models of phenotype on genotype in order to make inferences about more complex phenotypes 

(those that are derived from two or more simple phenotypes). We provide exact formulas for the slope, 

intercept, and standard error of the slope for linear regressions when combining phenotypes. Derived 

equations are validated via simulation and tested on a real data set exploring the genetics of fatty acids.  
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1. Introduction 

The continued move to digitize medical records raises a plethora of opportunities and challenges 

in the search to elucidate the genetic and environmental contributions to human disease. The 

amount of genetic, environmental, and disease-related data continues to grow rapidly, offering 

new opportunities to discover relationships between genetic variants and expressed physical 

characteristics. Of particular interest are the genetic contributions to diseases that can have 

dramatic impacts on societal well-being (e.g., cardiovascular diseases, mental health, and cancer). 

The advent of large, publicly available biobanks (e.g., UK Biobank1) offers exciting possibilities 

for leveraging these datasets to have a dramatic impact on human health and disease.  

However, this unprecedented opportunity also comes with roadblocks and challenges.2 The 

size of datasets in biobanks makes it challenging to transfer, store, and analyze them locally. And 

even though cloud computing minimizes some of these issues, they bring their own challenges 

with regard to cost (storage and computation), transfer, and access to cloud computing systems. 

Furthermore, data security and privacy issues are of paramount importance throughout all aspects 

of the data access, storage, and analysis pipeline.3-4 Thus, there is a great demand for simplified 

data transfer, exploration, visualization, and analysis strategies which simultaneously address 

privacy, security, storage, and computational challenges, while still allowing researchers to make 

the best possible use of biobank repositories. 

An interesting recent development related to these issues are efforts to provide summary 

statistics in publicly available formats. For example, GeneAtlas provides basic summary statistics 

for simple linear regression models of each available single nucleotide variants with each available 

phenotypic variable for 452 thousand individuals in the UK Biobank.5 Likewise, Pheweb provides 

access to the UK Biobank data via a series of easy-to-navigate visualization and summary tools 

based on publicly available data produced by the Neale lab.5-6 GeneAtlas and Pheweb mitigate 

many of the privacy and security concerns mentioned above since no individual information is 

shared. There is no way to use summary statistics alone to gather information about any one 

individual. In addition, the size of these repositories are only fractions of the size of the individual 

level datasets, making transfer and storage of the data much more efficient. Finally, these services 

have already computed some of the most common summary statistics, which alleviates much of 

the computational burden on researchers. 

However, while these approaches are promising and provide valuable insight, major questions 

abound about how to best leverage this summary-level information in more complex downstream 

analyses. While basic exploratory data analysis and data visualization are straightforward and 

commonplace, using pre-computed genotype-phenotype associations (summary statistics) to 

explore ‘complex’ phenotypes, which are functions of existing phenotypes present in a biobank, 

hasn’t been previously investigated. For example, if a researcher is interested in phenotype 𝑌, 

where 𝑌 = 𝑓(𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒎) and 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒎 are existing phenotypes present in the 

biobank (with 𝑚 being the number of phenotypes), is there a way to utilize the precomputed 

summary statistics from each linear model fit for each 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒎 in order to make 

conclusions about the relationship between 𝑌 and genetic variation? This is the primary question 

of interest for this manuscript.  
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In particular, we begin by providing a framework for how to think about using summary 

statistics from individual phenotypes to investigate general classes of ‘complex’ phenotypes. We 

then illustrate how to utilize summary statistics for inferences about a complex phenotype which 

is a linear combination of an arbitrarily large set of individual phenotypes. Despite extensive 

literature review we have found little in the way of similar approaches thus most of our work has 

been built from the ground up. We validate our approach using both simulated data and real data 

from the Framingham Heart Study. 

2. Methods 

2.1 Notation 

Throughout this paper we use 𝑦𝑖𝑗 to represent the phenotypes, where 𝑖 ∈  {1, 2, . . . , 𝑚} with 𝑚 

being the number of phenotypes and j ∈ {1, 2, . . . , 𝑛} with 𝑛 being the number of subjects. 

Similarly, 𝑥𝑗 is used to represent the genotype. We use bolded letters (such as 𝒚𝑖 and 𝒙) to refer to 

a vector of values across all subjects. The term 𝒚𝑐 is used to represent the linear combination of 

the 𝒚𝑖’s (𝒚𝑐 = 𝑐1𝒚1 + 𝑐2𝒚2+. . . +𝑐𝑚𝒚𝑚) with the 𝑐𝑖
′𝑠 being constants. For each linear regression 

model fit for 𝒚𝑖  ~ 𝒙, we use the notation 𝒚𝑖 = 𝛽𝑖𝒙 + 𝛼𝑖, where 𝛽𝑖 is the slope and 𝛼𝑖 is the 

intercept. The standard error for 𝛽𝑖 is represented by SE(𝛽𝑖).  We use 𝜷𝒊 to represent all betas for 

phenotype i across all genotypes. 

In addition, the following formulas are used frequently in this paper and should be kept in 

mind. 

 

 
𝛽𝑖 =  

cov(𝒙, 𝒚𝑖)

var(𝒙)
=

∑ (𝑥𝑗 − �̅�)(𝑦𝑖𝑗 − �̅�)𝑛
𝑗=1

∑ (𝑥𝑗 − �̅�)2𝑛
𝑗=1

 

 

(1) 

 

 
SE(𝛽𝑖) =  

√∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)
2𝑛

𝑗=1

𝑛 − 2

√∑ (𝑥𝑗 − �̅�)
2𝑛

𝑗=1

 
(2) 

2.2. Linear combination of two phenotypes using only summary statistics 

We will first show the formulas for the slope, intercept, and standard error of the slope in the case 

of a linear combination of two phenotypes (𝒚𝑐 =  𝑐1𝒚𝟏 +  𝑐2𝒚𝟐), where 𝑐1 and 𝑐2 are any 

constants. We will then show how these formulas generalize to an arbitrary number of phenotypes. 

In this portion of the paper we will only state the formulas – detailed derivations for each of the 

formulas can be found in the supplemental materials. 

2.2.1. Slope 

To determine the slope, �̂�𝑐, for the combined linear model of a linear combination of two 

phenotypes (𝒚𝑐 =  𝑐1𝒚𝟏 +  𝑐2𝒚𝟐), formula 1 was manipulated. We begin by inserting 𝒚𝑐 =
 𝑐1𝒚𝟏 +  𝑐2𝒚𝟐, into the least squares estimate of the slope: 
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�̂�𝑐 =  

∑ (𝑥𝑗 − �̅�𝑛
𝑗=1 )((𝑐1𝑦1𝑗 + 𝑐2𝑦2𝑗) − (𝑐1𝒚𝟏 +  𝑐2𝒚𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

∑ (𝑥𝑖 − �̅�𝑛
𝑖=1 )2

 

 

(3) 

After algebraic simplifications, �̂�𝑐 equals the same linear combination of the two phenotypes 

except with the slope instead of the phenotype: 

 

 �̂�𝑐 = 𝑐1�̂�1 + 𝑐2�̂�2 (4) 

 

2.2.2. Intercept 

To determine the y-intercept, �̂�, for the combined linear model of a linear combination of two 

phenotypes, the mathematical formula for the least-squares estimate of the intercept was 

manipulated. As before, we begin by inserting 𝒚𝑐 =  𝑐1𝒚𝟏 + 𝑐2𝒚𝟐, into the formula for the 

intercept in a standard least squares linear regression: 

 

 �̂�𝑐 = 𝑐1𝒚𝟏 + 𝑐2𝒚𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −  �̂�𝑐�̅�. (5) 

 

Simplifying this equation shows that �̂�𝑐 equals the same linear combination of the two 

phenotypes except with the intercepts instead of the phenotypes: 

 

 �̂�𝑐 =  𝑐1�̂�1 +  𝑐2�̂�2 (6) 

 

2.2.3. Standard error of slope 

To determine the standard error of  �̂�𝑐, SE(�̂�𝑐), formula 2 was manipulated. 𝑐1𝑦1𝑗 + 𝑐2𝑦2𝑗 was 

substituted for 𝑦𝑖 and (𝑐1�̂�1 + 𝑐2�̂�2)𝑥𝑗 + (𝑐1�̂�1 +  𝑐2�̂�2) for �̂�𝑖𝑗. After some algebraic 

manipulation of the formula for SE(�̂�𝑐), the formula was determined to be (see supplement 3 for 

details):  

 

 SE(�̂�𝑐) =  √c1
2SE(�̂�1)2 + c2

2SE(�̂�2)2 +
2c1c2

𝑛 − 2
(

cov(𝒚𝟏, 𝒚𝟐)

var(𝒙)
 − �̂�1�̂�2 ) (7) 

 

2.3. Linear combination of an arbitrary number of phenotypes using summary statistics 

Having provided the formulas for the linear combination of two phenotypes, we now explore the 

more general case of a linear combination of m phenotypes. 

2.3.1. Slope 

Following from the demonstration of the resulting �̂�𝑐 formula for the linear model for a linear 

combination of two phenotypes, it can be shown that the �̂�𝑐 from the linear regression of the linear 

combination of an arbitrary number of phenotypes is simply the same linear combination of the 

phenotypes except with �̂�𝑖’s from the simple linear regressions instead of the phenotype (complete 
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demonstration in supplement 1). Thus if there is a linear combination of 𝑚 phenotypes the slope 

of the combined linear model is 

 

 �̂�𝑐 = 𝑐1�̂�1 + 𝑐2�̂�2 + ⋯ + 𝑐𝑚�̂�𝑚. (8) 

 

2.3.2. Intercept  

Following from the demonstration of the resulting �̂�𝑐 formula for the linear model in which there 

is a linear combination of two phenotypes, it can easily be seen that the �̂�𝑐 from the linear 

regression of the linear combination of an arbitrary number of phenotypes is simply the same linear 

combination of the phenotypes except with the �̂�𝑖’s from the simple linear regressions instead of 

the phenotypes (complete demonstration in the supplement 2). Thus if there is a linear combination 

of m phenotypes the intercept of the combined linear model is 

 

 �̂� =  𝑐2�̂�1 +  𝑐2�̂�2 + ⋯ +  𝑐𝑚�̂�𝑚. (9) 

 

2.3.3. Standard error of beta 

Following from the demonstration of the resulting SE(�̂�𝑐) formula for the linear model for a linear 

combination of two phenotypes, it can be demonstrated through induction that the SE(�̂�𝑐) from 

the linear regression of the linear combination of an arbitrary number of phenotypes is the 

following (complete demonstration in the supplement 4): 
 

SE(�̂�𝑐) = 

√(∑ 𝑐𝑖
2SE(�̂�𝑖)2

𝑚

𝑖=1

) +
2

𝑛 − 2
(

∑ ∑  𝑐𝑞𝑐𝑟cov(𝒚𝑞 , 𝒚𝑟)𝑚
𝑟=𝑞+1

𝑚−1
𝑞=1

var(𝒙)
 − ( ∑ ∑ 𝑐𝑞𝑐𝑟�̂�𝑞�̂�𝑟

𝑚

𝑟=𝑞+1

𝑚−1

𝑞=1

)) 
(10) 

 

2.3.3.1. Estimating terms in the equation for the standard error of beta 

All of the terms in formula 10 for the standard error of the combined �̂� are summary level statistics. 

While this eliminates the need for individual level data and thus alleviates many of the previously-

discussed privacy issues, there are two summary statistics within that formula that aren’t often 

publicly available. In particular, the covariances between each unique pair of phenotypes and the 

variance of x are not frequently provided. As such, it would be helpful if there were methods for 

estimating these terms from the information that is readily available. 

We first explore a method for estimating the covariance between a given pair of phenotypes. 

Since linear models have already been run on the entire data set, slopes are given for each 

genotype-phenotype combination. Thus, we hypothesized that the correlation between two of the 

response variables could be estimated by finding the correlation between the betas for the first 

phenotype and the betas for the second phenotype. However, the quantity needed for the standard 
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error formula is covariance. Therefore, to find the covariance, we propose the following 

approximation: 

 

𝑐𝑜𝑣(𝑦1, 𝑦2) = 𝑐𝑜𝑟(𝑦1, 𝑦2) ∗ √𝑣𝑎𝑟(𝒚𝟏)𝑣𝑎𝑟(𝒚𝟐)  ≈ 𝑐𝑜𝑟(𝜷𝟏, 𝜷𝟐) ∗  √𝑣𝑎𝑟(𝒚𝟏)𝑣𝑎𝑟(𝒚𝟐) (11) 

 

Note that this, in turn, requires that we have the variance of 𝒚𝟏 and 𝒚𝟐. 

Next, we explore a method for estimating the variance of x. Because we can model x by the 

binomial distribution, the variance of x can be estimated using the minor allele frequency (MAF). 

Thus, by using the formula for the variance of a binomial distribution we can accurately estimate 

the variance of x using the known minor allele frequency. 

 

 2𝑀𝐴𝐹(1 − 𝑀𝐴𝐹).  (12) 

 

While this approximation is close to the true value, the accuracy of the estimate changes with 

the Hardy-Weinberg equilibrium (HWE) p-value. In the next section we explore this using 

simulations. 

2.4. Simulations 

2.4.1. Estimation of covariance of y’s simulations 

To test the hypothesis for our covariance estimate, simulations were conducted in R.7 We wrote a 

function for performing these simulations, which generated two phenotypes and a large number of 

genotypes. The parameters altered from trial to trial were the number of observations, the number 

of genotypes, the covariance between the two phenotypes, and the variance of each of the two 

phenotypes.  

2.4.2. Estimation of variance of x simulations 

To check the accuracy of the variance of x, simulations were run in R. Ten thousand genotypes 

from 1,000, 10,000, 100,000, and 500,000 subjects were generated using a binomial distribution. 

The genotypes were of varying minor allele frequencies and varying Hardy-Weinberg 

equilibrium p-values. For each genotype the following statistics were calculated: MAF, HWE p-

value, the observed variance, estimated variance, and the difference between the observed 

variance and the estimated variance. At HWE p-value thresholds of 0.05, 0.5, 0.75, 0.90, and 

0.99, the mean difference between the observed variance and the estimated variance of 

genotypes, and the standard deviations of those differences of the genotypes that met or 

exceeded the thresholds were also calculated.  

2.5. Real data analysis 

Previous genome wide association studies, investigated the association between 425,380 SNP’s 

and red blood cell fatty acid (RBC FA) levels indicative of cardiovascular health using data from 

the offspring cohort (n=2384) of The Framingham Heart Study as we’ve done in other recent 

publications. 8-11 Two of the RBC FA included were Docosahexaenoic acid (DHA) and 

Eicosapentaenoic acid (EPA). The sum of DHA and EPA is reported as the omega3 index (O3I). 
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In the studies, genome wide association analyses were conducted for DHA, EPA, and O3I using 

residual models adjusting for age, sex, and familial relationships. We will use this data to 

demonstrate our method. We will show the accuracy of the slope and standard error of the slope 

calculated using the summary statistics from the individual EPA and DHA models and the 

method presented in this paper as compared to the slope and standard error that is obtained from 

running the entire linear model specifically on the O3I. Please refer to the studies cited for more 

information about the significance of their findings, the collection of red blood cell fatty acids 

and the Framingham cohort.8-11 

3. Results 

3.1. Estimating the covariance of phenotypes 

We begin by investigating the performance of our proposed estimation (formula 11) for the 

covariance of phenotypes (yi’s). As seen in Table 1, our results suggest that the error in our 

approximation is highest when the correlation between 𝒚𝟏 and 𝒚𝟐 is close to 0. As the correlation 

between a pair or yi’s increases, the standard deviation of the error in the estimated correlation 

decreases. 

 The other two parameters (number of genotypes and number of observations) had little to no 

impact on the standard deviation of the errors (detailed results not shown). 
 
Table 1. This table shows the results from the simulations. The “Correlation” column lists the correlation at which the 

data was generated. The other two columns display the mean and standard deviation of the error of the estimate. 

Correlation 

Mean error of estimated  

correlation  

Standard deviation of error of 

estimated correlation  

0 -0.000486 0.050 

0.3 0.000400 0.045 

0.75 6.23E-05 0.022 

0.9 0.000282 0.0096 

 

3.2. Estimating variance of genotype 

The detailed results of the variance of x simulations can be found in Table 2. Overall, the difference 

between the observed variance of x and the estimated variance of x across all simulated genotypes 

was small with a mean of 0.000043 and standard deviation of 0.0064. Thus as the length of the 

genotype gets larger, the difference between the observed and estimated variances seems to go to 

zero. While the mean differences are quite small, they are nearly all positive indicating that we are 

underestimating the variance. Because the standard error formula (formula 7) divides by the 

variance our standard error will be inflated and thus this method will be slightly conservative.  

Additionally, as can be seen in Table 2 and Figure 1, genotypes with larger HWE p-values have 

differences between the observed and estimated variances that are closer to zero.  
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Fig. 1. This plot shows the results of the simulation of 10,000 genotypes from 500,000 subjects. The Hardy-

Weinberg equilibrium p-value is on the y-axis and the difference in the variance is on the x-axis.  

 
Table 2. Results for variance of x simulations, with 10,000 genotypes simulated for 500,000, 100,000, 10,000 and 

1,000 individuals. 

Number of 

individuals 

P-value Number of 

genotypes that 

fall at or above p-

value threshold 

Mean of the 

difference 

between 

observed and 

estimated 

variance 

Lower bound of 

Wald 

confidence 

interval for 

mean 

Upper bound of 

Wald 

confidence 

interval for 

mean 

500,000 ≥ 0.99 104 1.4E-06 -7.1E-06 1.0E-05 

 ≥ 0.90 1042 2.6E-06 -7.8E-05 8.3E-05 

 ≥ 0.75 2510 7.5E-07 -2.0E-04 2.0E-04 

 ≥ 0.50 5002 4.5E-06 -4.1E-04 4.2E-04 

 ≥ 0.05 9494 9.6E-06 -9.3E-04 9.5E-04 

 All  10000 4.1E-06 -1.1E-03 1.1E-03 

100,000 ≥ 0.99 98 4.3E-06 -1.3E-05 2.2E-05 

 ≥ 0.90 1025 1.1E-06 -1.7E-04 1.8E-04 

 ≥ 0.75 2551 6.8E-06 -4.4E-04 4.5E-04 

 ≥ 0.50 5015 2.3E-06 -9.2E-04 9.3E-04 

 ≥ 0.05 9497 6.9E-06 -2.1E-03 2.1E-03 

 All 10000 1.2E-05 -2.4E-03 2.4E-03 

10,000 ≥ 0.99 94 3.7E-05 -2.6E-05 1.0E-04 

 ≥ 0.90 999 4.5E-05 -5.2E-04 6.2E-04 

 ≥ 0.75 2481 5.1E-05 -1.4E-03 1.5E-03 

 ≥ 0.50 4938 5.0E-05 -2.8E-03 2.9E-03 

 ≥ 0.05 9501 5.5E-05 -6.8E-03 6.7E-03 

 All 10000 -8.4E-05 -7.7E-03 7.5E-03 

1,000 ≥ 0.99 114 3.8E-04  1.2E-04 6.4E-04 

 ≥ 0.90 962 3.9E-04 -1.4E-03 2.2E-03 

 ≥ 0.75 2439 3.4E-04 -4.2E-03 4.8E-03 

 ≥ 0.50 4963 4.1E-04 -8.8E-03 9.6E-03 

 ≥ 0.05 9452 1.8E-04 -2.1E-02 2.1E-02 

 All 10000 2.4E-04 -2.4E-02 2.4E-02 

3.3. Real data results 

3.3.1. Using exact formulas 
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We first consider the accuracy of adding the two residual models after adjusting for covariates. It 

appears that the predictions for the slope of the combined linear model made using prediction 

β̂𝐸𝑃𝐴 + β̂𝐷𝐻𝐴 = β̂𝑅𝑂3𝐼  were accurate. The predictions of the model adjusting for covariates after 

addition (�̂�𝑂3𝐼) had a mean difference of 0.0000469 and a standard deviation of 0.00204. Figure 2 

shows the observed values of �̂�𝑂3𝐼 plotted against the estimate values, and appears to show that 

the estimate is relatively accurate on the entire range of true slopes. 
 

 

Fig. 2. The observed beta values are on the y-axis 

and the predicted beta values are on the x-axis. This 

shows the accuracy of the combined beta formula. 

Fig. 3. The observed standard errors for the beta is 

on the y-axis and the predicted standard errors of 

the beta is on the x-axis. This shows the accuracy 

of our standard error estimate. 
 

Using formula 7 for predicting the standard error for the 𝛽𝑅𝑂3𝐼, there was a mean error of -

0.00000177 with a standard deviation of 0.00004717. When comparing the estimate for standard 

error to the actual O3I standard error, the mean error was 0.00058 with a standard deviation of 

0.000276. Figure 3 demonstrates that when applying the covariates separately to the models DHA 

and EPA we see a slight over prediction of the standard errors.  

3.3.2 Estimating covariance of the y’s 

Using the method described in 2.4 the estimated correlation between EPA and DHA was 0.707 

while the actual correlation between the two variables is 0.682. The error between the true value 

and the predicted value will in turn lead to a slightly inflated standard error estimate. 

3.3.3 Estimating the variance of x  

When using our estimate of the variances of the genotype in the standard error equation, we see 

some increased variation in the estimations, as seen in Figure 4. However, filtering by Hardy 

Weinberg equilibrium p-value (eliminate genotypes with HWE p-values less than 0.000001 as 
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per GWAS standard)12 removes all of the extreme variation between estimated and predicted 

estimates of the variation of the genotypes. 

 

Fig 4. The graph on the left demonstrates the accuracy of the standard error estimates for the beta values 

using all SNP’s in the data set. The graph on the right filters by Hardy-Weinberg equilibrium p-value of 

0.000001, which removes most of the less accurate predictions. 

3.3.4 Analysis of p-value 

We examine –log10 p-value plots to see the overarching effect the method presented in this paper 

has on the significance of the study. In this analysis we compare the p-values obtained from using 

our summary statistic model with the true p-values from the linear model before adjusting for 

covariates. When estimating the variance of the genotype we filtered by a Hardy-Weinberg 

equilibrium p-value of 0.000001. 
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Fig 5. The graph on the left demonstrates the accuracy of the negative log of the p-value when our formulas 

for the slopes and standard errors are used with the true variance of 𝒙 and covariances between phenotypes. 

The middle graph shows the accuracy when covariance of the y’s is estimated using our estimation. The 

graph on the right depicts the accuracy of the p-values when the covariance of the y’s and the variance of x 

are estimated using our given estimates. 

3.3.5 Careful analysis of top hits 

One of the important aspects of using summary level statistics is that it will not greatly affect the 

most significant genotype phenotype associations. As seen in supplemental tables 5, 6, and 7 the 

differences in β, SE(β) and overall p-values between the summary statistic model and the 

traditional model is minimal.  

4. Discussion 

We have demonstrated how to accurately estimate the strength of association for a linear 

combination of an arbitrary number of individual phenotypes with a single genotype of interest 

using only commonly available summary statistics from large biobanks. In addition, we have 

provided a mathematical overview of why these relationships hold, demonstrated how to estimate 

these values from summary statistics and distributions of summary statistics, and then evaluated 

their performance on both simulated and real data.  

Practically, we have now provided a tool for researchers to perform genome-wide and related 

analyses on linear combinations of phenotypes using only summary statistics, which has the 

potential to dramatically reduce computational time and storage, simplify data transfer, and grossly 

mitigate privacy and security concerns, especially for large biobank-style datasets.  For example, 

in our data analysis of The Framingham Heart Study the Rdata file size needed to run the analysis 

was reduced from 1.2 GB to 0.04 GBs.  Notably, the reduction in file size and processing time 

should increase significantly with an increased sample size. While linear combinations of 

phenotypes are a powerful tool (e.g., averaging multiple measurements of a trait of interest), future 

work is needed to explore more general ways of combining phenotypes which will have broader 

applicability. For example, multiplicative combinations of phenotypes (𝒚𝟏 ∗  𝒚𝟐 or 𝒚𝟏 𝒚𝟐⁄ ) and 

exponentiated phenotypes are also a powerful and common class of complex phenotypes (e.g., 

BMI = Weight/Height^2). ). If future work is able to establish a similar class of methods for 

multiplicative phenotypes as has been shown in this manuscript for linear combinations, we would 

then be in position to also derive general methods for ‘logical’ combinations of dichotomous 

phenotypes. Logical combinations can be expressed as arithmetic operations. The ‘and’ operation 

can be expressed as 𝒚𝟏∗ 𝒚𝟐 and the ‘or’ operation can be expressed as (𝒚𝟏+ 𝒚𝟐) − (𝒚𝟏∗ 𝒚𝟐). 

Future work also includes consideration of multi-allelic models, the impact of different 

assumptions in models/software creating summary statistics on downstream inference using our 

proposed method, and direct comparison and evaluation of changes in computation time.  

Some limitations of our method are worth noting. First, we have been able to accurately 

estimate the variance of x (𝒙 in other words, the genotype) using the variance formula for a 

binomial distribution and the minor allele frequency. This estimate has been verified through 

simulations and we have shown that as the genotypes reach perfect Hardy-Weinberg equilibrium 

the difference between the observed and estimated variances of x approaches 0. While in practice, 
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variants out of HWE are removed from the data, variants that are ‘nearly’ out of HWE using 

standard GWAS quality thresholds11 (e.g., HWE p-value < 1x10-6) may experience more noise in 

downstream estimates. Secondly, while our simulations and real data application are reasonably 

comprehensive, application to additional datasets and consideration of additional simulated 

datasets (e.g., with different sample sizes; different proportions of and distributions of missing 

data; different levels of correlation between phenotypes) is recommended.  

The use of summary statistics from large biobanks in downstream statistical analyses offers 

great promise to address numerous hurdles in the use of biobank data and dramatically increase 

the opportunity to leverage biobanks to understand the etiology of complex human diseases. We 

have provided precise equations to leverage summary statistics for linear combinations of 

phenotypes. The method presented in this paper sets the essential foundation and provides a 

necessary building block for being able to investigate the genetic associations of millions of 

complex phenotypes with summary statistics alone. Future work is needed to explore 

multiplicative and other more complex ways to combine phenotypes to provide a complete 

approach to phenotype combinations. 

 

Supplemental materials can be found here: 

http://www.nathantintle.com/supplemental/supplement_leveraging_summary_statistics.pdf  
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