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The majority of accepted papers in computational biology and biocomputing describe new software 

approaches to relevant biological problems. While journals and conferences often require the 

availability of software and source code, there are limited resources available to maximize the 

distribution and use of developed software within the scientific community.  The accepted standard 

is to make source code available for new approaches in published work, the growing problem of 

system configuration issues, language, library version conflicts, and other implementation issues 

often impede the broad distribution, availability of software tools, and reproducibility of research.  

There are a variety of solutions to these implementation issues, but the learning curve for applying 

these solutions is steep.  This tutorial demonstrates tools and approaches for packaging and 

distribution of published code, and provides methodological practices for the broad and open sharing 

of new biocomputing software. 

1. Rationale for Tutorial

A cornerstone of biocomputing and computational biology is the release of new algorithms for data 

analysis, often in the form of an author-developed software implementation.  With the ever 

increasing need for algorithmic processing of experimental data in scientific studies, the 

reproducibility of individual studies has declined (Baker and Penny 2016; Monya and Dan 2016).  

The lack of reproducibility and open sharing of methods has had downstream impacts into more 

expensive clinical research, leading to an estimated $200 billion of wasted research funds (Chalmers 

and Glasziou 2009).  The subsequent resulting calls to optimize the research and discovery pipeline 

to minimize reporting of false discoveries and to reduce research waste (Macleod et al. 2014) have 

led to proposals for “best practices” in computational research.  In their Ten simple rules for 

reproducible computational research, Sandve and colleagues enumerate the need for archiving 

exact versions of external programs, version controlling all custom scripts, storing intermediate data 

and raw output, and providing public access to scripts, runs and results (Sandve et al. 2013).     
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The traditionally accepted approach for standardization and version control of software is the 

use of package repositories.  The Comprehensive R Archive Network (CRAN) is an extensively 

mirrored repository of distributions, extensions, and documentation for the R statistical package 

(Hornik 2018).  Similarly, Bioconductor serves as an extension of the R environment for 

computational biology and bioinformatics packages (Gentleman et al. 2004).  Analogs of these 

repositories have also been developed for the Python language (Dale et al. 2018), and custom 

software and version control is now routinely stored and managed using Git and GitHub (Chacon 

and Straub 2014).   

While package management systems have dramatically improved version control and 

accessibility of software, duplicating the precise software environment used to process experimental 

data in a publication has long remained a major challenge.  Within the last five years, the dramatic 

rise of containerization technologies like Docker (Merkel 2014) have for the first time allowed 

seamless distribution of data, software, and its native processing environment together as a single 

entity.  Containerization technology has been adapted for bioinformatics tasks (Belmann et al. 

2015), deployed into custom bioinformatics registries (Moreews et al. 2015), and specifically 

adapted to high-performance computing environments (Kurtzer, Sochat, and Bauer 2017).  

Containers have been especially useful in the distribution of complex workflows with dependencies 

on multiple software tools, such as the processing of next-generation sequencing data (Kim et al. 

2017; Schulz et al. 2016).  The BioContainers Community has produced a list of recommendations 

for standardizing bioinformatics packages and containers (Gruening et al. 2019). 

Even with software version control and entire software environments available for download, 

specific analysis steps of a given publication may not be well-documented.  While package 

management systems have dramatically improved version control and accessibility of software, and 

containerization allows duplication of the precise software environment, the exact process for 

analyzing experimental data may still prove difficult to reproduce without detailed documentation.  

To address these challenges, Jupyter notebooks have emerged as a composite digital document that 

seamlessly blends code (from a variety of languages), documentation, and data visualization in an 

easy-to-follow format (Kluyver et al. 2016).  Jupyter notebooks have gained popularity in other 

computation-heavy fields like astronomy (Wofford et al. 2019), however their stability and 

accessibility is not always persistent after publication.  While there are also repositories for storing 

Jupyter notebooks, specific practices are needed to ensure long-term availability of accessed 

documents (Bouquin et al. 2018).     

In this tutorial, we outline a technology stack that ensures high availability and easy distribution 

of software, encapsulated data, software environment, and analysis approaches.  Docker containers 

are proposed as a foundational layer, providing a stable, version-controlled operating system along 

with its associated programming languages and packages, and data files that can be cached within 

the environment.  R and Python packages are the distribution method for custom software 

implementations, and are accessible within distributable containers.  And Jupyter notebooks provide 

detailed documentation of all analysis steps in an interactive fashion.      
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2.  Tutorial Speakers 

William S. Bush, Ph.D. is an Associate Professor in the Department of Epidemiology and 

Biostatistics and Assistant Director for Computational Methods in the Cleveland Institute for 

Computational Biology at Case Western Reserve University. Dr. Bush received his Ph.D. at 

Vanderbilt University in Human Genetics in 2008 and then continued as a post-doctoral fellow in 

the Neurogenomics Training Program at Vanderbilt. Dr. Bush was recently named a Mt. Sinai 

Health Care Foundation Scholar. As a human geneticist and bioinformatician, Dr. Bush’s research 

interests include understanding the functional impact of genetic variation, developing statistical 

and bioinformatics approaches for integrating functional genomics knowledge into genetic 

analysis, and the use of electronic medical records for translational research.   

 

Nicholas Wheeler, Ph.D. is a Research Associate in the Cleveland Institute for Computational 

Biology at Case Western Reserve University.  Dr. Wheeler is a macromolecular scientist and 

engineer by training with extensive expertise in the use of “big data” technologies for large scale 

data aggregation and analysis.  Dr. Wheeler manages genomic datasets and their associated meta-

data within a Spark/Hadoop cluster, with extensions to the open-source HAIL platform for 

genomic analysis, which ensures standardization and reproducibility of experimental analyses.  

Over the course of his career, Dr. Wheeler has created, validated, and submitted multiple R and 

Python packages into public repositories.   

 

Brett Beaulieu-Jones, Ph.D. is a Post-doctoral Research Fellow in Biomedical Informatics in the 

Kohane lab at Harvard University.  He received his PhD from the Perelman School of Medicine at 

the University of Pennsylvania under the supervision of Dr. Jason Moore and Dr. Casey Greene. 

Dr. Beaulieu-Jones’ doctoral research focused on using machine learning-based methods to more 

precisely define phenotypes from large-scale biomedical data repositories, e.g. those contained in 

clinical records. He is currently performing large-scale data integration (genomic, therapeutic, 

imaging) to both better understand disease etiology as well as provide precise therapeutic 

recommendations. Initially, he is working to develop targeted models of drug selection for patients 

with refractory epilepsy and to further develop machine learning methods that model the way 

patients progress over time using longitudinal data.   

 

Christian Darabos, Ph.D. is the Assistant Director for Research Informatics at Dartmouth 

College.  He graduated with a double Ph.D. degree in Computer Science and Computational. 

During his Post-doctoral work with Dr. Jason Moore, he developed on computational genetics 

analytics pipelines of large datasets using network-based approaches.  At Dartmouth, Dr. Darabos 

conducts a series of workshops and tutorials on computational tool and Reproducible Research.    
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Translational bioinformatics (TBI) is focused on the integration of biomedical data science and 
informatics.  This combination is extremely powerful for scientific discovery as well as translation 
into clinical practice.  Several topics where TBI research is at the leading edge are 1) the use of large-
scale biobanks linked to electronic health records, 2) pharmacogenomics, and 3) artificial intelligence 
and machine learning.  This perspective discusses these three topics and points to the important 
elements for driving precision medicine into the future. 

Keywords: translational bioinformatics, precision medicine, pharmacogenomics, artificial 
intelligence, machine learning, electronic health records, biobank 

 
1.  Introduction 

Translational bioinformatics (TBI) is a multi-disciplinary and rapidly emerging field of 
biomedical data sciences and informatics that includes the development of technologies that 
efficiently translate basic molecular, genetic, cellular, and clinical data into clinical products or 
health implications. TBI is a relatively young discipline that spans a wide spectrum from big data 
to comprehensive analytics to diagnostics and therapeutics. TBI involves applying novel methods 
to the storage, analysis, and interpretation of a massive volume of genetics, genomics, multi-omics, 
and clinical data; this includes diagnoses, medications, laboratory measurements, imaging, and 
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