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Motivation: Social media is a largely untapped source of information on side effects of
drugs. Twitter in particular is widely used to report on everyday events and personal ail-
ments. However, labeling this noisy data is a difficult problem because labeled training data
is sparse and automatic labeling is error-prone. Crowd sourcing can help in such a scenario
to obtain more reliable labels, but is expensive in comparison because workers have to be
paid. To remedy this, semi-supervised active learning may reduce the number of labeled
data needed and focus the manual labeling process on important information.
Results: We extracted data from Twitter using the public API. We subsequently use Ama-
zon Mechanical Turk in combination with a state-of-the-art semi-supervised active learning
method to label tweets with their associated drugs and side effects in two stages. Our re-
sults show that our method is an effective way of discovering side effects in tweets with an
improvement from 53% F-measure to 67% F-measure as compared to a one stage work flow.
Additionally, we show the effectiveness of the active learning scheme in reducing the labeling
cost in comparison to a non-active baseline. Contact: burkhardt@informatik.uni-mainz.de
Availability: Code and data will be published on https://github.com/kramerlab.
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1. Introduction
Adverse drug reactions (ADRs) are one of the leading causes of death.1 Frequently, drugs are
pulled off the market due to unforeseen side effects. It is therefore important to monitor the
effects of drugs even after they have been approved and put on the market. Social media is
an important source of information for this task that is difficult to exploit.

Labeling data from social media is difficult because the data is typically noisy due to the
frequent use of colloquial language, abbreviations, emoticons, misspellings and grammatical
mistakes. Additionally, there is only a small amount of labeled training data publicly available
that covers a limited number of drugs and side effects.

Noisy twitter data is difficult to annotate automatically and manual labeling is expensive.
Therefore we propose to use semi-supervised active learning in combination with crowd sourc-
ing the annotation process via Amazon Mechanical Turk (MTurk). In active learning (AL),
the data that is to be annotated is actively selected. In this way, the classification algorithm
is presented with more informative training examples, which helps to speed up training and

c© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
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save annotation cost. A common way of doing this is to select the training examples that the
classifier is most uncertain about. However, it is also important to consider the representative-
ness of selected examples so as to not query too many outliers. Semi-supervised learning takes
advantage of the unlabeled data to learn the distribution of the data, which may improve
classification.

MTurk is a service provided by Amazon which helps to crowd source simple repetitive
tasks, which nevertheless need to be completed by a human, to workers all over the world.
E.g., one task could be to label one tweet with a side effect and for each tweet, a worker is paid
a certain, small amount of money. The combination of MTurk and active learning was first
proposed by Laws et al.,2 who applied this method on named entity recognition and sentiment
classification using a simple pool-based uncertainty active learning scheme. Up to now, we are
not aware of any work that uses MTurk and active learning for the identification of side effects
on social media.

A relatively small number of tweets was annotated for the TwiMed3 dataset, where an-
notators are trained professionals. On the other hand, an automatic labeling approach was
taken by Eshleman and Singh,4 where the graph topology of a bipartite graph is explored.
In this approach, the side effects and drugs are nodes in a graph and a connection between
a drug and a side effect signifies that the drug has the specific side effect. The labeling in
this work is done automatically using a word matching tool called MetaMap.5 While the first
approach is slow and requires expensive experts, the second approach is error-prone and noisy.
We aim to develop an alternative that enables to label tweets more reliably than with the
second approach and in greater quantities than with the first approach. Our contributions are
as follows:

(1) We propose an annotation pipeline (see Figure 1) that proceeds in two stages: One for
annotating the mention of a medication-intake and one for annotating self-experiential
side effect mentions.

(2) We employ a semi-supervised active learning method for the problem of discovering side
effects that is shown to be competitive with other state-of-the-art active learning meth-
odsa.

(3) We introduce a new method to ensure the representativeness of the training batches.
(4) We describe a workflow for obtaining Twitter data for a given list of drugs and for pre-

filtering this Twitter data for potential side effects.
(5) For the first time we combine MTurk and active learning with the goal of discovering side

effects in Twitter data.

In Section 2 we describe our methods. In Section 3 we explain our experimental settings and
report our results on an external dataset and on our own dataset. Finally, we discuss the
results in Section 4, touch upon related work from a technical point of view in Section 5, and
conclude in Section 7.

aThe method was previously presented as a poster at the Bayesian Deep Learning Workshop at
NeurIPS 2018. http://bayesiandeeplearning.org/2018/papers/6.pdf
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Fig. 1. Workflow.

2. Methods
2.1. Labeling tweets using MTurk
This section describes our novel workflow for using MTurk to discover side effects.

The labeling process consists of two stages (see also Figure 1). In the first stage, tweets are
labeled according to the drug that was matched. The workers are asked if the author of the
tweets really reports taking the drug. In the second stage, the tweets are prefiltered according
to the results of the first stage. Only tweets that were posted after a user reported taking a
drug are considered.b In this stage, the workers are asked if the tweet contains a side effect
and have to select it from a drop down list with auto-completion. Both stages employ the
active learning framework introduced in Sections 2.3–2.5.

The instructions are shown below the tweet and a side effect can be typed into a text
box with auto-completionc. Each batch consists of 100 tweets and contains five test tweets
that are designed to test annotators. Annotators who label the test tweets incorrectly are
excluded from working on batches in the future. Two test tweets are positive, i.e. they contain
a side effect or mention a medication intake (“My headache drives me crazy! Off work since 4
days now”, “Omg Aleve was my life saver this morning”). This helps to exclude workers who
always answer “None”. The other three test tweets are negative and help to exclude workers
who disregard negated statements such as “I don’t have a headache” or other cases where
possible side effects are mentioned, but not as a side effect. They also have to check if a tweet
is self-experiential. E.g. the tweet “My uncle has a headache” should result in the answer
“None” because the author did not experience the effect himself. Each tweet is labeled by
three different workers. Workers can choose a side effect out of a list of side effects given by
the SIDER database.6 If no side effect is mentioned in the tweet, workers should type “None”.
If there is a side effect, but the worker cannot find it in the provided list, there is an optional

bTo determine this, we use the classifier of the first stage to rank all tweets. We then choose the
number of positive tweets according to the proportion in the test set.
cjQuery Typeahead 2.10.6 https://www.npmjs.com/package/jquery-typeahead
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free text field where comments can be entered. We separated 500 of the remaining tweets as
a test set. For this test set we required 5 annotations for each tweet and performed majority
voting to arrive at the final annotation. Another independent test set was obtained at a later
stage.

2.2. Extracting Twitter Dataset
We focus on the so-called TG-Gate drugs,7 a number of drugs for which toxicogenomic data
is available that enables to explore possible mechanistic explanations for side effects in the
future. The list of TG-Gate drugs was matched to the Drugbank database, leading to a list
of 130 drugs. Using the Drugbank database, synonyms, product names and mixture names
were extracted. This list was further reduced according to different criteria. We filtered out
words such as “Capsule/s”, “Tablet/s”, “Caplet’s”, “Tab’s”, “Pieces”, “Srt”, “Src”, “Imp”
and acronyms related to drug behaviour such as “CD”, “CR”, “LA”, “SR” and “TR”. Also
dosage information and time frames like “7-day” were removed from the drug names. Drug
names shorter than 5 characters or longer than 20 characters were removed because they were
frequently not relevant drug names anyone would mention in a tweet of 140 characters. Drug
names that are the same for multiple drugs were also removed. Additionally, a number of
words was removed manually that led to confusion with side effects or other things such as
“Heartburn Relief”, “Crazy Coconut” or “Leader All Day”. We ended up with a list of 1,684
search terms that we will publish along with our code on github. We initially downloaded
99,755 tweets using these search terms. These tweets mentioned 97 out of the 130 drugs we
were looking for. Subsequently, we also collected all tweets that were posted up to seven days
following one of the initial tweets by the same user. As one does not know the precise dosage
or whether it was single dose or long-term use, one week appears as a suitable heuristic choice
for a cut-off date. This led to an additional dataset of 4,141,233 tweets.

The data was extracted using the Twitter public API over the course of ca. one month in
December and January 2017. Tweets with links or media and retweets were excluded, tweets
not written in English and tweets by the user SickAnimalBot were excluded as well. Further
processing of the tweets included the removal of stop words and the application of a tweet
tagger8d. We ignored tweets related to the drug caffeine, because there were disproportionately
many tweets about coffee. We ignored tweets with an URL or email address (based on the
tagger output) and stemmed the words using the PorterStemmer as implemented in Lucene.

For the bag of words representation of the data, we deleted the punctuation, abbrevia-
tions, foreign words, possessive endings, symbols and numbers. Hashtags were replaced with
<hashtag>, emoticons with <emoticon>, @mention with <mention>, also based on the tag-
ger output. We then built the vocabulary by choosing the words that occur more than five
times and add remaining side effects and synonyms of side effects. This leads to a vocabulary
size of 5,601 for the first stage and 4,669 and 4,741 for the active and random run of the second
stage, respectively. Duplicates according to the bag of words representation are deleted and
tweets with less than four words are removed as well.

dhttp://www.cs.cmu.edu/~ark/TweetNLP/#parser_down, model.20120919
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2.3. Semi-supervised Variational Autoencoders
The proposed method is derived from variational autoencoders, with our own additions for
active learning described towards the end of this subsection and in Subsections 2.4 and 2.5.
Variational autoencoders are generative models that put a prior distribution on the latent
variables (Kingma and Welling9). The observed input x is assumed to be generated by a
distribution pθ(z)pθ(x|z) that involves the latent variable z and its prior distribution pθ(z). The
intractable posterior pθ(z|x) is approximated by a variational distribution qφ(z|x). The two
distributions are parameterized by θ and φ that are the parameters of the decoder and the
encoder of the autoencoder neural network, respectively.

The semi-supervised VAE10 optimizes a different objective dependent on whether the label
y is observed or not. If the label is observed, the objective is:

log pθ(x, y) ≥ Epφ(z|x,y)[log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(z|x, y)] = −L(x, y)

In the other case with an unobserved label the objective is:

log pθ(x) ≥ Epφ(y,z|x)[log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(y, z|x)]

=
∑
y

qφ(y|x) (−L(x, y)) +H (qφ(y|x)) = −U(x)

We implement this by adding each unlabeled example twice, once with a positive label and
once with a negative label, which enables us to modify the last part of the equation by removing
the weight qφ(y|x), effectively giving both classes equal weight. This reduces the variance of
the loss, especially in the early stages of training, and results in a similar performance:

−U ′(x) = −L(x, y) +H(qφ(y|x))

The bound for the labeled part of the dataset is then given by:

JL =
∑

(x,y)∼p̃l

L(x, y), (1)

where p̃l and p̃u refer to the empirical distributions over the labeled and unlabeled subsets of
the whole dataset respectively, and the bound for the unlabeled part is given by

JU =
∑

(x,y)∼p̃l

∑
x∼p̃u

U ′(x).

If we want to use this model for classification, we have to add a classification loss to Equation
1, resulting in the extended objective

J αL = JL + α · Ep̃l(x,y)[− log qφ(y|x)],

where α is a hyperparameter that controls how much weight is given to the discriminative
part of learning. It is set to α = 0.1 ·N .

In our AL method, we train with all remaining unlabeled data. However, in the beginning
of training, this gives a lot of weight to the unlabeled data. Therefore, we train with the
labeled data for more iterations in order to achieve a balance between unlabeled and labeled
training data. If L is the number of labeled data and U is the number of unlabeled data, we
train with the labeled data for dUL e iterations.
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Algorithm 1 Active Learning Algorithm
Input: Unlabeled Dataset D, Initial Labeled Data L
Output: Labeled Instances L, Trained Classifier C
1: while not converged do
2: Train classifier: C ← Train(L)
3: Compute uncertainty score (Equation 2) for all d ∈ D
4: Select 900 most uncertain instances U ⊂ D

5: R = U

6: while |R| > 100 do
7: Train a classifier C to distinguish R and D

8: R← R\instance that belongs to R according to C
9: end while
10: Obtain labels for selected instances R using MTurk
11: L← L ∪R
12: D ← D \R
13: end while

2.4. Uncertainty
We compare two different uncertainty measures for our method. The first is entropy:
H(p(y|x)) = −Ep(y|x)[log p(y|x)] and the second is the Bayesian active learning by disagreement
(BALD) uncertainty measure:11

I[y, ω|x,Dtrain] ≈ −
∑
c

(
1
T

∑
t

p̂tc

)
log
(

1
T

∑
t

p̂tc

)
+ 1
T

∑
c,t

p̂tc log p̂tc, (2)

where p̂tc is the estimated probability for class c in dropout iteration t and T is the total number
of dropout iterations.

2.5. Representativeness
Uncertainty strategies are known to request outliers that are not representative of the data
as a whole. This is why we also take the representativeness into account. We compare two
different strategies. The first strategy requests labels for instances xi that maximize Z(xi) ∗ui,
where ui is the uncertainty and the density Z(xi) is given as follows:12

Z(xi) = exp
(

1
|D|

∑
xh

−β(DKL(p(W |xh)||λp(W |xi) + (1− λ)p(W )))
)
,

where W is a random variable over the vocabulary, DKL is the Kullback-Leibler divergence, λ
is a smoothing parameter and β determines the sharpness of the distance metric.

The second strategy consists of two steps. First, the most uncertain instances are selected.
Here we select a number that is larger than what we actually need. In the second step we
randomly pick a subset of the uncertain instances that were selected in the first step. This
has the effect that we still select uncertain instances, but representativeness is also taken into
account through the random sampling step.
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As a third strategy we consider a more targeted version of strategy two. Instead of randomly
sampling instances, we iteratively remove instances that belong to the uncertainty pool with
high confidence (see Algorithm 1, lines 6–9). This means we train a classifier to differentiate
the uncertain instances from the whole dataset repeatedly and remove one instance at each
step until we arrive at a new training set of instances that are maximally uncertain, but also
representative in the sense that the training set cannot be distinguished from the entire pool
by a classifier.

3. Results
3.1. Experimental Setting
First we evaluated our method on an existing dataset of labeled tweets13,14 with 6,455 tweets
that are classified according to whether or not they mention a side effect of a drug. Approx-
imately 10% of the data are labeled as positive. The vocabulary size is 2,651 after pruning
stop words and stemming. For the CNN method we did not employ stemming to make better
use of the word vectors.

We compare our method to two different baselines. First, we compare to the Naive Bayes
with EM method,12 which is similar to our method in that it also uses semi-supervised learn-
ing. Second, we compare to the deep Bayesian AL method by Siddhant and Lipton15 as a
recent state-of-the-art method based on CNNs. For the first method we use our own reimple-
mentation, whereas for the second method we use the code provided by the authorse.

The parameters for our method are commonly used default parameters and set as follows:
75 topics, a learning rate of 0.001, a batch size of 50, two layers of hidden neurons with 512 and
256 neurons respectively, we take one sample and we train with early stopping using 10% of
the current labeled training set for validation. The architecture is the same as in ProdLDA.16

We report results averaged over 10 runs of 5-fold cross validation. All methods are trained on
an initial batch of 100 random documents and subsequently we add 100 new documents in
each AL acquisition step.

3.2. Comparison with other Active Learning Methods
In the upper left plot of Figure 2 we compare different AL methods. The Naive Bayes method
with EM clearly fails on this Twitter dataset. However, our method is better than the CNN
method by Siddhant and Lipton.

The upper right plot of Figure 2 compares the supervised and semi-supervised variant
of our method. We can see that the AL variant is better than the non-active variant and
the semi-supervised AL variant has an even steeper performance increase in the beginning of
training. Thus, we show that both components of our method, the AL component and the
semi-supervised component, work well together and improve over the non-active baseline.

eWe adapted the implementation (https://github.com/asiddhant/Active-NLP) to the same train-
ing and testing setting that is used for our method. In particular we modified it to not use the test
set for selecting instances.
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Fig. 2. Plotted is the F-measure against the number of labeled documents averaged over 10 runs of
5-fold cross validation; upper left: different AL methods are compared; upper right: the supervised
and semi-supervised variant are compared; lower left: different uncertainty strategies are tested, lower
right: different density methods are tested. All results shown are for the 1 stage process.

In the lower left plot of Figure 2 we test different uncertainty strategies. From these results
we cannot conclude that one strategy is preferable to another. Entropy and BALD perform
more or less on par. Also, the first density strategy12 does not seem to have a positive effect.

The other density strategies are evaluated in the lower right plot of Figure 2. Here we
can see that subsampling a larger pool of uncertain examples according to strategy three
as described in Algorithm 1 and Section 2.5 leads to a better performance as compared to
strategies one and two. Therefore, we decided to use this strategy with a pool of 900 examples
for our labeling experiments on MTurk.

3.3. Results on Active Learning with MTurk
To summarize the dataset we obtained through annotation with MTurk, some statistics are
shown in Table 2. Overall we collected a dataset of 8,201 labeled tweets divided into annota-
tions for medication intake and in a second stage annotations for self-experiential side effect
mentions. In each stage, we did an active learning run and a baseline run where the tweets
were randomly selected for annotation.

After stage 1 was completed, we used the medication intake tweets to filter the potential
side effect mentions of the second stage. That means, we only suggested potential side effect
mentions for annotation where a medication intake was confirmed through the classifier that
was trained in the first stage.

Results are shown in Figure 3. We show the F-measure, precision and recall on the test
set over the course of one training run. The number of training examples is shown on the
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Fig. 3. F-measure, precision and recall on the test set for the MTurk experiments, where 1 stage
means, the side effect mention is predicted directly, and 2 stage means the tweets are processed in
two stages.

x-axis. We compare the active learning method with the baseline where tweets are selected
at random. Additionally, we compare the annotation in just one stage with our proposed two
stage annotation pipeline. In the one stage annotation, side effect mentions are annotated
directly without first annotating the medication intake tweet.

We can see that the active method in two stages improves the F-measure by almost 15% as
compared to the one stage active learning method. Additionally, the active learning procedure
improves over the random procedure in both cases. Considering the difficulty of the task and
that previous work only achieves an F-measure of up to 0.52 in the detection of adverse drug
reaction in tweets,17 our result of 0.67 is clearly a step in the right direction. Of course this
result relies on the prefiltering through the first stage and thus is not directly comparable.
However, our proposed solution is promising for potential practical applications. Overall, we
found 4,446 different side effect mentions for 45 different drugs.

4. Discussion
A well-known problem of active learning is the deviation of the training set distribution from
the original dataset distribution, which may negatively impact generalization performance.
It is therefore important to reduce the training set bias that is introduced through active
learning. We evaluated two different methods for making the actively selected dataset more
representative. The method that subsamples from a larger pool of uncertain examples resulted
in a small improvement. This method simply selects examples at random, but more complex
schemes for selecting instances are possible and can be investigated in the future.

To give one example, we focus on Naproxen. Table 1 lists the most frequent side effects
for Naproxen that were found in our dataset. Naproxen is used for the treatment of pain,
menstrual cramps, rheumatoid arthritis, and fever. The most common side effects according
to the SIDER database are headache, dispepsia, influenza, pain, and asthenia. Accordingly,
these are among the most mentioned effects on Twitter. Additionally, we found frequent side
effects on Twitter that are not reported as frequent in SIDER: depression (11 mentions),
anxiety (4), sleep related issues (8) as well as various other effects such as skin or muscle
problems, showing that it may be possible to see potential side effects on Twitter that were
not reported in initial studies.
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Table 1. Side effects of Naproxen. Naproxen is
used for treatment of pain, menstrual cramps,
rheumatoid arthritis and fever. Shown are the
most frequent side effects according to the
SIDER database. We summarized all side effects
related to headache, pain etc. For example, pain
includes back pain, chest pain, hand pain, eye
pain, ear pain, neuralgia and injection site pain.
Influenza includes all influenza-like side effects
such as cough or sneezing.
side effect Freq. SIDER Freq. Our Data
Headache 15% 19
Dyspepsia 14% 10
Influenza 10% 18
Pain 3-9% 19

Asthenia 1-3% 20

Table 2. Statistics on the tweets labeled using
MTurk.
Stage 1–medication intake
#tweets labeled 4,001
#tweets with medication intake 1,151
#tweets without medication intake 2,850
#approved annotators 210
#excluded annotators 96
#annotations per tweet (train/test) 3/5
Stage 2–self-experiential side effect
#tweets labeled 4,200
#tweets with a side effect 1,667
#tweets without a side effect 2,523
#approved annotators 138
#excluded annotators 76
#annotations per tweet (train/test) 3/5

We conducted the annotation in two stages. The first stage of annotating medication intake
serves the purpose of prefiltering tweets in the second stage. Without prefiltering, our pool of
tweets in the second stage was 79,888 tweets. Through removing tweets without an associated
medication intake we reduced this to 37,886 and 38,029 for the active learning run and the
random baseline, respectively. This filtering leads to the improved precision we observed in
our results, since many potential false positives are removed.

5. Limitations
Our approach is currently only applicable on bag-of-words data, meaning that the order of the
words is completely disregarded. Considering word order in VAEs is still an active research
topic and not straightforward to solve.

The source data is limited as it relies on self-reports. While some users provide information
about their location, sex and age, others do not or provide false information. However, this can
also be seen as a strength of the approach since users are able to communicate more freely in
the perceived anonymity provided by the internet. Nevertheless, the data is necessarily biased,
which means that side effects, that are discovered in this way, need to be studied further and
be complemented with mechanistic explanations or further evidence.

The results in Table 3 were obtained on a test set that was collected at the same time as the
training set. We confirmed the results on an independent test set in subsequent experiments
where we find that the two stage process is effective, however, the advantage of active learning
as compared to the random baseline is slightly reduced, which could be due to the different
data distribution in the new test set.

6. Related Work on Active Learning and Variational Autoencoders
This section discusses related work for the method we employ for semi-supervised active
learning, which was presented at the Bayesian Deep Learning Workshop at NeurIPS 2018.
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To reduce the cost of labeling, at least two different approaches can be taken. First, semi-
supervised training takes advantage of unlabeled data to learn the data distribution and
use this implicit information to improve classification. Second, in active learning (AL) the
algorithm can choose which documents will be labeled. In this way, the number of labeled
examples can be reduced if the chosen examples are informative. Often, uncertainty is used
as a measure for how informative a training example is, but representativeness of the whole
dataset is also an important factor.

Existing work on deep Bayesian AL is based on Bayesian CNNs,18 a dropout-based ap-
proach, or on the Bayes-by-Backprop (BBB) algorithm.19 These methods place a prior on the
weights of the neural network. Gal et al.18 used Bayesian CNNs for AL on image data. Sid-
dhant and Lipton15 compared Bayesian CNNs and BBB for text classification, named entity
recognition and semantic role labeling. Both of these approaches are purely supervised and
cannot take advantage of unlabeled data.

In contrast to BBB, variational autoencoders (VAEs)9,10 place a prior on the latent vari-
ables directly, enabling semi-supervised training to discover latent factors. Recent work on
text data explored the use of different priors and network architectures.20 The neural vari-
ational document model (NVDM)21 is a VAE with a Gaussian prior, whereas ProdLDA16

uses a Laplace approximation to a Dirichlet prior. In this work we build on recent work on
implicit reparameterization gradients22 to train our network with a Dirichlet prior on the la-
tent variables. The implicit reparameterization gradients are combined with a semi-supervised
framework that is evaluated in different settings.

While Gal et al.18 have compared AL to semi-supervised methods and found similar perfor-
mance, the method we use is the first to combine both, deep Bayesian AL and semi-supervised
learning.

7. Conclusion
In this work we show how Amazon Mechanical Turk in conjunction with a state-of-the-art
semi-supervised active learning classifier can be used to efficiently extract side effects from
twitter data in a process with two stages. Active learning was shown to perform significantly
better than the non-active baseline on data labeled on MTurk. Thus, we show for the first
time the feasibility of using active learning and crowd sourcing for the task of extracting side
effects from twitter data. The data obtained from this study will be used in the next step to
search for potentially unknown side effects, to compare the frequency of the occurrence of side
effects as compared to reported frequencies in the SIDER database and to make a connection
to mechanistic explanations for side effects using the toxicogenomic database TG-GATEs.7
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