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The growth of publicly available repositories, such as the Gene Expression Omnibus, has
allowed researchers to conduct meta-analysis of gene expression data across distinct cohorts.
In this work, we assess eight imputation methods for their ability to impute gene expression
data when values are missing across an entire cohort of Tuberculosis (TB) patients. We
investigate how varying proportions of missing data (across 10%, 20%, and 30% of patient
samples) influence the imputation results, and test for significantly differentially expressed
genes and enriched pathways in patients with active TB. Our results indicate that truncating
to common genes observed across cohorts, which is the current method used by researchers,
results in the exclusion of important biology and suggest that LASSO and LLS imputation
methodologies can reasonably impute genes across cohorts when total missingness rates are
below 20%.
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1. Introduction

The importance and availability of biological data repositories continues to grow at an as-
tounding rate.1–5 At the time of writing, the Gene Expression Omnibus (GEO) houses 27,856
datasets with gene expression profiling by array in humans.6 This wealth of data has allowed
many researchers to use meta-analysis of gene expression as a tool for biological discovery
and validation. Many methodologies have been proposed for efficient meta-analysis of gene
expression array data, including conormalization of genes and workflows for best identifying
gene signatures.1–4 Currently, these analyses restrict to the common set of genes observed
across all included studies which will directly impact downstream analyses.5

Imputation methods, such as Local Least Squares (LLS) and k-Nearest-Neighbors (k-NN),
have been developed to recover missing gene expression data within a single study, however,
published attempts to recover missing genes across an entire dataset have been limited.5,7 Only
one study examined imputing genes across two Affymetrix platforms where probe names of one
platform were a subset of probe names from the other. This study demonstrated reasonable
accuracy in imputing 9986 probes using the information which was common across both
platforms with LASSO imputation.5 Currently, methods have not examined imputing genes
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across cohorts from many different gene expression platforms.
Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis, is a global health cri-

sis. In 2017, there were 10 million reported cases of active TB and an estimated 1.3 million
deaths from the disease.8 In 2014, the WHO developed the Sustainable Development Goals
which included ‘End TB’, a program aiming to eradicate the TB epidemic by 2030.9 Accom-
plishing this goal requires the development of improved diagnostics that are less invasive and
more reliable. Multiple studies have proposed using a ‘gene signature’ for the diagnosis of
TB using gene expression from whole blood.2–4,10–20 These signatures seek to summarize TB
specific host immune responses.21 While many gene signatures for the diagnosis of active TB
have been proposed, currently none have been approved for use in the clinic and a point-of-
care diagnostic.8,20 This has led some researchers to examine a meta-analysis method, where
publicly available data across many cohorts of patients is used for the discovery of a gene
signature to diagnose TB.1–4

We posit that important biology is missed when studies integrating gene sets only focus on
the common gene set and show, given some guidelines, that it is possible to impute genes across
an entire dataset with reasonable accuracy. Our analysis targets gene expression data from the
host’s response to TB. We identify 20 datasets from GEO which evaluate gene expression in
human blood of patients with TB disease, and merge these sets using gene symbols common
across all studies. We then examine the components of 16 published gene signatures for active
TB for their presence or absense in the merged dataset. We compare eight gene expression
imputation strategies on the ability to impute genes across entire cohorts, and evaluate the
impact of the imputed genes on the biological relevance through differential expression (DE)
analysis and pathway enrichment.

2. Methods

All analyses were completed using R 3.5.0 (R Core Team, Vienna, Australia).

2.1. Data Sources

Gene expression array data was downloaded from the Gene Expression Omnibus (GEO)6

database with accession numbers listed in Table 1. Search terms to identify datasets included
‘Tuberculosis’ and ‘TB’, and results were limited to studies in human subjects examining gene
expression in whole blood. This multi-cohort analysis consists of 20 distinct datasets across 30
different countries and includes patients with active TB, latent TB infections (LTBI), other
diseases, as well as healthy controls and treated patients (includes all individuals treated for
TB, LTBI and other diseases). In total, the dataset includes 3,096 participants.

2.2. Data Processing

Data was processed following previous meta-analyses for gene expression array data.1–4 Where
possible, supplementary files were downloaded from GEO. Raw affy values were normalized
using GCRMA.36 All probe names were converted to gene symbols using the most up-to-date
annotation packages from Bioconductor.37 Where multiple probes mapped to a single gene
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Table 1. Summary of all samples included in the study.

GSE
Number of Samples

Healthy Controls LTBI Other Diseases TB Treated Total

GSE11601422 24 58 - - - 82
GSE1949110 117 69 193 61 14 454
GSE2862323 37 25 - 46 - 108
GSE3134824 - - - 27 108 135
GSE3460825 18 - 18 8 - 44
GSE3623826 - - - 9 9 18
GSE3725011 - 167 175 195 - 537
GSE3993912 - 14 108 35 - 157
GSE3994012 - 54 169 111 - 334
GSE4055327 - - - 29 175 204
GSE4105513 9 9 - 9 - 27
GSE4283414 118 - 108 40 15 281
GSE5615328 18 - - 18 35 71
GSE5841129 - - - 31 76 107
GSE6214730 - - - 52 - 52
GSE6958131 - 25 10 15 - 50
GSE7340832 - 35 39 35 - 109
GSE8174633 2 1 - 5 - 8
GSE8345634 61 - 49 92 - 202
GSE8389235 - - 17 99 - 116

Total 404 457 886 917 432 3096

symbol, the median expression value was used. Within each cohort, expression values were
quantile-normalized, log2-transformed, mean-centered and scaled by standard deviation. Each
dataset was then run through an alias converter in the ‘limma’ package38 ensure the most
common alias for each gene was used prior to merging. Cohorts were merged based on gene
symbol. To reduce batch effect and ensure gene distributions were common across all datasets,
FSQN normalization was applied.39

2.3. Generation of Missing Values

The data has been processed according to the workflow shown in Figure 1. In short, the
set of genes that are common to all patients in the full dataset were selected (‘complete
subset’). Similar to previous imputation studies, 5% of the genes in the complete subset were
randomly selected to be masked as missing values. We considered three different cutoffs of the
‘missingness rate’, or the proportion of patients with missing genes, at 10%, 20%, and 30%.7

Unlike previous studies, we selected patients across full cohorts. To do this, we iteratively
selected a cohort at random and masked gene k across all patients in that cohort if the sample
size was within 30 patients of the cutoff rate. The process was repeated for each of the selected
missing genes. Datasets with masked genes are referred to as the ‘incomplete subset’.
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Fig. 1. Workflow for imputing missing gene expression data

2.4. Evaluation of Biologically Relevant Missing Genes

Through an extensive literature search, Warsinske et al previously identified 16 gene signatures
designed to classify active TB from other clinical groups.20 We evaluated the individual genes
which comprise each of these gene signatures for their presence and absence in the common
genes across all 20 datasets in Subsection 2.1. To reduce the number of missing biomarkers, we
ran each member of the gene signature through the ‘limma’ alias converter used on the merged
multi-cohort data. Where probe names were reported with gene names in the 11 studies, we
retrieved updated gene symbols using the Bioconductor annotation packages.37

2.5. Imputation methods

Eight frequently-used imputation methods were implemented on the incomplete subset: Least
Absolute Shrinkage and Selection Operator (LASSO), Local Least Squares (LLS), Singular
Value Decomposition (SVD), Bayesian Principal Component Analysis (BPCA), Random For-
est, k-nearest-neighbors (k-NN), mean (by class) and median (by class).5,40–44 LASSO impu-
tation builds a LASSO regression model for each gene with missing values, selecting lambda
via 10-fold cross validation.5 RF imputation replaces missing genes with the mean value, then
trains a random forest (ntree=500) to compute a proximity matrix. Then, using proximity as
a weight, it re-imputes the missing values as the weighted average of the non-missing genes
and iterates.40 In k-NN, the k (k=10) nearest neighbors (Euclidean distance) for a missing
gene are identified, and the weighted average of these neighbors is the imputed value.41 LLS
imputation selects k (k=10) genes using correlation structure (pearson) and imputes the miss-
ing values as a linear combination of the k genes using local least squares regression.42 SVD
imputation finds a low rank singular value decomposition (k=3096) and uses the most signif-
icant eigenvectors to linearly impute missing genes.41 BPCA imputation works by building a
probabilistic PCA using Bayes’ theorem, and then imputes values using a Bayes estimation
algorithm (nPcs=2).43 Mean and median (by class) impute across cohorts by taking the mean
or median values of the observed genes by the disease class of the missing patient.44

2.6. Assessment of Imputation Performance

We evaluated the performance of each imputation method using the Normalized Root Mean
Square Error (NRMSE).

NRMSE =

√
mean

(
(yoriginal − yimputed)2

)
variance(yoriginal)

(1)
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Here, yoriginal refers to the complete subset and yimputed refers to the imputed subset. Smaller
NRMSE values indicate better accuracy.7 We also computed NRMSE for each imputed gene
for finer granularity and assessment of the imputation methods.

2.7. Differential Expression Analysis and Pathway Enrichment

To evaluate the differences in downstream analysis across the complete subset, the incomplete
subsets, and the imputed subsets, we used ‘limma’ to conduct differential expression (DE)
analysis. For this analysis we contrasted active TB with any other disease category. Genes
which met a Benjamini-Hochberg adjusted p-value < 0.05 and an absolute log fold change
(log FC) of at least 0.5 were considered significant. To compare the significantly DE genes,
we examined the intersection and set difference across subsets. Lists of significantly DE genes
and their subsequent log FC were then sent to the ConsensusPathDB to search for enriched
pathways from KEGG, wikipathways, reactome, and SMPDB with an enrichment p-value
< 0.01 and a minimum of at least 4 significant genes.45 The intersection and set difference of
pathways were examined and interpreted through literature review.

3. Results

3.1. Evaluation of the common gene subset across previous TB signatures

A total of 14,003 unique genes were common to all 20 datasets out of a a total of 22,283 possible
genes. Previously, 16 unique gene signatures which classify active TB from other disease classes
were identified, for a total of 607 genes associated with active TB disease.2,10–20 Of those 607
genes, 132 were absent across the common gene subset. Hence, approximately 22% of genes
previously proposed as being diagnostic for TB would be excluded from downstream analysis
if we restrict to common genes observed across all datasets. The distribution of the missing 132
genes across all 3,096 patients is shown in Fig. 2. Most genes were missing in less than 5% of
the total number of patients, indicating that much of this biology is imputable. Notably, only
22 of the 132 missing genes had been reported as part of a TB diagnostic signature in at least
two studies. Of these 22 missing genes, 12 are missing in less than 10% of patients included in
the multi-cohort, with 16 out of 22 missing in less than 1

3 of samples. The remaining 6 genes
are missing from more than 80% of the samples included in this analysis.

3.2. Assessment of imputation performance

To evaluate the impact of imputing genes across whole datasets at varying missingness rates,
we used the NRMSE across the imputed and complete subset of genes. We also evaluated the
NRMSE in each imputed gene compared to the true expression values in the complete subset.
We report the minimum, median, mean, and maximum NRMSE across the imputed genes, and
the full data NRMSE across the complete imputed dataset for each model and missingness rate
in Fig. 3. We included a color scale varying from blue (small NRMSE) to red (high NRMSE)
within each column of the table. The order of models presented in the table is indicative of
the median NRMSE value within each missing proportion. When evaluating NRMSE at the
imputed gene level, the LASSO and LLS models had the best overall performance, although
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Fig. 2. The frequency of missing genes from previous TB signatures across the number of patients.
Most previously reported genes were missing from less than 5% of total patients across the multi-
cohort and only 6 genes missing in > 80% of patients were reported in more than one TB signature.
Genes missing in > 2500 patients largely represent genes which were unnamed or open reading frames
at the time of the original TB signature publication.

LASSO models took approximately a 1.5 days to impute while LLS imputed in less than 10
minutes.

3.3. Impact on downstream analysis

To investigate the impact on downstream analysis across incomplete and imputed datasets
at varying levels of missing data, we used ‘limma’ to identify significantly DE genes in each
generated dataset compared to the complete cohort.38 To better interpret the impact that dif-
ferences in significantly DE genes in each dataset have on informing biological understanding
of TB mechanisms, we enriched each set of DE genes into pathways using ConsensusPathDB
(p < 0.01). Gene pathway enrichment can be used to evaluate which predefined biological pro-
cesses are associated with gene sets of interest.45 Pathway enrichment of the imputed datasets
allows the comparison of how the imputation perturbs interpretation of gene expression results
in terms of differences in biological processes. The results from both the DE gene and path-
way enrichment analyses are shown in Table 2. Significant genes from the complete dataset
were enriched for a total of 45 pathways under this analysis schema. Notably, the incomplete
subset missed 11 pathways indicated as significant in the complete dataset, with most impu-
tation methods recovering all but 2 pathways. Critically, one of the pathways missed by the
incomplete dataset was ‘The human immune response to tuberculosis’, and this pathway was
recovered all but one of the imputation models.

4. Discussion

Meta-analysis of gene expression data is becoming increasingly common as public repositories
of biological data continue to grow.1–5 While best practices for integrating and analyzing
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median

Fig. 3. Heat table of the NRMSE values over the individually imputed genes. Color scale varies
from lowest NRMSE in the column to highest NRMSE in the column. Single cohort studies report
full data NRMSE values between ∼ 0.015 − 0.09.

biological data across distinct cohorts are debated, most researchers have elected to focus on
the common subset of genes present across all studies. Here, we extend imputation concepts
developed to address missing values of genes within studies to account for missingness across
full cohorts of patients.

Approximately 22% of genes which had been previously included in a diagnostic signature
for active TB were missing when analyses were restricted to common genes across all datasets,
suggesting that important biology is being missed as a result of this restriction. Imputing
reduces the impact of the missing genes substantially; 66 out of 132 genes are missing in less
than 10% of patients, 83 genes in less than 20% of patients, and 92 genes in less than 30% of
patients. Of the genes missing in more than 30% of patients, 28 out of 40 genes represent an
open reading frame or do not have an available gene symbol. Hence, in this analysis imputation
allows for the recovery of most well-annotated genes associated with active TB.

While the overall NMRSE results examining the impact of existing imputation methods
across full cohorts of data are generally reasonably small (approximately 0.06 to 0.1), they are
higher than observed in similar studies which have examined imputation within a single cohort
(approximately 0.015-0.09).7 This result is to be expected; the multi-cohort data presented
here is heterogeneous, encompassing patients from 30 countries and across 27 diseases. This

Pacific Symposium on Biocomputing 25:307-318(2020) 

313



T
ab

le
2.

A
su

m
m

ar
y

of
th

e
re

su
lt

s
fr

om
d

ow
n

st
re

am
an

al
y
si

s
w

it
h

ea
ch

im
p

u
ta

ti
on

sc
h

em
e.

A
ll

im
p

u
ta

ti
o
n

st
ra

te
g
ie

s
o
u

tp
er

fo
rm

ed
th

e
in

co
m

p
le

te
su

b
se

t
in

te
rm

s
of

p
re

se
rv

in
g

re
le

va
n
t

T
B

b
io

lo
gy

,
w

it
h

b
es

t
re

co
ve

ry
of

ge
n

es
a
n

d
p

a
th

w
ay

s
o
b

se
rv

ed
w

it
h

L
A

S
S

O
.

D
at

a
S

u
b

se
ts

Im
p

u
ta

ti
on

M
o
d

el
M

is
si

n
gn

es
s

R
at

e
G

en
es

O
ve

rl
ap

M
is

si
n

g
G

en
es

E
x
tr

a
G

en
es

P
at

h
w

ay
O

ve
rl

ap
M

is
si

n
g

P
a
th

w
ay

s
E

x
tr

a
P

a
th

w
ay

s
T

B
P

a
th

w
ay

In
co

m
p

le
te

-

0.
1

28
1

17
-

34
1
1

-
-

0.
2

28
0

18
-

34
1
1

-
-

0.
3

28
1

17
-

34
1
1

-
-

Im
p

u
te

d
L

A
S

S
O

0.
1

29
7

1
-

45
-

3
Y

es
0.

2
29

7
1

1
45

-
3

Y
es

0.
3

29
8

-
-

45
-

3
Y

es

Im
p

u
te

d
L

L
S

0.
1

29
5

3
-

45
-

3
Y

es
0.

2
29

5
3

1
45

2
2

Y
es

0.
3

29
6

2
-

45
-

3
Y

es

Im
p

u
te

d
K

N
N

0.
1

29
5

5
2

43
2

3
Y

es
0.

2
29

1
7

1
43

2
-

Y
es

0.
3

29
4

4
1

37
8

-
-

Im
p

u
te

d
B

P
C

A
0.

1
29

4
4

-
43

2
3

Y
es

0.
2

29
3

5
1

43
2

3
Y

es
0.

3
29

4
4

-
42

3
2

Y
es

Im
p

u
te

d
R

F
0.

1
29

3
5

-
43

2
3

Y
es

0.
2

28
9

9
-

43
2

3
Y

es
0.

3
29

3
5

-
43

2
3

Y
es

Im
p

u
te

d
S

V
D

0.
1

29
1

7
-

43
2

3
Y

es
0.

2
28

6
12

-
42

3
3

Y
es

0.
3

29
0

8
-

41
4

-
Y

es

Im
p

u
te

d
M

ea
n

0.
1

29
3

5
2

43
2

3
Y

es
0.

2
29

2
6

5
43

2
-

Y
es

0.
3

29
6

2
4

45
2

-
Y

es

Im
p

u
te

d
M

ed
ia

n

0.
1

29
3

5
2

43
2

3
Y

es
0.

2
29

4
4

7
43

2
-

Y
es

0.
3

29
6

2
8

45
-

-
Y

es

Pacific Symposium on Biocomputing 25:307-318(2020) 

314



heterogeneity likely makes imputation difficult.
Best performance in terms of NRMSE across full datasets and within imputed genes was

observed from LASSO and LLS imputation models. Both methods utilize least squares regres-
sion models, perhaps indicating that these models are adept at imputation across cohorts.

Downstream analysis demonstrated all imputed methods outperform the incomplete data,
regardless of missingness rate. The incomplete subset, representing the restricted analysis,
missed between 17 and 18 DE genes and 11 enriched pathways. Across the different imputation
schemas, on average 5 DE genes were absent compared to the complete subset (range between
complete recovery and 12 missing DE genes). Most algorithms missed two pathways which were
present in the complete subset, and found 3 pathways which were not. Across all imputation
methods, there was remarkable consistency in the missed and extra pathways.

Of the 24 imputed data sets, 18 consistently missed the ‘Pertussis - Homo sapiens (human)’
and ‘Complement and coagulation cascades - Homo sapiens (human)’ pathways. Pertussis is a
respiratory tract infection better known as whooping cough and may share some symptomatic
similarities with TB.46 The ‘Complement and coagulation cascades’ pathway is closely related
to regulation of IFNγ and has previously been linked to TB progression.47

The same three extra pathways commonly were enriched with imputed data: ‘Generic
Transcription Pathway’, ‘RNA Polymerase II Transcription’ and ‘Gene expression (Transcrip-
tion)’. All three of these pathways may be indicative of epigenetic changes or gene silencing
occurring during infection. While these pathways did not reach the p < 0.01 significant thresh-
old in the complete subset data, they were on the cusp of significance (p = 0.0101, p = 0.0101,
and p = 0.0127 respectively). Hence, the inclusion of these pathways is indicative of small
perturbations of gene values that were in the complete data subset and likely not a symptom
of misleading biology.

4.1. Limitations

Given the nature of data missing across full cohorts, it is difficult to evaluate whether missing
data is a result of missing (completely) at random (MAR or MCAR) or missing not at random
(MNAR). We assume missing data is attributable to platform specificity or prior data analysis.

While LASSO and LLS methods had the strongest observed performance in this study, it is
possible that other methods would have superior performance in other applications. Moreover,
further study is needed to understand the bounds on the number of datasets with observed
data across a gene in order to impute expression with reasonable accuracy, as well as the
proportion of observed genes necessary to impute missing genes.

The mapping of probe sets to gene symbols is dynamic; as our understanding of biology
deepens many definitions have changed.5 For example, some reported gene names in TB
signatures are missing from 100% of samples in the muti-cohort data. Recovering these genes
requires the identification of the original probe names to link to an updated gene symbol.

5. Conclusion

Downstream analysis of imputed data indicates that imputed genes missing in up to 30% of
patients did not drastically alter the significantly DE genes or enriched pathways. When no
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imputation scheme was used, 11 out of 45 pathways were missed compared to the full data. We
urge researchers considering a meta-analysis of gene expression data carefully to examine the
potential loss of information that occurs when restricting analysis to common genes present
across all datasets and to instead consider imputation strategies.
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