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Typical personal medical data contains sensitive information about individuals. Storing or
sharing the personal medical data is thus often risky. For example, a short DNA sequence can
provide information that can identify not only an individual, but also his or her relatives.
Nonetheless, most countries and researchers agree on the necessity of collecting personal
medical data. This stems from the fact that medical data, including genomic data, are an
indispensable resource for further research and development regarding disease prevention
and treatment. To prevent personal medical data from being misused, techniques to reliably
preserve sensitive information should be developed for real world applications. In this paper,
we propose a framework called anonymized generative adversarial networks (AnomiGAN),
to preserve the privacy of personal medical data, while also maintaining high prediction
performance. We compared our method to state-of-the-art techniques and observed that
our method preserves the same level of privacy as differential privacy (DP) and provides
better prediction results. We also observed that there is a trade-off between privacy and
prediction results that depends on the degree of preservation of the original data. Here,
we provide a mathematical overview of our proposed model and demonstrate its validation
using UCI machine learning repository datasets in order to highlight its utility in practice.
The code is available at https://github.com/hobae/AnomiGAN/

Keywords: Deep neural networks, generative adversarial networks, anonymization, differen-
tial privacy

1. Introduction

To restrain the use of medical data for illegal practices, the right to privacy has been in-
troduced and is being adaptively amended. The right to privacy of medical data should be
enforced because medical data contains static sensitive information of all individuals including
genetic information; therefore, a leak of such irreversible information could be very danger-
ous. For example, Homer et al.1 and Zerhouni et al.2 proposed a statistical-based attacks to
GWAS demonstrating the possibility of reviling the presence of an individual in a group. The
genetic markers (short DNA sequences) of an individual constitutes a very sensitive piece of
information regarding their identity. Patterns of genetic markers can easily be used to identify
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individuals and their relatives. If proper security of genetic information is not achieved, there
could be a risk of genetic discrimination such as denial of insurance or blackmail (e.g., planting
fake evidence at crime scenes).3 To protect the risk of illegal access to genetic information, the
Global Initiative on Asthma (GINA) was launched in 1995 in the United States. Nonetheless,
as GINA has not been implemented in other countries, their citizens are still at risk of the
issues related to the bias based on leaked genetic information.

The advent of next-generation sequencing technology has led to the progress of DNA se-
quencing at an unprecedented rate, thereby enabling significant scientific achievements.4 Using
information gathered from the Human Genome Project, international efforts have been made
to identify the hereditary components of the diseases, which will allow their earlier detection
and more effective treatment strategies.5 Thus, data sharing among medical institutions is es-
sential for the development of novel treatments for rare genetic diseases and seamless progress
in genomic research largely depends on the ability to share data among different institutions.6

Patient portals and telehealth programs have recently gained popularity among patients al-
lowing them to interact with their healthcare service using online tools.7 Although these online
health services provide convenience by allowing patients to order prescriptions remotely, they
also require patients to transmit their private data over the Internet. Most health services
follow the guidelines of the Accountability Act of 1996 (HIPPAa) to protect patient records,
but these guidelines may not be upheld when data are shared with a third party.

Development of deep learning (DL) algorithms has transformed the solution of data-driven
problems for various applications, including problems associated with the use of large amounts
of patient data for health prediction services.8 Since patient data are private, several studies
have been conducted to resolve privacy issues for DL based applications. The two main ap-
proaches involved are: 1) encryption and 2) statistics-based anonymization. Most encryption
techniques based on DL methods9–11 exploits homomorphic properties that enables the com-
putation of encrypted data via simple operations such as summation and multiplication. DL
approaches based on homomorphic encryption allow the reliable sharing of private data, while
providing accurate results, but a single query can takes hundreds of seconds to be processed.12

In addition, the nature of homomorphic encryption allows limited compatibility with artificial
intelligence techniques such as neural networks.13 Differential privacy (DP)14 is a state-of-the-
art method that guarantees strong privacy for statistics-based approaches.1,15–18 In addition,
DP has been widely used for deep learning and has recently been applied to medical data. For
example, DP generative adversarial networks (GANs) framework has been applied to blood
pressure data to protect patient privacy.19 However, DP based approaches have a significant
trade-off between privacy and performance of prediction accuracy.

In this paper, we propose a method based on GANs that preserves a level of privacy similar
to that provided by DP while achieving a better prediction performance. Our framework is a
generic method that exploits any target predictive classifier to preserve the original prediction

aThe HIPAA states that, by definition linked to an identifiable person, should not be disclosed or
made accessible to third parties, in particular, employers, insurance companies, educational institu-
tions, or government agencies, except as required by law or with the separate express consent of the
person concerned.
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Fig. 1: A trusted zone and an untrusted zones; Patient’s medical data are transferred to the
online medical service that, in turn, provides diagnostic results to the user. If a user gives
consent for data sharing, her or his data may be propagated to third parties (e.g., Google,
Dropbox, and Amazon).

result. We explored here, whether a generative model can be constructed to produce mean-
ingful synthetic while also preserving the original predictions and protecting private data. We
evaluated the proposed method using target classifiers for four diseases (breast cancer, chronic
kidney disease, heart disease, and prostate cancer), and found that its performance was similar
to that of the original classifiers. Finally, we compared our method to state-of-the-art privacy
techniques and provide a mathematical overview of the privacy parameters.

2. Background

2.1. Problem Statement

Fig. 1 shows a scenario in which there is a trusted zone and an untrusted zone. In the trusted
zone, patient data are not under any threat from an adversary because service groups in
this zone will follow the US health insurance portability and accountability provisions of
the 1996 US HIPPA act for the protection of patients records. Groups in the trusted zone,
there are groups (online medical services, and medical research services) that follow the above
mentioned guidelines20 may propagate them to a third party if a patient gives consents for
data sharing. Service parties that are in the trusted zone may use external storage such as
Google, Dropbox, and Amazon. Once given permission, these third parties may no longer
uphold the deidentification guideline20 when interacting with the trusted groups.

The scenario described in the present study, service providers use supervised machine
learning classifiers to make predictions based on personal medical data such that a machine
learning-based classifier attempts to find a function f that classifies medical data points asso-
ciated with genetic variants such as tumor data. In this context, AnomiGAN can be used to
anonymize personal medical data. Our model can operate even under a strong and realistic
black-box scenario in which the classification score revealed from the service providers is in
binary rather than a continuous classification score.

2.2. Adversarial Goal and Capabilities

It is important to define the capability of an adversary to assess the flaws and the risk to
privacy. In our case, the adversary’s goal is to compromise an individual’s private medical
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data. An adversary can be present in online health services, and in third parties that work with
medical institutions. An adversary often makes an effort to estimate a posterior probability
distribution of query results with the resources available to them including computation power,
time, and bandwidth.3 The probability of success can be quantified by many trials with the
adversary’s choice of input. This probability distribution can then be used a metric of privacy
violation.

2.3. Differential Privacy

DP is a state-of-the-art technique for preserving privacy model21 that guarantees the protection
of query results from privacy losses to an adversary. Several methods22,23 have been proposed
based on the following reasoning. DP promises that the probability of harm can be minimized
by adding noise to the output of the query as follows:

M(D) = F(D) + τ (1)

where M : D → R is a random function that adds a noise τ to the query output, D is the
target database, and F is the deterministic original-query response.

Definition 1. (δ-DP). A random algorithm M with domain N|D| is δ-DP if for all D, D̂ ∈ N|D|

such that |D − D̂| ≤ 1:

Pr[M(D) ∈ S] ≤ exp(δ)Pr[M(D′) ∈ S] (2)

where D, and D̂ are the target databases with one element different in D̂; S ⊆ Range(M) is a
subset of R; M(D) and M(D′) are the absolute value of the privacy loss that are bounded by
δ with probability of at least 1− δ.24

By definition 1, the adversary has no information to gain if an algorithm satisfies δ close to 0.
This means that an algorithm with a value of δ that is close to 0 does not reveal significant
information on any particular tuple in the input. Privacy is, thus, preserved.

2.4. Generative Adversarial Networks

GANs25 are designed to complement other generative models by introducing a new concept of
adversarial learning between a generator and a discriminator instead of maximizing a likeli-
hood. The generator produces real-like samples by transformation function mapping of a prior
distribution from the latent space into the data space. The discriminator acts as an adversary
to distinguish whether samples produced by the generator derive from the real data distri-
bution. Although theoretically the optimal state of GANs is guaranteed, a fatal limitation of
GAN is that its learning is unstable. Therefore, several studies focused on stabilizing GAN’s
learning by regularization such as weight clipping26 and gradient penalty.27,28 As a result,
GANs have achieved astonishing results in synthetic image generation,29,30 and the applica-
tion of GANs has extended to various fields of studies. For example, GANs have recently been
employed in steganalysis31 and steganography.32
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Fig. 2: Architecture of the model presented in this study. The dotted line represents gradients
that are fed into the encoder.

3. Methods

Our method involves an encoder, a discriminator, and a target classifier that act as an addi-
tional pre-trained discriminator. The encoder generates synthetic data with the aim of mimick-
ing the input data, and the target classifier gives a score to each data item. The discriminator
then outputs a confidence score of whether that piece of data is synthetic or original. Starting
with random noise, the encoder learns to generate synthetic data such that the prediction
result of a synthetic data from a target model is identical to the original data. The optimiza-
tion of the objective function is equivalent to finding a Nash equilibrium of a min-max game
between the generator and the two cooperative relations of the discriminator and the target
classifier.

3.1. Notations

We will use the following notations: x is the input data; r is the random matrix with same
length of the input x; x̂ is the anonymized output corresponding to x and r; M is a trained
model; y is the output score given by the trained model given input x, M(x)→ y; ŷ is an output
score given by the trained model given input x̂, M(x̂)→ ŷ; A is a probabilistic polynomial-time
adversary that queries input to an oracle model; and δ is a privacy parameter that controls
privacy levels.

3.2. Anonymization using GANs

The architecture of this model is illustrated in Fig. 2. The encoder takes an input x and outputs
x̂, which is given to both the discriminator and the target classifier. The discriminator outputs
the probability LD that x = x̂. The target classifier outputs scores for x and x̂ to minimize
scores between them. The learning objective of the encoder is to optimize the discriminator’s
probability to 1/2 while maximizing the prediction score of the target classifier LC .

The encoder accepts messages of length n as input and r is the n length of random matrix.
The input (r × x mod n) is then fed into a neural network. As illustrated in Fig. 3, the first
layer of this encoder network consists of n input feature size of filters; the second layer consists
of 64 filters; The third layer consists of 32 filters; the fourth layer consists of 16 filters; the
fifth layer consists of 8 filters. Additional layers are added in the reverse order of the number
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Fig. 3: Model training. The encoder accepts x and r as input and that are fed into the neural
network. The discriminator takes an original input and output of the encoder to output
probabilities from the last fully connected layer. The target classifier takes an input x̂ and
outputs the prediction score.

of filters. All layers are constructed with kernel size of 3, strides of 1, and same padding.
Batch normalization33 is used at each layer and tanh34 is used as the activation function at
each layer, except for the final layer where ReLU35 is used for the activation function. The
discriminator takes the output the encoder as an input to determine whether the output is
real or generated. A sigmoid activation function is used to output probabilities from the logits.

The discriminator takes an output of the encoder as an input to determine whether the
output is real or generated. The first layer of this discriminator network consists of n input
feature size of filters; the second layer consists of 10 filters; the third layer consists of 20 filters;
the fourth layer consists of 30 filters; the fifth layer consists of n input feature size of filters.
The kernel size of each layer is 3 with stride 1. Tanh34 is used at each layer as the activation,
except for the final layer where a sigmoid activation function is used to output probabilities
from the logits. The target classifier is a fixed pre-trained model and exploited in the GANs
training model. To define the learning objective, let θE, θD, and θC denote parameters of the
encoder, discriminator, and target classifier. Let E(x; r, θE , δ) be the output on x, C(x̂; θC)

be the output on x̂, and D(x,E(θE , x, r, δ), θC ; θD) be the output on x and x̂. Let λe and λd
denote the weight parameters of the encoder, the discriminators to maximize the prediction
performance. Let LE , LD, LC denote the loss of encoder, discriminator, and target classifier.
The encoder then has the following objective functions:

LE(x, r, δ; θE) = λe · d(x,E(x, r, δ; θE)) + λd · (LD + LC)

= λe · (d(x, x̂) + δ) + λd · (LD + LC)
(3)

where d(x, x̂) is the Euclidean distance between synthetic and original data and δ controls
the privacy level. δ is updated at each learning epochs. A discriminator has the sigmoid cross
entropy loss of:

LD(θD, θC , x, x̂; θE) =− y · log(D(θD, p))− (1− y) · log(1−D(θD, p)), (4)

where y = 0 if p = x̂ and y = 1 if p = x, where p is the score of given input x and x̂. A target
classifier has a loss of:

LC(x, x̂; θC) = ||C(f(x))− C(f(x̂))||2, (5)

where C(f) is a cost function of a pre-defined classifier.
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3.3. Security Principle of Anonymized GANs

In this section, we show that the AnomiGAN has a scheme that is indistinguishable from
real data for an A. For each training steps of the encoder, a multiplicative perturbation by
random orthogonal matrices are computed for the inner product matrix. Formally, we have
constructed as input entries of the k × m medical record x ∈ Xk×m, and random matrix
r ∈ Rk×m is chosen from Gaussian distribution with mean zero variance σ2r . Now, assume that
the A has a generated random matrix r̂ according to a probability density function. Then
the A need to estimate x given x̂←M. A simple intuition of the indistinguishable scheme is
that the A is allowed to choose multiple data from the synthesized data. Then, the A has the
estimation of:

x̂i =
1

kσ2r

∑
t

εi,txt, (6)

where εi,j is the i, j-th entry of r̂T r such that εi,j =
∑
t

r̂t,irt,j∀i, j. From [Lemma 5.6],36 it is

proven that εi,j is approximately Gaussian, E[εi,j ] = 0, V ar[εi,j ] = kσ4r ,∀i, j, i 6= j. Thus, the
expectation of E[x̂i] is E[x̂i] = E[ 1

kσ2
r

∑
t

εi,txt] = 0, and the variance of x̂i is 1
k

∑
t

x2t . The random

matrix r is replaced for each iteration epoch. The variances of each layer are stored during the
learning process. Among the stored variances, the randomly selected variance is added to the
corresponding layer in inference time to ensure that the encoder does not produce the same
output from the same input. Intuitively, AnomiGAN is a probabilistic model; thus M appears
completely random to an A who observes a medical record x̂.

Note that the discussion below is based on the assumption that r is given to the A. However,
in our scenario, r is owned by the data owner and an A has no access to the r, which makes
the process even more complex than in the below settings.

Theorem 1. If M is a probabilistic model and r is a random matrix from Gaussian distribu-
tion, then M has a scheme that is indistinguishable from real data to an A.

Proof. The rationale for the proof is that if M is a probabilistic model and a r is the random
matrix of each entry that is independently chosen from a Gaussian distribution with mean
zero variance σ2r ; then the resulting scheme is identical to the random projection scheme.36

Let A constructs a distinguisher for M. The distinguisher is given an input r, and the goal is
to determine whether r is a truly random or r is generated by M. The distinguisher has two
observations. If input r is truly random, then the distinguisher has a success probability of 1

2 .
If input r is generated by M, then the distinguisher has a success probability of

Pr[M of success] ≤ 1

2
+

1

kσ4r

≤ 1

2
+

1

2lkσ4r

(7)

where l is the layer number of the encoder. Thus, A has the success probability as defined in
Equation 7.
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Table 1: Performance results of the model upon adding variance to the layer.

Layer 1 2 3 4 5 6 7 8 9 10

Breast Cancer
Correlation coefficient 0.783 0.793 0.799 0.795 0.829 0.802 0.810 0.780 0.788 0.803
Accuracy (%) 93.18 91.81 93.18 95.45 94.09 95.45 95.73 95.45 95.45 95.45
AUPR 0.991 0.985 0.997 0.995 0.925 0.965 0.981 0.987 0.995 0.991
Chronic Kidney Disease
Correlation coefficient 0.727 0.766 0.770 0.745 0.775 0.756 0.775 0.760 0.785 0.767
Accuracy (%) 92.00 90.00 92.00 90.00 92.00 94.00 94.00 90.00 90.00 92.00
AUPR (%) 0.828 0.883 0.822 0.871 0.856 0.898 0.880 0.881 0.915 0.913
Heart Disease
Correlation coefficient 0.856 0.835 0.865 0.845 0.841 0.858 0.854 0.856 0.827 0.851
Accuracy (%) 83.33 80.00 80.00 83.33 86.67 83.33 86.67 86.67 83.33 86.67
AUPR 0.836 0.922 0.853 0.918 0.963 0.927 0.922 0.955 0.924 0.906
Prostate Cancer
Correlation coefficient 0.379 0.482 0.423 0.419 0.427 0.4340 0.456 0.440 0.479 0.479
Accuracy (%) 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99
AUPR (%) 0.859 0.804 0.816 0.768 0.797 0.802 0.780 0.810 0.778 0.755

4. Results

4.1. Datasets

We simulated our approach using the Wisconsin breast cancer, chronic kidney disease, heart
disease, and prostate cancer datasets from the UCI machine learning repository.37,38 The
Wisconsin breast cancer, chronic kidney disease, heart disease and prostate cancer datasets
consist of 30, 24, 13, and 8 features, respectively. We carried out five-fold cross-validation with
the datasets that were randomly partitioned to training and validation sets of 90% and 10%,
respectively.

4.2. Target Classifiers

Many services are incorporate disease classifiers using machine learning techniques. For our
experiments, we selected breast cancer, chronic kidney disease, heart disease and prostate
cancer models from the kaggle competitions as the target classifiers. The classifiers were used
as a black-box access to our target classifier in our method. We selected these classifiers for
two reasons: a) both classifiers achieve high accuracy in disease detection in their testing
datasets, and b) these classifiers are open source implementations, which allows them to be
easily accessed as our target classifiers.

4.3. Model Training

For the training model, we used Adam39 optimizer for multi-class loss function with a learning
rate of 0.001, a beta rate of 0.5, the epoch of 50000, and mini-batch size of 10. The objective
function LE was minimized as described in Eq (3). Most of these parameters and the networks
structure were experimentally determined to achieved optimal performance. The discriminator
achieves the optimal loss after 3000 epochs, whereas the encoder required 5000 epochs to
generate synthesize data similar to original sample.

4.4. Evaluation Process

We exploited DP, in particular, the Laplacian mechanism,40 to compare the anonymization
performance against the corresponding accuracy and area under the precision recall (AUPR).
For the evaluation metric, the accuracy and the AUPR were used to measure performance be-
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Fig. 4: Anonymization performance using breast cancer, chronic kidney, heart disease, and
prostate cancer datasets: A fixed test dataset was selected from the UCI machine learning
repository. Correlation coefficient, accuracy, and AUPR were measured by changing 0.1 of the
privacy parameter for the fixed test data, δ.

tween original samples and anonymized samples according to the model’s parameter changes.
The correlation coefficient was used to measure the linear relationship between the origi-
nal samples and anonymized samples by changing the privacy parameters. We generated the
anonymized data according to privacy parameter δ and λe by randomly selecting 1,000 cases,
and obtained the average prediction of accuracy, AUPR, and correlation coefficient against the
corresponding original data. In the next step, we fixed data and generated anonymized data to
validate the probabilistic behavior of our model. A variance of each encoder layers was added
to the corresponding encoder layers in the inference time. The process was repeated 1,000
times with the fixed test data. We measured the mean of the correlation coefficient, AUPR,
and the accuracy for each of the 10 encoder layers as shown in Table 4. The results indicate
that adding variance to each of layers influences the correlation coefficient with limited effects
on accuracy.
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Fig. 5: Comparison of the target discriminator parameter λd. Accuracy is measured by chang-
ing 0.1 of the λd for the fixed privacy parameter δ.

4.5. Comparison to Differential Privacy

DP achieves plausible privacy by adding Laplacian noise Lap(λ) = Lap(S/δ) to a statistics.40

The parameter λ = 0.1 has a minimal effect on privacy and the risk of privacy increases as
the parameter λ increases. The amount of noise presents a trade-off between accuracy and
privacy. Note that the standard DP of unbounded noise version of Laplacian41 was applied
for the experiments. The experiments were conducted by increasing the parameter λ by 0.1.
Note that x-axis (0) in all Fig. 4 represents the prediction scores of original data.

Fig. 4.B shows an experiment for our proposed algorithm and DP algorithm using a fixed
chronic kidney disease tests. Both DP and our methodology showed similar performance in
the correlation coefficient, but our method showed a better performance in terms of accuracy
and AUPR. Fig. 4.A, and 4.C show experimental results for our proposed algorithm and the
DP algorithm with respect to the breast cancer and heart disease datasets. Both DP and our
proposed method showed similar performance in terms of the correlation coefficient, accuracy,
and AUPR. In the case of prostate cancer dataset (Fig. 4.D), our approach shows a better
performance in terms of the correlation coefficient and accuracy.

4.6. Performance Comparison

We evaluated the performance of our proposed method based on four classifiers (breast cancer,
chronic kidney disease, heart disease, and prostate cancer) to measure the prediction perfor-
mance of the additional discriminator (target classifier). The experiments were conducted by
changing 0.1 of the λd with the fixed privacy parameter of δ. Because the additional discrimina-
tor relies on the original classifier, the performance of the prediction accuracy should increase
as λd increases. As shown in Fig. 5, the prediction accuracy was increased by a minimum of
2% to a maximum of 6% depending on the datasets. Note that the value of the correlation
coefficient value remained constant as the privacy parameter δ was fixed.

5. Discussion

Here, we have introduced a novel approach for anonymizing private data while preserving the
original prediction accuracy. We showed that under a certain level of privacy parameters, our
approach preserves privacy while maintaining a better performance of accuracy and AUPR
compared to the DP. Moreover, we provide a mathematical overview showing that our model is
secure against an efficient adversary demonstrate the estimated behavior of the model, and the
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performance of our model compared to that of the state-of-the-art privacy preserving method.
One of our primary motivations for this study was that many companies are providing new
services based on both traditional machine learning and deep neural networks, and we believe
this will extend to online medical services. Potential risks regarding the security of medical
information (including genomic data) are higher compared to the current risks to private
information security, as demonstrated by Facebook’s recent privacy scandal.42 In addition,
it is difficult to notice a privacy breach even when there are privacy policies in place. For
example, when a patient consents to the use of medical diagnostic techniques, the propagation
of that information to a third party cannot guarantee that the same privacy policies will be
adhered to by them. Finally, machine learning as a service (MLaaS) is mostly provided by
Google, Microsoft, or Amazon owing to hardware constraints, and it is even more challenging
to maintain user data privacy when using such services.

Exploiting traditional security in the deep learning requires encryption and decryption
phases, which make its use impractical in the real world due to a vast amount of computation
complexity. As a result, other privacy preserving techniques such as DP will be exploited
in deep learning. Towards this objective, we developed a new approach of privacy-preserving
method based on deep learning. Our method is not limited to the medical data. Our framework
can be extended in many various ways to the concept of exploiting a target classifier as a
discriminator. Unlike a statistics-based approach, our method does not require a background
population to achieve good prediction results. AnomiGAN also provides the ability to share
data while minimizing privacy risks. We believe that online medical services using the deep
neural networks technology will soon be available in our daily lives, and it will no longer
be possible to overlook issues regarding the privacy of medical data. We believe that our
methodology will encourage the anonymization of personal medical data. As part of future
studies, we plan to extend our model to genomic data. The continuous investigation of privacy
in medical data will benefit human health and enable the development of various diagnostic
tools for early disease detection.
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