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The link between cardiovascular diseases and neurological disorders has been widely observed in 
the aging population. Disease prevention and treatment rely on understanding the potential genetic 
nexus of multiple diseases in these categories. In this study, we were interested in detecting 
pleiotropy, or the phenomenon in which a genetic variant influences more than one phenotype. 
Marker-phenotype association approaches can be grouped into univariate, bivariate, and multivariate 
categories based on the number of phenotypes considered at one time. Here we applied one statistical 
method per category followed by an eQTL colocalization analysis to identify potential pleiotropic 
variants that contribute to the link between cardiovascular and neurological diseases. We performed 
our analyses on ~530,000 common SNPs coupled with 65 electronic health record (EHR)-based 
phenotypes in 43,870 unrelated European adults from the Electronic Medical Records and Genomics 
(eMERGE) network. There were 31 variants identified by all three methods that showed significant 
associations across late onset cardiac- and neurologic- diseases. We further investigated functional 
implications of gene expression on the detected “lead SNPs” via colocalization analysis, providing a 
deeper understanding of the discovered associations. In summary, we present the framework and 
landscape for detecting potential pleiotropy using univariate, bivariate, multivariate, and 
colocalization methods. Further exploration of these potentially pleiotropic genetic variants will 
work toward understanding disease causing mechanisms across cardiovascular and neurological 
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diseases and may assist in considering disease prevention as well as drug repositioning in future 
research.  

Keywords: Pleiotropy; Cardiovascular Diseases; Neurological Disorders; Univariate Analysis; 
Bivariate Analysis; Multivariate Analysis; Colocalization; eQTL. 

 
1.  Introduction 

Cognitive decline has been observed in nearly 42% of elderly individuals at five years after cardiac 
surgery1. Of late, there has been increasing clinical evidence suggesting a link between 
cardiovascular and neurological diseases. To facilitate efficient disease prevention and treatment for 
cardiovascular and neurological diseases, it is imperative to understand the underlying, often 
unexplained, disease-causing mechanisms across multiple phenotypes. Pleiotropy is a phenomenon 
that can explain the influence of a specific allele on two or more unrelated phenotypes. While there 
has been evidence of polygenic pleiotropy  (where multiple variants are causally associated with 
multiple traits) among cardiovascular2 and neurological diseases3, recent work has also 
demonstrated a genetic basis for the link between these disease groupings. In particular, there has 
been evidence of genetic overlap between cardiovascular disease and (a) multiple sclerosis4 as well 
as (b) schizophrenia5. Large-scale genomics data coupled with electronic health record (EHR) data 
can enhance our ability to uncover novel cross phenotype associations and potentially pleiotropic 
variants (cross-phenotype association could also be an artifact of linkage disequilibrium (LD) or 
disease co-morbidities rather than true pleiotropy)6. In this study, we sought to identify common 
genetic variants that contribute to the link between diseases of the circulatory and nervous system 
using 43,870 unrelated European adults and 65 disease phenotypes from the Electronic Medical 
Records and Genomics (eMERGE) network.   

Statistical approaches to detect pleiotropy across multiple phenotypes can be univariate 
(CPMA7, ASSET8, MultiMeta9, GPA10, MTAG11, etc.), bivariate, and multivariate (MTMM12, 
MultiPhen13, GEMMA14, mvLMM15, mvBIMBAM16, etc.) in addition to network-based 
approaches, among others17. Univariate methods (e.g. Phenome wide association studies or 
PheWAS) are a powerful way to characterize the effect of a genetic variant on each phenotype 
independently, and potential pleiotropy can be detected when the same SNP is found to be 
significantly associated with multiple phenotypes. This method has shown great success in 
identifying potential pleiotropy in several clinical genomics studies18-23. However, a limitation of 
univariate analysis is that it tests only one trait at a time, so it cannot be a formal test of pleiotropy. 
In contrast, bivariate analysis has been shown to have higher power over univariate analysis by 
analyzing pairs of phenotypes simultaneously24.  Furthermore, because bivariate analysis can be 
structured to test the association of a trait with a variant, while adjusting for another trait’s 
association with the variant, bivariate analyses can be constructed to formally test pleiotropy, and 
extended to multivariate traits to perform sequential tests for pleiotropic effects25,26.		In this study, 
we used a bivariate analysis approach using summary-statistics from univariate analysis to test the 
hypothesis of “joint association” of a SNP with a trait pair while accounting for correlation in z-
scores between the trait pair24. The alternative hypothesis here is that at least one of the two traits is 
significantly associated with a SNP marker. This implementation of bivariate analysis has suggested 
potential pleiotropy as well as hinted at underlying disease-causing mechanisms in many recent 
studies27,28. Finally, multivariate analysis is designed to test the joint association between genotype 
with multiple phenotypes in a single regression model. Multivariate analysis has been shown to have 
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increased power over univariate analysis in many scenarios, including when the genotype affects 
either a single phenotype or multiple correlated phenotypes29,30. We chose MultiPhen13 to perform 
multivariate analysis because of its ability to handle binary phenotypes as well as its high power, as 
demonstrated via simulations29. In this paper, we refer to MultiPhen as multivariate analysis for the 
sake of convenience. Again, here the alternative hypothesis is that at least one of many traits is 
significantly associated with the SNP marker.	

Since the “true” pleiotropic associations among cardiovascular diseases and neurological 
disorders are largely unknown, we applied three types of widely used methods to characterize the 
landscape of potential pleiotropy at genome-wide level31,32. To improve our confidence that the list 
of potential pleiotropic variants obtained across all three methods reflect a single causal variant 
instead of coincidental overlap, we performed statistical colocalization for these signals with gene 
expression datasets across all 48 available tissues from the Genotype-Tissue Expression (GTEx) 
consortium33. For instance, if a SNP colocalizes with an eQTL for traits A and B, it means that the 
same SNP associates with both: (a) gene expression and trait A, (b) gene expression and trait B. 
This can help us infer that the same SNP associates with both traits A and B and is likely pleiotropic. 
We found that many of the potentially pleiotropic signals associated with both disease groupings 
(diseases of the nervous and circulatory system) colocalized with eQTLs from the GTEx consortium 
(especially on chromosome 22) indicating that gene expression might be influencing risk of disease 
at those loci. This study is one of the first large-scale natural data applications and evaluation of 
univariate, bivariate, multivariate and colocalization methods in one comprehensive analysis. The 
overall study design is shown in Figure 1.  
 

2.  Methods 

2.1.  eMERGE network 

In this study, we used data from the 
Electronic Medical Records and 
Genomics (eMERGE) network Phase 
III. The eMERGE network is a National 
Human Genome Research Institute 
(NHGRI) organized consortium to 
explore the utility of DNA 
biorepositories coupled with Electronic 
Health Record (EHR) systems for large-
scale genomic research. The eMERGE 
network Phase III consists of 83,717 
genotyped samples across multiple 
platforms that are imputed to Haplotype 
Reference Consortium 1.1 reference in 
genome build 37 covering ~39 million 
genetic variants. There are seven eMERGE adult sites included in our study: Marshfield Clinic 
Research Foundation, Vanderbilt University Medical Center, Kaiser Permanente 
Washington/University of Washington, Mayo Clinic, Northwestern University, Geisinger, and 
Harvard University. 

Figure 1. Overview of the analysis plan 
 

Phenotype Selection

European adults only (age ≥ 25 years)

Define phenotype based on ICD-9 category

Number of cases ≥ 200

eMERGE Phase III Imputed Data

Association analyses, adjusted by age, sex, eMERGE site, 6PCs

Univariate Analysis Multivariate Analysis

Bivariate Analysis

Test for colocalization of potential pleiotropic variants with eQTLs
across 48 tissues from the GTEx consortium33

Genotype Quality Control

Sample call rate ≥ 99%; SNP call rate ≥ 99%

Minor allele frequency ≥ 0.05; Imputation 'info' score > 0.4

Drop related individuals (pi_hat ≥ 0.25) 

Remove variants in LD (r-squared > 0.5)
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2.2.  Genotypic Data and Quality Control 

eMERGE Phase III imputed genotypic data were cleaned following the “best-practice” quality 
control (QC) pipeline designed for imputed data34. We included genetic variants with genotype call 
rate ≥ 99% and sample call rate ≥ 99%. We selected common variants with minor allele frequency 
(MAF) ≥ 0.05. To account for sample relatedness, we dropped one of each related pair of individuals 
with pi_hat ≥ 0.25 (obtained from identity-by-descent estimation using PLINK35). We filtered out 
variants that had a linkage disequilibrium r2 greater than 0.5 using a 100kb sliding window. We also 
filtered out the variants with a mean of imputation score less than or equal to 0.4. We further 
removed variants which have MAF difference greater than 0.1 compared to European population 
from 1000 Genomes Project34. After genotypic QC assessment and LD pruning, we had 54,942 
unrelated individuals of European ancestry and 533,878 SNPs.  

2.3.  Phenotype Definition and Selection Criteria 

2.3.1.  Phenotype Definition 
Cardiovascular and neurological phenotypes were defined using International Classification of 
Diseases, Ninth Revision (ICD-9) billing codes. We selected 98 ICD-9 codes from “Diseases of the 
circulatory systems” and “Diseases of nervous system and sense organs” as our primary phenotypes. 
Table 1 presents the major disease groups and corresponding ICD-9 codes. Of note, association 
analyses were performed using individual ICD-9 codes to define case/control status, and we used 
broader major disease categories for the purpose of presentation. The number of clinical visits per 
ICD-9 code per individual was used to define case-control status for each ICD-9 code: a case would 
be assigned if an individual had ≥ 3 instances; a control would be assigned if an individual had zero 
instances; an NA would be assigned if an individual had one or two instances22.  
                                      
2.3.2.   Phenotype Selection Criteria 
Our cohort comprised adults of 
European ancestry (age ≥ 25 years) 
from eMERGE network Phase III. We 
only used ICD-9 codes with more 
than or equal to 200 cases so as to 
increase statistical power of 
association tests36. As a result, a total 
of 65 cardiovascular and neurological 
ICD-9 based diagnoses and 43,870 
individuals were included in our final 
round of association analyses. 
Individuals who have both 
cardiovascular and neurological 
disease were counted as cases for both. The sample size distribution of the 65 phenotypes is shown 
in Figure 2.  

Table 1. Major group and ICD-9 category of neurological disorders and 
cardiovascular diseases 

 Major Group ICD-9 
Codes 

 
 
 
Circulatory 
System 

Chronic rheumatic heart disease  
Hypertensive disease  
Ischemic heart disease  
Diseases of pulmonary circulation  
Other forms of heart disease  
Cerebrovascular disease  
Diseases of blood vessels   
Other diseases of circulatory system  

393-398 
401-405 
410-414 
415-417 
420-429 
430-438 
440-449 
451-459 

 
 
Nervous 
System 

Inflammatory diseases of the central nervous system 
Hereditary and degenerative diseases of the central 
nervous system 
Pain  
Disorders of the central nervous system  
Disorders of the peripheral nervous system  

320-327 
330-337 
 
338 
340-349 
350-359 
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2.4.  Association Methods 

2.4.1.  Univariate Analysis 
We performed univariate logistic regression using 65 ICD-9 based diagnoses with 533,878 variants. 
We adjusted logistic regression models for sex, age, eMERGE site, and the first six principal 
components. We used PLINK 1.90 
software35 to perform the first round 
of univariate analysis because of its 
high computational efficiency. The 
logistic regression models converged 
for 33 out of 65 phenotypes. The 
major reason contributing to the non-
convergence was the low sample 
sizes corresponding to some of the 
sites when we adjusted for eMERGE 
site (7 levels) as a categorical 
covariate. To address this, we used 
PLATO 2.1.037 to perform the 
second round of logistic regression 
tests on the remaining 32 phenotypes 
with the same set of covariates as before. Since PLATO implements an increased number of 
iterations compared to PLINK to find the best solution for logistic models, the software achieved 
convergence for all the remaining models. It should be noted that when both PLINK and PLATO 
converge, the results are concordant; these tools have been extensively compared previously37. 

2.4.2.  Bivariate Analysis 
Bivariate analysis involved using summary-statistics (Z scores) from univariate analyses. We 
modeled our bivariate analysis protocol (with modifications) on the one followed by Siewert et al27. 
We first estimated mean and covariance of the Z scores obtained from univariate analyses for each 
of the 2080 pairs of phenotypes using all the available LD-pruned SNPs. This was done to ensure a 
null bivariate normal distribution of Z scores for each pair of phenotypes and to satisfy the 
“independence” assumption for hypothesis testing. Subsequently, we applied a p-value threshold of 
0.005 on the univariate GWAS results and filtered out any SNPs that did not meet this threshold. 
We also filtered out SNPs with MAF = 0.5 to remove ambiguity pertaining to which allele was 
chosen as the referent allele in univariate analyses. Finally, we identified a list of common SNPs 
and estimated a p-value for each of 2,080 “pairs” of phenotypes using a chi-squared test with two 
degrees of freedom. Although we conducted a reduced number of tests, it should be noted that we 
corrected for multiple comparisons using the original “unfiltered” SNP set in order to control our 
type I error rate well.  

2.4.3.  Multivariate Analysis 
We performed multivariate analysis using MultiPhen 2.0.2 R package13. MultiPhen analyzes 
multiple phenotypes jointly by testing linear combinations of phenotypes against each SNP using 
reverse ordinal regression. We adjusted for the same set of covariates as we did for univariate tests. 
By default, MultiPhen excludes individuals with at least one NA out of 65 phenotypes. Under this 

Figure 2. Sample size distribution for 65 ICD-9 disease categories 

32
7

33
1

33
2

33
3

33
7

33
8

34
0

34
2

34
4

34
5

34
6

34
8

35
0

35
1

35
3

35
4

35
5

35
6

35
7

35
9

39
4

39
6

39
7

40
1

40
2

40
3

40
5

41
0

41
1

41
2

41
3

41
4

41
5

41
6

42
3

42
4

42
5

42
6

42
7

42
8

42
9

43
1

43
2

43
3

43
4

43
5

43
6

43
7

43
8

44
0

44
1

44
2

44
3

44
4

44
6

44
7

44
8

45
1

45
3

45
4

45
5

45
6

45
7

45
8

45
9

ICD−9 code category

Sa
m

pl
e 

Si
ze

0

10000

20000

30000

40000
Case
NA
Control

Pacific Symposium on Biocomputing 2019

276



 
 

 

scenario, the power of association tests would be limited as there would only be 7,535 individuals 
in total with extremely low case sample size per phenotype. Since we applied the “rule of three” to 
define a case, any person who had one or two instances of the occurrence of an ICD-9 code was set 
to missing (N/A). Because we did not want to drop so many individuals, we needed to fill in an 
alternative value for the N/A.  For the purposes of multivariate analyses, these missing values were 
replaced by 0.5 to retain comparable sample size with univariate and bivariate analysis (sensitivity 
analyses on top significant SNPs yielded comparable results -- see Discussion). These individuals 
are likely cases since they have the ICD code in their record one or two times. A detailed evaluation 
of this replacement strategy will be conducted in the future to determine if a more optimal imputation 
strategy exists. Finally, to increase computational efficiency of MultiPhen, we parallelized the runs 
by splitting the genome into chunks of 10Mb each.  

2.5.  Statistical Correction 

We implemented two Bonferroni correction calculation strategies to adjust for multiple testing when 
comparing the statistical performance of three types of methods. The Bonferroni threshold was 
calculated by dividing the level of significance by the number of tests. In the first strategy (“method-
specific Bonferroni”) we calculate Bonferroni threshold separately for each method. The derived 
significant thresholds for univariate, bivariate, multivariate testing were 1.44x10-9 
[0.05/65*533878], 4.50x10-11 [0.05/(2080*533878)], and 9.37x10-8[0.05/533878], respectively. We 
used an overly conservative significance threshold for bivariate analyses due to potential non-
independence of tests (even after LD pruning). In the second strategy (“family-wise Bonferroni”) 
we calculate Bonferroni threshold based on the total number of tests across all three methods. The 
derived significant threshold was 4.36x10-11 [0.05/(65*533878+2080*533878+533878)], and the 
criteria was applied across all three methods. Again, this correction is overly conservative given the 
correlation across the tests and methods but offers good control of the type I error rate. 

2.6.  Colocalization   

Finally, we performed colocalization analysis to have greater confidence in our assessment of 
pleiotropy. We first obtained a list of potentially pleiotropic variants that cleared the “family-wise 
Bonferroni” multiple comparison threshold for univariate, bivariate and multivariate methods and 
narrowed down this list to SNPs that were associated with at least one disease from both nervous 
and circulatory systems. Finally, we ensured that for any given SNP, if one of the two traits in this 
circulatory-nervous trait pair had a univariate p-value that did not meet the “family-wise Bonferroni” 
threshold, it had a univariate -log10 p-value of at least 3. We termed the final list of SNPs as our 
“lead” SNPs. To test if these signals were being influenced by gene expression as well as driven by 
the same underlying variant, we performed statistical colocalization analyses using the “coloc” R 
package38 between these signals and eQTLs (across all 48 available tissues) from the GTEx 
consortium33. We first obtained a 200KB window on either side of a “lead” SNP and looked for 
whether the lead SNP (or one in close LD with it) was an eQTL in a given tissue. If it was not an 
eQTL, that lead SNP was ignored. If it was an eQTL for a given tissue, we identified the 
corresponding “eGene” and obtained summary statistics from GTEx for all gene-variant 
associations in that 200KB window (either side). Note that we only chose the eGene that had the 
smallest p-value for a given eQTL from GTEx. Finally, for each phenotype with which the lead SNP 
is significantly associated, we performed statistical colocalization between the SNP and the 

Pacific Symposium on Biocomputing 2019

277



 
Figure 3. Univariate, Bivariate and Multivariate Results 

A position-by-position comparison of genetic associations for univariate, bivariate and multivariate methods using code modified from Hudson R package 
(https://github.com/anastasia-lucas/hudson). The horizontal axis represents genomic locations by chromosome and the vertical axis represents –log10(p-value). Colors represent 
major disease groups of circulatory and nervous systems. The top plot presents univariate results with p-value less than 0.01 in triangles and multivariate results that passed 
“method-specific Bonferroni” threshold in black dots. The bottom plot present bivariate analysis results in a two-colored circle, denoting the two phenotypes with which a variant 
is associated with. The red lines in both plots are the “family-wise Bonferroni” threshold.  
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corresponding eQTL in that tissue. We set a coloc threshold of PP4/(PP3+PP4) > 0.8 to identify 
pleiotropic signals that are strongly influenced by gene expression. Here PP4 refers to the posterior 
probability that a single SNP associates with the phenotype as well as the gene expression whereas 
PP3 refers to the posterior probability of having two independent SNPs associate with either. 

3.  Results 

3.1.  Landscape of Univariate, Bivariate and Multivariate Associations 

The landscape of univariate, bivariate, and multivariate 
association results is shown in Figure 3. There is an overall 
similar trend of association signals for univariate and 
bivariate analysis. We found that bivariate analysis 
identified more significant associations than univariate 
analysis when the correlation between phenotypes was low 
(less than 0.4). From the bottom half of Figure 3, we can 
see if the association signal from bivariate analyses comes 
from pairs of circulatory, nervous or circulatory-nervous 
traits. Black dots in Figure 3 represent the variants that 
passed “method-specific Bonferroni” significance from 
multivariate analysis. There are scenarios in which there is 
no significant association from univariate/bivariate 
analyses but significant results from multivariate analyses.  
Using “method-specific Bonferroni” threshold, univariate, 
bivariate, and multivariate methods detected 124, 108, and, 
107 unique statistically significant SNPs, respectively; and there are 49 overlapping SNPs across 
three methods (data not shown). The number of variants detected at the more stringent “family-
wise” threshold is given in Figure 4. 

3.2.  Variants associated with cardiovascular disease and neurological disorders 

Among the 31 “family-wise Bonferroni” SNPs across all three methods, we obtained 9 unique 
variants that are significantly associated with at least one cardiovascular disease and one 
neurological disorder from bivariate analysis that also “colocalized” with eQTLs across a host of 
tissues with a coloc PP4/(PP3+PP4) probability threshold of at least 0.8. Table 2 shows a 
comprehensive summary of these identified 9 variants. Our colocalization analyses revealed 
whether there was a shared variant underlying our potentially pleiotropic signals and whether gene 
expression may be influencing disease risk at these loci. For instance, the SNP at chromosome 1 
and position 36822024 colocalized with eQTLs in the same 35 tissues for “Muscular dystrophies 
and other myopathies”, “Pain” and “Other conditions of the brain” (neurological phenotypes) as 
well as “Heart failure”, “Essential hypertension”, “Cardiac dysrhythmias” and “Hypotension” 
(cardiovascular phenotypes) (eGenes: EVA1B, TRAPPC3). This means that rs10796883 influences 
4 different cardiovascular disease categories, 3 different neurological disease categories as well as 
gene expression for EVA1B and TRAPPC3 eGenes across 35 different tissues. Likewise, the variant 
on chromosome 22 position 22947156 colocalized with eQTLs in 4 tissues (Brain-cerebellum, testis, 
transformed fibroblasts, small intestine ileum) for 4 different neurological phenotypes as well as 9 

Figure 4. Venn diagram of the number of SNPs 
obtained at a “family-wise Bonferroni” threshold  
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other cardiovascular phenotypes (eGenes: IGLV3-21, GGTLC2). Please refer to Supplementary 
table 1 at https://ritchielab.org/files/PSB2019/Veturi/Supplementary_Data_1.txt for a complete list 
of tissues in which each of the lead SNPs colocalizes with eQTLs. 
  

Table 2. Potential pleiotropic SNPs and their associated disease groups 

SNP	 Circulatory	NeglogP(Uni-variate)	 Nervous	NeglogP(Uni-variate)	

NeglogP		
(Bi-
variate)	

NeglogP	
(Multi-
variate)	

Tissue	
count	 eGenes	

1:36822024	
rs10796883	

	

Cardiac_dysrhythmias(11.305)	

Muscular_dystrophies_and_other_myopathies(4.921)	 13.247	

11.165	

35	 EVA1B,	TRAPPC3	

Other_conditions_of_brain(3.451)	 12.030	 35	 EVA1B,	TRAPPC3	

Pain(4.151)	 12.363	 35	 EVA1B,	TRAPPC3	

Essential_hypertension(9.125)	 Muscular_dystrophies_and_other_myopathies(4.921)	 11.325	 35	 EVA1B,	TRAPPC3	

Heart_failure(10.029)	
Muscular_dystrophies_and_other_myopathies(4.921)	 11.988	 35	 EVA1B,	TRAPPC3	

Pain(4.151)	 11.452	 35	 EVA1B,	TRAPPC3	

Hypotension(8.660)	 Muscular_dystrophies_and_other_myopathies(4.921)	 10.699	 35	 EVA1B,	TRAPPC3	

6:32569056	
rs9270779	

Atherosclerosis(14.165)	
Multiple_sclerosis(6.355)	 18.112	

10.861	

8	 HLA-DRB5,	HLA-DRB9	

Parkinson's_disease(3.196)	 15.097	 11	 HLA-DRB5,	HLA-DRB9	

Occlusion_and_stenosis_of_precerebral_arter

ies(6.355)	 Multiple_sclerosis(5.913)	 10.400	 7	 HLA-DRB5,	HLA-DRB9	

Other_peripheral_vascular_disease(6.355)	 Multiple_sclerosis(7.442)	 11.787	 4	 HLA-DRB5,	HLA-DRB9	

14:106995720	
rs7160440	

	

Cardiac_dysrhythmias(11.322)	

Muscular_dystrophies_and_other_myopathies(4.394)	 12.989	

18.291	

5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Other_conditions_of_brain(3.726)	 12.420	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 14.259	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Essential_hypertension(7.451)	 Pain(6.297)	 10.610	 1	 IGHV3-49	

Heart_failure(9.038)	
Muscular_dystrophies_and_other_myopathies(4.394)	 10.752	 8	

IGHV3-53,IGHV4-39,	IGHV3-49,	

HOMER2P1	

Other_conditions_of_brain(3.726)	 10.469	 6	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 12.465	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Hypertensive_chronic_kidney_disease(8.116)	 Pain(6.297)	 11.623	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Hypotension(10.278)	

Muscular_dystrophies_and_other_myopathies(4.394)	 11.832	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Other_conditions_of_brain(3.726)	 11.252	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 13.004	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Ill-

defined_descriptions_and_complications_of_

heart_disease(7.610)	 Pain(6.297)	 11.224	 1	 		

22:22876236	
rs361535	

	
Other_forms_of_chronic_ischemic_heart_dis

ease(4.985)	 Inflammatory_and_toxic_neuropathy(14.211)	 14.702	

10.424	

1	 		

22:22947156	
rs2097594	

Cardiac_dysrhythmias(10.930)	

Inflammatory_and_toxic_neuropathy(3.011)	 11.236	

28.019	

1	 	

Muscular_dystrophies_and_other_myopathies(3.773)	 12.116	 1	 	

Other_conditions_of_brain(3.328)	 11.738	 1	 	

Pain(5.622)	 13.348	 1	 	

Cardiomyopathy(12.330)	

Inflammatory_and_toxic_neuropathy(3.011)	 12.818	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 13.768	 2	 IGLV3-21,	GGTLC2	

Other_conditions_of_brain(3.328)	 13.507	 1	 GGTLC2	

Pain(5.622)	 15.503	 2	 GGTLC2	

Essential_hypertension(10.187)	

Muscular_dystrophies_and_other_myopathies(3.773)	 11.380	 2	 BCRP4	

Other_conditions_of_brain(3.328)	 10.968	 	  
Pain(5.622)	 12.386	 	  

Heart_failure(20.621)	

Inflammatory_and_toxic_neuropathy(3.011)	 19.807	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 20.963	 3	 IGLV3-21,	GGTLC2	

Other_conditions_of_brain(3.328)	 21.000	 2	 GGTLC2	

Pain(5.622)	 22.553	 2	 GGTLC2	

Hypertensive_chronic_kidney_disease(9.331)	
Muscular_dystrophies_and_other_myopathies(3.773)	 10.760	 2	 GGTLC2	

Pain(5.622)	 12.119	 2	 GGTLC2	

Hypotension(9.778)	

Muscular_dystrophies_and_other_myopathies(3.773)	 10.883	 2	 GGTLC2	

Other_conditions_of_brain(3.328)	 10.491	 2	 GGTLC2	

Pain(5.622)	 12.026	 2	 GGTLC2	

Ill-

defined_descriptions_and_complications_of_

heart_disease(10.665)	

Inflammatory_and_toxic_neuropathy(3.011)	 10.863	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 11.703	 2	 GGTLC2	

Other_conditions_of_brain(3.328)	 11.478	 2	 GGTLC2	

Pain(5.622)	 13.385	 2	 GGTLC2	

Other_diseases_of_endocardium(10.340)	

Inflammatory_and_toxic_neuropathy(10.340)	 11.032	 	  
Muscular_dystrophies_and_other_myopathies(10.340)	 11.844	 	  
Other_conditions_of_brain(10.340)	 11.617	 	  
Pain(5.622)	 13.627	 	  

Other_forms_of_chronic_ischemic_heart_dis

ease(11.873)	

Inflammatory_and_toxic_neuropathy(11.873)	 11.335	 	  
Muscular_dystrophies_and_other_myopathies(11.873)	 12.690	 	  
Other_conditions_of_brain(11.873)	 12.530	 	  
Pain(5.622)	 14.168	 		 		

22:25420792	
rs13056641	

Cardiac_dysrhythmias(9.528)	
Inflammatory_and_toxic_neuropathy(4.159)	 10.817	

40.505	

11	

KIAA1671,	SGSM1,	CRYBB2,	

CRYBB3,	IGLL3P	

Organic_sleep_disorders(4.166)	 10.687	 1	 IGLL3P	

Pain(4.590)	 11.247	 6	 KIAA1671,	IGLL3P	

Essential_hypertension(12.162)	
Inflammatory_and_toxic_neuropathy(4.159)	 12.620	 16	

KIAA1671,	SGSM1,	CRYBB2,	

CRYBB3,	IGLL3P,	BCRP3	

Organic_sleep_disorders(4.166)	 12.521	 1	 IGLL3P	

Pain(4.590)	 13.284	 7	 KIAA1671,	IGLL3P	

22:25436904	
rs1040421	

Angina_pectoris(3.067)	 Pain(13.338)	 15.015	

58.239	

7	 KIAA1671,	SGSM1,	IGLL3P	

Atherosclerosis(5.075)	 Pain(13.338)	 15.580	 8	 KIAA1671,	SGSM1,	IGLL3P	

Cardiac_dysrhythmias(11.931)	 Pain(13.338)	 20.872	 7	 KIAA1671,	SGSM1,	IGLL3P	

Cardiomyopathy(4.939)	 Pain(13.338)	 15.904	 8	 KIAA1671,	SGSM1,	IGLL3P	

Conduction_disorders(5.764)	 Pain(13.338)	 16.372	 5	 KIAA1671,	SGSM1,	IGLL3P	
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Notes: We left as missing in the table any eGene (Ensembl gene ID from GTEx) that did not have an HGNC symbol counterpart. 

4.  Discussion 

In this study, we conducted EHR-based univariate, bivariate, and multivariate analyses on 43,870 
adults of European ancestry from the eMERGE network using 65 cardiovascular and neurological 
ICD-9 disease categories. The aim of this study was to detect pleiotropic genetic variants that 
influence diseases of the circulatory and nervous systems. We also evaluated the performance of 
three types of methods for detecting pleiotropy.  

We observed 79, 108, and, 58 unique variants, respectively that were detected by univariate, 
bivariate, and multivariate methods and 31 that overlapped among the three methods using a 
“family-wise Bonferroni” significance threshold. Univariate analysis suggests direct association 
between genetic variant and phenotype; bivariate association can offer insights into whether a 
variant is associated with a pair of phenotypes, whereas multivariate analysis is powerful in 
detecting if a variant is associated with multiple phenotypes. We took the intersection of the 
significant genetic variants across the three methods as our list of potential pleiotropic variants. Our 
colocalization analyses revealed 9 SNP variants associated with at least one disease from both, 
nervous and circulatory system that cleared the “family-wise Bonferroni” threshold for multivariate 
and bivariate analyses. Since we were looking at trait pairs here, we ensured that at least one of the 
two traits had a univariate p-value that cleared the “family-wise Bonferroni” threshold while the 
other trait had a univariate -log10 p-value of at least 3. Note that we conducted sensitivity analyses 
for MultiPhen on identified potentially pleiotropic variants in Table 2 when missing values were 
imputed with 0 and 1 (i.e. treated as controls or cases) in addition to 0.5 and observed no change in 
significance. To cross-check overlap between methods, we also performed multivariate analysis 
restricted to a pair of bivariate significant traits for the 9 potentially pleiotropic variants in Table 2 
and found 100% consensus between bivariate and multivariate methods. These 9 variants showed 
strong evidence of colocalization with eQTLs across a host of tissue types (see Supplementary table 
1) from the GTEx consortium33, especially on chromosome 22. 

Our results replicated previous association signals as well as detected novel associations. SNP 
at chromosome 6 position 32569056 (rs9270779) has been directly implicated in autonomic nervous 
system and has been shown to be associated with heart rate response to exercise in females 
suggesting it could be pleiotropic for the two disease groupings of interest39. Also, the corresponding 
eGenes for this SNP, HLA-DRB5 and HLA-DRB9 from colocalization analysis have been previously 
shown to be associated with multiple sclerosis. Among the 31 total SNP hits, the one at chromosome 
19 position 45416741 (rs438811) is correlated with rs445925  (r2=0.341), which has been shown to 
be clinically relevant to cardiovascular phenotypes40. This SNP is also located in the APOC1/APOE 
region, which has been shown to be associated with Alzheimer’s disease41. Among novel potential 

Essential_hypertension(10.303)	 Pain(13.338)	 19.175	 8	 KIAA1671,	SGSM1,	IGLL3P	

Heart_failure(7.101)	 Pain(13.338)	 17.129	 8	 KIAA1671,	SGSM1,	IGLL3P	

Hypertensive_chronic_kidney_disease(7.426)	 Pain(13.338)	 17.404	 8	 KIAA1671,	SGSM1,	IGLL3P	

Hypotension(6.693)	 Pain(13.338)	 16.037	 4	 KIAA1671,	SGSM1,	IGLL3P	

Other_diseases_of_endocardium(5.845)	 Pain(13.338)	 16.677	 4	 KIAA1671,	SGSM1,	IGLL3P	

22:28250172	
	rs1997739	 Cardiac_dysrhythmias(10.517)	

Pain(4.966)	 12.443	
22.064	

19	 ZNRF3,	TTC28-AS1	

22:33079917	
rs5749490	

Cardiac_dysrhythmias(11.280)	

Hereditary_and_idiopathic_peripheral_neuropathy(3.04

9)	 11.884	

23.601	

9	 FBXO7,	SLC5A4-AS1	

Inflammatory_and_toxic_neuropathy(3.958)	 12.254	 2	 FBXO7,	SLC5A4-AS1	

Mononeuritis_of_lower_limb_and_unspecified_site(3.1

53)	 12.242	 2	 FBXO7,	SLC5A4-AS1	

Pain(8.424)	 16.011	 9	 FBXO7,	SLC5A4-AS1	

Hypertensive_chronic_kidney_disease(6.449)	 Pain(8.424)	 12.064	 9	 FBXO7,	SLC5A4-AS1	

Hypertensive_heart_disease(4.191)	 Pain(8.424)	 10.592	 10	 FBXO7,	SLC5A4-AS1	

Hypotension(8.197)	 Pain(8.424)	 12.959	 3	 FBXO7,	SLC5A4-AS1	
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pleiotropic variants identified by all three methods and colocalization analysis, 6 out of 9 variants 
locate on chromosome 22, suggesting its potential crucial contribution to the link between 
cardiovascular and neurological diseases. In particular, the eGene FBXO7 has been associated with 
multiple sclerosis42 as well as heart disease43. As part of future work, we will conduct pathway 
analyses or conditional analyses to have confidence in a singular pleiotropic association or shared 
biology between these disease groupings.  

The limitations of this study are that (1) using only ICD-9 codes instead of both ICD-9 and ICD-
10 codes may have reduced the number of cases in our data; (2) the use of disease category instead 
of disease code as phenotype might have reduced the specificity of detected associations. We are 
planning to incorporate ICD-9 and ICD-10 codes to define primary phenotypes and examine disease 
heterogeneity in the future; (3) sample size considerations led to some diagnosis codes being left 
out of analyses; (4) given our very conservative multiple comparison thresholds, we have likely 
reported only a fraction of all potential pleiotropic signals, leading to type II errors, and (5) we were 
unable to investigate how many additional associated variants obtained using bivariate analyses in 
comparison to univariate and multivariate were “true positives”. One way to investigate this would 
be to test for statistical colocalization on top bivariate analyses hits27. However, this necessitates 
that summary statistics be obtained from independent datasets which was not the case with our data. 
Replication of these signals in independent cohorts in future can help us address this limitation.  

In summary, we provide a framework for future pleiotropy analyses in EHR data. Our work 
expands the pleiotropy detection framework from univariate methods (e.g. PheWAS) to bivariate 
and multivariate methods in large-scale real-world EHR data to detect a broader net of potentially 
pleiotropic signals across cardiovascular and neurological disorders. We also utilize colocalization 
analyses to enhance our understanding of the influence of gene expression on these potentially 
pleiotropic variants and consequently on disease risk. In future, we will also try to replicate the 
partially overlapping SNP signals in independent cohorts.  
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