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The accurate detection of premature ventricular contractions (PVCs) in patients is an im-
portant task in cardiac care for some patients. In some cases, the usefulness to physicians in
detecting PVCs stems from their long-term correlations with dangerous heart conditions. In
other cases their potential as a precursor to serious cardiac events may make their detection
a useful early warning mechanism. In many of these applications, the long-term nature of
the monitoring required and the infrequency of PVCs make manual observation for PVCs
impractical. Existing methods of automated PVC detection suffer from drawbacks such as
the need to use difficult to extract morphological features, domain-specific features, or large
numbers of estimated parameters. In particular, systems using large numbers of trained
parameters have the potential to require large amounts of training data and computation
and may have issues generalizing due to their potential to overfit. To address some of these
drawbacks, we developed a novel PVC detection algorithm based around a convolutional
autoencoder to address these weaknesses and validated our method using the MIT-BIH
arrhythmia database.

Keywords: Electrocardiogram; Premature Ventricular Contraction (PVC) Detection; Au-
toencoder.

1. Introduction

Electrocardiograms (ECGs) are a useful and noninvasive diagnostic and monitoring tool in
cardiac care.1 One significant application of ECGs in cardiology is their use in the monitoring
and treatment of arrhythmias. Premature Ventricular Contractions (PVCs) are a common
arrhythmic beat type that occurs commonly in many patients, including individuals with
good cardiac health.2 However, when they occur in large numbers or with high frequency in
patients with other risk factors, PVCs can be associated with serious cardiac problems and
may precede heart attacks or sudden cardiac death in rare cases.2 As a result, the automated
detection of PVCs in ECG records would allow information about their long-term frequency to
be tracked over time, providing a new means to track the trends in a patient’s cardiac health
as well as potentially providing an early warning of events requiring swift medical attention.

There are several main categories of approaches to feature extraction for the automated
detection of PVCs: 1) morphological and timing features extracted from the ECG signal3–5
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and 2) time-frequency features such as wavelet transforms of the ECG signal.6,7 In addition
to these two main approaches to PVC detection, there are methods utilizing other approaches
to the connected problems of feature extraction and beat classification,8 Markov models,
independent component analysis,9 and autoencoders.10

Geddes and Warner3 used R-R interarrival time, QRS complex duration, and signal slope
during several sections of the QRS complex as features in their detection system. They made
classification decisions based on a manually constructed decision tree. This allowed for compu-
tationally simple evaluation of a QRS complex but sacrificed adaptibility and required heuristic
tuning and domain specific knowledge of the PVC detection problem to adjust the classifier.
Trahanias et al.4 used a number of structural descriptors to create a syntactic description
of the QRS complex. After this syntactic description was created, they used a normalized
distance metric to form classes of QRS complexes, which were found to correspond to some
clinically significant classes of heartbeats. However, this method did not lead to a direct and
useful classification of the QRS complex. Zadeh et al.5 used a total of 10 morphological features
and 3 timing features extracted from the signal of a detected QRS complex. They compared
several kinds of classifiers including MLP neural networks, RBF neural networks, probabilistic
neural networks, and support vector machines. In addition to detecting PVCs, they used their
classification system to identify non-PVC arrhythmias.

In all of these approaches, significant domain knowledge was used to determine feature sets
and detection accuracy was dependent on the classification of different parts of the QRS com-
plex for segmentation and measurement. It is desirable to avoid these issues by using a more
general and robust method of feature extraction. Ham and Han6 used two estimated linear
prediction coefficients in combination with the mean squared value of the signal as features
for classification. They used a fuzzy ARTMAP neural network to perform the classification.
Lim7 used a discrete wavelet transform with the Haar wavelet to generate a feature vector
and used a fuzzy neural network for classification. While these approaches still require manual
feature selection, the specific features extracted are less domain specific and do not require
segmentation of the QRS complex to calculate.

One approach to avoid the challenges associated with engineering a problem-specific fea-
ture set is to use feature learning approaches such as independent component analysis or
autoencoders to extract a feature set that is able to describe much of the information content
of a signal in a low-dimensional latent space.11 Yu and Chou9 used independent component
analysis to identify and extract a set of features, which were combined with QRS complex
timing information to create the full feature set passed to their neural network classifier. Yang
et al.10 used a sparse autoencoder (SAE) to generate a feature vector for classification. This
resulted in a large number of estimated network weights, which increased the computation
and data required to train the network and increased the potential for overfitting.

The primary aims of this study are to develop a system for the detection of PVCs in ECG
data that does not rely on manually selected features and has fewer parameters to be estimated
than existing SAE methods. These improvements will reduce the possibility of overfitting and
improve the generalization of the detection system. For this purpose, we used an autoencoder
architecture based on convolutional layers to extract and select features for use in classifying
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beats. Our architecture is differentiated from existing convolutional autoencoders (CAEs)12

by its multi-stage encoding process, which allows it to encode information about the frequency
content of a signal at different points in time.

2. Methods

2.1. Data Set and Implementation

We used ECG records from the MIT-BIH arrhythmia database annotated with beat locations
and types.13 This database consists of 48 30-minute 2 channel ECG records sampled at 360 Hz.
Only channel 1 of the ECG was used for PVC detection because in the MIT-BIH arrhythmia
database this signal is a modified limb lead II, which has clearer signals for non-ectopic beats
than the modified lead V1 available on channel 2. As much of the information content of
a QRS complex is centered on the R peak, the ECG signals obtained from the database
were segmented based on the annotated R peaks, with 89 samples before and 160 samples
after each annotated R peak extracted for feature calculation. In application outside the
MIT-BIH database, this means we assume the QRS complexes are reliably detected before
being passed to our detection system. We then removed the mean from each segmented QRS
complex to reduce the impact of baseline drift, variations in instrumentation, and differences
across patients. The PVC detection system was implemented in Python using the Keras,14

TensorFlow,15 and scikit-learn16 libraries.

2.2. Proposed PVC Detection Method

A convolutional autoencoder (CAE)12 was used to extract and select features for classification
automatically and in an unsupervised manner from ECG data annotated with beat locations.
This reduced the need for domain-specific knowledge as compared to manual feature selection.
Compared to a SAE, a CAE reduces the number of weights that need to be trained, increases
the robustness of the features extracted when the window alignment of the beats being pro-
cessed is variable, and takes advantage of the structure of the ECG signal in its architecture.
We used a Random Forest Classifier to perform the final PVC detection due to its resistance
to overfitting and its performance with the indistinct groupings of PVC and non-PVC beats.
Our system architectures for training the CAE and Random Forest Classifier are shown in
Figure 1, while our classification architecture is shown in Figure 2. Examples of normal beats
and PVCs are given in Figure 3

2.2.1. Feature Extraction

An autoencoder is a neural network that encodes its input to a latent space representation
attempts to decode this representation to recover the inputs.17 In a CAE, the layers responsible
for encoding and decoding the latent space are convolutional, using shared weights to kernels
to extract features from their input. After the network has been trained, the encoding layers
alone can be used to reduce the dimensionality of the input data for further processing.

In the proposed PVC detection method, two convolutional layers with linear activations
were used to encode the input to the CAE. The first of these layers generated n kernels of
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Fig. 1. CAE and Random Forest Training Architecture

Fig. 2. Classification Architecture

Fig. 3. Comparison of Normal Beat and PVC

order m to extract different features from the input. A stride length of k was used in this
layer to downsample the input, reducing its dimensionality. The second convolutional layer
generated a single kernel to compute a linear combination of the outputs of the previous
layers kernels at each point. This second layer serves as a feature selection stage. As a result,
each feature in the latent space representation of the input corresponds to a combination of
all features extracted in the first layer from a continuous subset of the input. This provides
information on the frequency components of the ECG signal most important for creating an
accurate reconstruction of the original signal as well as some degree of temporal localization
within the signal. This allows the encoded representation to contain distinct information about
various stages in the progression of the QRS complex without the need to explicitly define
and detect these stage, simplifying the PVC detection process in comparison to methods using
morphological features of the QRS complex.
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We used transposed convolutional layers to decode the latent space representation gen-
erated by the encoder. These layers have the same connectivity and dimensionality as the
encoding layers but are reversed. This results in an output matching the dimensionality of
the input to the CAE and allows us to train the network to replicate its inputs. In operation,
only the encoding side of the network was used to generate the features used in classification.
The resulting network architecture is shown in Figure 4.

Fig. 4. Convolutional Autoencoder Architecture

For this application, the length of signal extracted around each beat even was 250 samples,
with 89 samples before the annotation and 160 samples after the annotation. These values were
selected because they were found to provide generally acceptable classification performance
and allowed for a more direct comparison with the PVC detection system described by Yang
et al.10 An n value of 25 provided a sufficient number of base features for the following layer to
perform feature selection on. An m value of 20 provided sufficiently complex filters to extract
a wide range of characteristics from the signal. A k value of 10 allowed the final feature vector
to be of dimension 25. This was found to provide sufficient segmentation of the input signal in
time while also being of low enough dimensionality to allow for adequate classifier performance.
The CAE was trained using an ADAM optimizer as described by Kingma and Ba18 with a
learning rate of 0.01 and a mean squared error loss function: MSE = 1

n

∑n
i=1(Yi − Ŷi)

2, where
Y is the input to the autoencoder and Ŷ is the output of the autoencoder.
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2.2.2. Classification

We used a Random Forest Classifier as described by Breiman.19 The random forest used
in this detection system consisted of 10 decision trees with Gini impurity as their splitting
criterion. Gini impurity is the probability that a randomly selected element in a set would
be mislabeled if labeled at random.19 For J classes with probability of selection p, the Gini
impurity of a set is given by IG = 1−

∑J
i=1 p

2
i . The features used to split each node of the tree

were randomly determined. The classifier also used bagging to avoid overfitting, using a set
of training examples of the same size as the full dataset sampled without replacement as the
training dataset for each random tree. The Random Forest Classifier was chosen due to its
low number of parameters, its resistance to overfitting, and its ability to handle fuzzy group
boundaries in comparison to support vector methods, neural networks, and other common
classifiers.

3. Results

We evaluated our method with 3 tests. First, we tested its performance when provided with
ample training data including samples from each record. Next, we added a randomized error
to the R peak location used in segmentation to simulate inaccurate QRS detection. Finally,
we provided our system with training data that included no beats from the records used
for testing to evaluate its ability to generalize to new patients. Each of these tests was also
performed using a SAE to provide context to the performance of the CAE. In addition to
the testing we performed, we examined the number of estimated weights and the number of
training epochs necessary for convergence in both the CAE and SAE architectures.

3.1. Full Database Evaluation

We evaluated the classification system using the MIT-BIH arrhythmia database. Half of the
beats from each record were selected as training data and the remainder were used as testing
data. This resulted in a training set consisting of 54,695 beats with 3,495 PVCs and a testing
set consisting of 54,675 beats with 3,633 PVCs. The results of this testing are shown in
Table 8 with information for each record. A SAE similar to one described by Yang et al.10

was constructed, with the sparsity imposed by L1 regularization instead of the Kullback-
Leibler divergence derived regularization described, to compare the feature extraction provided
by the CAE to that provided by an existing alternative architecture. A comparison of the
performance of these two architectures is provided in table Table 1 and Table 2. This evaluation
demonstrates that the CAE provides similar performance to the SAE when ample training
data is available, with a difference in overall accuracy of 0.2%. However, the PVC sensitivity
of the CAE is 4.88% higher than that of the SAE, meaning that fewer PVCs are missed by
the CAE. This is desirable given the relative rarity of PVCs, although the importance of
sensitivity and specificity will need to be evaluated for individual applications.

3.2. Timing Disturbance Evaluation

As QRS detection is necessary to the identification and segmentation of potential PVCs for
processing by a PVC detection system, this property makes resistance to small shifts in the
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Table 1. MIT-BIH Full Database Comparative Evaluation

Architecture Correct PVC Sensitivity PVC Specificity

CAE 98.43 85.64 98.90
SAE 98.23 80.76 99.07

Table 2. Full Database CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 50483 299 50565 489
Detected PVC 559 3334 477 3144

precise placement of the annotation within the beat desirable. We evaluated this robustness
by applying a random shift of up to 36 samples to each beat, corresponding to a detection
error of up to 100 milliseconds. The results of this testing on the CAE are shown in Table 9
with information for each record, while a comparison of the performance of the CAE and SAE
architectures under these conditions is presented in Table 3 and Table 4. This shows that the
CAE suffers a 0.83% reduction in PVC sensitivity as a result of this shifting, while the SAE
suffers a 4.26% reduction in PVC sensitivity. This results in a total sensitivity improvement
for the CAE of 8.43% relative to the SAE under these conditions.

Table 3. MIT-BIH Full Database Disturbed

Architecture Correct PVC Sensitivity PVC Specificity

CAE 97.60 84.93 98.42
SAE 97.17 76.50 97.66

Table 4. Full Database CAE and SAE Disturbed Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 50542 810 50708 1217
Detected PVC 501 2823 335 2416

3.3. Cross-Patient Training Evaluation

In an applied setting, it may not always be practical to obtain annotated training data from
a patient to train any monitoring system. As a result, system performance when trained only
using data obtained from other individuals is potentially important to the practical utility
of any PVC detection method. We evaluated this performance metric by training both PVC
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detection systems using all beats in two ECG records and testing on all beats in four ECG
records. All such combinations of records 116, 208, 210, 221, 228, and 233 in the MIT-BIH
database were used to evaluate model generalization. We chose this subset of the MIT-BIH
database because testing all combinations of records in the entire dataset is impractical and
because it was selected as representative of the database by Ham and Han.6 The averages of
these results are given in Table 5, while Table 6 provides confusion matrices of the aggregated
results. These show that the CAE provides 1.01% higher overall accuracy and 4.71% higher
PVC sensitivity than the SAE. This meets our expectation that a reduced number of trained
weights in the autoencoder would improve performance with reduced amounts of training data
as well as improve the ability of the detection system to generalize to new data.

Table 5. MIT-BIH Restricted Training Cross-Validation

Architecture Correct PVC Sensitivity PVC Specificity

CAE 87.80 86.56 88.09
SAE 86.79 81.85 87.91

Table 6. Cross-Validation CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 111721 3874 111499 5234
Detected PVC 15109 24956 15331 23596

3.4. Estimated Parameters and Convergence

Our convolutional autoencoder architecture used 83.43% fewer network weights due to the
weight sharing inherent in convolutional networks. For the 54695 example training set used
in 3.1 and 3.2, this resulted in a decrease in the number of training epochs necessary for
convergence from 5 to 1.

Table 7. Network Weights

Architecture Estimated Weights

CAE 1702
SAE 10270
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Table 8. MIT-BIH Full Database CAE Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 100.000 100.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 100.000 100.000 100.000
103 1040 1040 0 99.904 — 99.904
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 95.642 46.154 96.148
106 1012 673 339 96.542 89.676 100.000
107 1067 1020 47 99.438 87.234 100.000
108 880 873 7 99.432 28.571 100.000
109 1264 1242 22 81.487 77.273 81.562
111 1061 1061 0 99.811 — 99.811
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.385 25.000 99.912
119 992 747 245 100.000 100.000 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.886 52.632 100.000
200 1299 817 482 97.614 93.568 100.000
201 980 860 120 99.388 95.833 99.884
202 1066 1064 2 99.812 50.000 99.906
203 1489 1283 206 97.851 90.777 98.987
205 1326 1280 46 99.623 89.130 100.000
207 929 925 4 87.836 100.000 87.784
208 1476 1024 452 97.900 98.894 97.461
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 97.279 68.468 99.917
212 1372 1372 0 100.000 — 100.000
213 1624 1517 107 98.153 93.458 98.484
214 1129 1006 123 97.874 81.301 99.901
215 1680 1598 82 98.452 68.293 100.000
217 1103 1037 66 99.547 95.455 99.807
219 1076 1044 32 99.257 75.000 100.000
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.917 99.379 100.000
222 1240 1240 0 100.000 — 100.000
223 1301 985 316 96.772 88.291 99.492
228 1025 877 148 98.829 91.892 100.000
230 1127 1126 1 99.379 100.000 99.378
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 98.635 96.154 99.554
234 1375 1372 3 99.709 0.000 99.927
Total 54675 51042 3633 98.548 91.412 99.056

Pacific Symposium on Biocomputing 2019 

50



Table 9. MIT-BIH Full Database CAE Disturbed Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 99.912 0.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 99.817 50.000 99.908
103 1040 1040 0 100.000 — 100.000
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 93.541 23.077 94.261
106 1012 673 339 89.526 68.732 100.000
107 1067 1020 47 99.157 80.851 100.000
108 880 873 7 99.091 28.571 99.656
109 1264 1242 22 78.006 45.455 78.583
111 1061 1061 0 100.000 — 100.000
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.297 25.000 99.823
119 992 747 245 99.899 99.592 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.020 15.789 100.000
200 1299 817 482 95.766 88.589 100.000
201 980 860 120 97.449 79.167 100.000
202 1066 1064 2 99.906 50.000 100.000
203 1489 1283 206 95.433 76.214 98.519
205 1327 1281 46 99.171 76.087 100.000
207 929 925 4 95.048 100.000 95.027
208 1476 1024 452 96.206 95.354 96.582
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 93.878 28.829 99.835
212 1372 1372 0 99.927 — 99.927
213 1624 1517 107 97.845 85.047 98.748
214 1129 1006 123 93.711 47.154 99.404
215 1680 1598 82 96.845 35.366 100.000
217 1103 1037 66 98.368 84.848 99.229
219 1076 1044 32 98.792 84.375 99.234
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.752 98.137 100.000
222 1240 1240 0 99.919 — 99.919
223 1301 985 316 87.855 50.949 99.695
228 1025 877 148 97.268 81.081 100.000
230 1127 1126 1 99.734 100.000 99.734
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 95.904 85.817 99.643
234 1375 1372 3 99.782 33.333 99.927
Total 54676 51043 3633 97.608 77.814 99.017
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4. Discussion

We developed a system for the detection of PVCs in ECG data annotated with beat locations
using a CAE. This provided comparable performance to a SAE architecture for the task
with reduced training time due to its reduced number of parameters. The CAE provided
improvements in the resilience of the PVC detection system to beat detection timing variance
and improved detection performance when trained using ECG records from different patients.

Some limitations of this approach to PVC detection include the computational complexity
of representation learning methods as compared to manual feature engineering and the lack
of direct and unambiguous physical or medical significance for the features extracted by the
system. There is also no guarantee that homologous features will be generated by training on
different ECG data, which precludes the possibility of retraining the convolutional autoencoder
without also retraining the final classifier.

The relatively low number of parameters in our model make it well suited to implementa-
tion on the limited hardware available in an applied setting while not relying on potentially
unreliable QRS segmentation or features that are difficult to measure or compute in real
time. In addition to its advantage in computational expense, the improvement provided by
our autoencoder architecture in cross-patient generalization is of significant importance in
the application of a PVC detection system to real patients, where it may be impractical or
impossible to obtain a sufficient amount of expert-annotated training data.

Based on the performance of this system, we envision the extension of our CAE architecture
to facilitate the detection of other arrhythmias in ECG data. Another potential avenue for
future work with this autoencoder architecture is to take advantage of its small number of
trained parameters to allow the model to be retrained on the spot based on a subset of available
annotated ECG records most similar to a sample of the ECG data from the current patient.
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